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Nuclear fission with diffusive dynamics
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We investigate the dynamics of nuclear fission, assuming purely diffusive motion up to the saddle

point. The resulting Smoluchowski equation is solved for conditions appropriate to the
' 0+' Nd~'"Er reaction at 207 MeV. The solution is characterized by an equilibration time ~0 for
the system to reach steady state, and the fission decay rate in steady state, A. We find that the equilibra-
tion time ~0 plays a very small role in determining the number of prescission neutrons. The diffusion

coefficient extracted from the experimental data is larger than the theoretical in the work of Bush,
Bertsch, and Brown by a factor of 5 —11.

PACS number(s): 24.75.+ i, 24.60.Ky

It is necessary to understand the dynamics of large am-
plitude shape change in order to describe a number of
processes for which the statistical model fails. This in-
cludes several effects associated with fission, including the
emission of prescission neutrons [1—3] and the emission
of giant dipole photons [4]. On the theoretical side, large
amplitude shape dynamics is most commonly treated as-
suming the average motion can be described by Newtoni-
an mechanics with inertial and linear friction parameters
[5]. Recently, Bush, Bertsch, and Brown proposed a
model of the shape dynamics of highly excited nuclei
from quite a different point of view [6]. They start with
the basic assumption that the highly excited nucleus can
be described as an incoherent mixture of Hartree-Fock
configurations at a given energy. They concentrate ex-
clusively on the diffusion in the nuclear shape degrees of
freedom avoiding a discussion of inertia, friction, or
indeed any collectivity in the motion. Based on this pic-
ture, they have calculated the diffusion coefficient for
quadrupolar shape fluctuations using the residual interac-
tion to mix Hartree-Fock configurations.

In frictional dynamics, the Kramers' theory [7] may be
used to find the fission decay rates. A corresponding
theory can be derived from the diffusive dynamics using
the Smoluchowski equation. We show how this is done
belo~. The end result is equivalent to the Kramers'
theory, in the strongly overdarnped limit of that theory.
We then discuss the numerical application to prescission
neutron multiplicities. In Ref. [6], the theoretical
diffusion rate was an order of magnitude slower than
found in the analysis of Ref. [2]. Our analysis here of the
measurement of Ref. [3] is a factor of 5 different from the
theoretical prediction, due mostly to the larger number of
prescission neutrons extracted from the later experiment.

We start from a generic rate equation

dP, = —(I. . .+I, , +, )P, +I. . .P, , +I,+, P, +, ,

where P, is the probability of finding the system in the
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where the diffusion coefficient D& may be expressed in
terms of microscopic quantities (such as the residual in-
teraction V; } as [6]

In deriving Eq. (1), we have also defined the temperature
as the inverse logarithmic derivative of the level density
and used the chain rule, Bp/BP=(Bp/BE' )(BE*/BP).
Several authors have applied the Smoluchowski equation
to nuclear fission processes with the fission variable as the
generalized coordinate [8,9]. It is interesting to note that
the fluctuation-dissipation theorem, relating the
coefficient of the drift term to that of the fluctuation
term, follows directly from the above derivation.

A convenient feature of Eq. (1) is that the diffusion
coefficient can be scaled out of the equation by defining a

state i and I, is the rate at which the system moves
from one state to its immediate neighbor. This is a gen-
eralization of the treatment of Ref. [6], which assumed all
I; equal. To be more realistic, we have to consider the
effect of the level density on the rates. Detailed balance
requires that I; and I, be in the ratio of the final-state
level densities p and p; ~ In terms of these level densities,
the rate equation may be expressed

dI';
v(p —1 +p+1 ' p —1 pP+1)

dt

where v is a constant. To reduce the above to the Smolu-
chowski equation, we assume that the states i are uni-
formly separated in deformation by an amount b,p and
treat P as a continuous function of p. The finite
differences are expanded P;+, =P;+bpBP/Bp, etc. The
result to order (bp) is the Smoluchowski equation,
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I(P, t)=DE — P+1 BV dP
tI (2)

The decay rate A, is defined

I(p, t)
I' „dP'P(P')

It is seen to obey the same scaling, A,(D&)=AD&, where
A is the decay rate for D& =1.

The stationary decay rate for Eq. (1) for a particle
trapped inside a parabolic barrier has been derived by
Chandrasekhar [10]. Assume the potential V(P) has a
parabolic shape, upward-curving near the equilibrium de-
formation p& and downward-curving near the barrier top
atp, ,

—,'k, (P—P, ) when P~a,
V(P)= '

UB —
—,'k~(P —PI) when P) a . (3)

Here Uz is the barrier height, and the parameter a is
determined to make the parabolas join smoothly. Then
the stationary value Ap of the decay rate is simply given
in terms of the oscillator parameters and the barrier
height by [10]

new time variable v=D&t. Thus we need only solve the
equation with D&=1 and all solutions corresponding to
different D&'s can be obtained simply by rescaling the
time. This scaling property is well known in previous
studies using the Smoluchowski equation [8,9]. We will

calculate the decay rate by considering the probability
current I(p, t) which crosses p at time t This may be ex-

pressed as

ters corresponding to the nucleus ' Er following Ref.
[13]. The decay rate is most sensitive to the height of the
fission barrier UB and the difference p, =pz —p, between
the yrast state and the saddle-point deformations. The
fission barrier height is quoted in Ref. [13] for a range of
angular momenta and we use those, interpolating or ex-
trapolating to angular momenta not included in their
table. The deformation at the saddle point is determined
using their Fig. 2, which shows the barrier as a function
of the separation of the two mass centers. To convert to
an equivalent deformation p, we demand that quadrupole
moments be the same as for a spheroid with the deforma-
tion pz. This procedure is rough, but high accuracy is
not possible without a more detailed consideration of the
fission path when calculating the diffusion coefficient.
The saddle-point deformation does not depend strongly
on angular momentum; we take a fixed value pz=1.20.
The yrast deformation p, is determined from the rotating
liquid drop model This also does not depend strongly on
angular momentum for the range considered; our value
here is p, =0.42. The potential-energy function is shown
in Fig. 1 and the values of the parameters are given in
Table I.

We now describe the results of numerical solution of
the Smoluchowski equation. We assume an initial proba-
bility density

P (P,O) ~ exp
V(P)

Tp

with To=0.3 MeV as suggested in Ref. [14]. In Fig. 2,
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This result can be compared with Kramers' stationary
decay rate [7,11]
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where y is the reduced friction coefficient. To connect
this with Eq. (4), we explicitly introduce the inertial pa-
rameter M in the Kramers' formula. The oscillator fre-
quencies co; are expressed as ro; =Qk; /M. The reduced
friction coefficient y is related to the diffusion coefficient
by the Einstein relation [12], yM =T/D&. Then in the
limit of large y the Kramers' formula reduces to

1&2 UB Qk1 k2 UB
k = exp xp
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identical to Eq. (4).
We now display some of the characteristics of the solu-

tion of the Smoluchowski equation. We choose pararne-

FIG. 1. Our potential energy functions (solid line) for "Er at
J=65fi, 69k, and 72% are compared to those given in Ref. [13]
(dashed line). The potential parameters adopted are given in

Table I.
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without any fission barrier does not show any evidence
for saturation, as can be seen from the dashed line in Fig.
3. But note the over-shooting of the decay rate at higher
partial waves, which has been also discussed by Lu et al.
[15]. In the last two columns of Table I, we list the sta-
tionary values of decay rate Ao" which is evaluated using
Eq. (4) and Ao" which is obtained from our numerical
calculations. The stationary value Ao of the fission decay
rate shows a strong dependence on A for fixed J and also
a strong dependence on J for fixed A. However, the ori-
gin for such dependence in two cases is quite different. In
Table I, we also list the nuclear temperature T together
with the potential parameters. When J is fixed, the main
reason Ao decreases as A becomes smaller is the decrease
in T due to the cooling by neutron evaporation. Here the
shape of the potential barrier remains more or less the
same for all the nuclei participating in the chain. On the
contrary, when A is fixed, the temperature does not de-

pend on J very much, but the barrier height changes with

J, giving a larger rate Ao for higher J.
The equilibration time 7 p may be defined by the time

interval until A reaches its stationary value. The vo is

found to exhibit more or less the same value ~0=0.068
for all J's and for all A' s. This also corresponds to an ex-

tremum point in the dashed line (without the fission bar-

rier) of Fig. 3 where ro is indicated by an arrow. Our re-

sult suggests that ~0 does not depend on T nor the shape

of the potential. The equilibration time fo which corre-

sponds to a specific D& can be found from the scaling

tp =re/D&. Therefore, to is inversely proportional to Dtt
and hence proportional to the reduced friction coefBcient

y as a result of the fluctuation-dissipation theorem. This
phenomenon has been also studied by Weidenmiiller and
Zhang [8], and they found such dependence of to on y
also in the overdamped situation, but could not decide
clearly the dependence of to on Uz and T. Our result
shows that ~o is the same for any combination of Uz and
T.

We finally turn to the calculation of neutron multiplici-
ty prior to fission. The decay rates will change as neu-
trons are emitted due to the cooling of the system,
reflected in the temperature dependence of the statistical
neutron decay rate and of the fission decay rate
A=A/Dtt, wh, ere D& is proportional to T [6]. We per-
form this part of the calculation with a numerical cas-
cade. Let Y,(t) be the occupation probability of the sth
nucleus in the neutron decay chain which terminates at
the soth step either by fission or by neutron emission
made impossible due to the lack of available excitation
energy E,*=E,'

1
—2T, 1

—B„, , Here T, and B„,are
the nuclear temperature and the neutron separation ener-

gy of the sth nucleus, respectively. Then Y,(t) satisfies a
set of coupled equations

Y, (t)=A.„, , Y, ,(t)—[)(,„,+A,f,(t)]Y,(t),d

s =1,2, . . .,sc, (5)

where A,„,and A,f, are the neutron emission rate and the
fission decay rate at the sth step, respectively, and

and hence when t = + 00, it becomes

Y, f( ce ) =f Af, (t) Y, (t)dt .

The neutron multiplicity prior to fission is defined by
adding all the neutrons released from the entire decay
chain,

Sp Sp

v(J)= g(s —1)Y,f(~) g Y, f(~),
s=1 s=1

where J is the angular momentum for which the calcula-
tion is originally performed and the observed neutron
multiplicity v is obtained by taking the average among
the participating partial waves.

In Fig. 4, we present our results on the neutron multi-
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FIG. 4. Prescission neutron multiplicity is plotted in terms of
the diffusion coefficient D& in the parent nucleus "Er. The thin
lines are obtained assuming D~ does not depend on T while the
thick line takes the full account of T dependence along the de-
cay chain. The time-dependent fission decay rate Af (t) has been
used in the (thin) dashed line but only the stationary value of it
has been considered for the (thin and thick) solid line thus ex-
cluding the transient time completely. The shaded area
represents the range of Dp derived in Ref. [6]. Two rectangles
show the recent data on v by Gavron et al. [2] (lower one) and

by Hinde et al. [3] (upper one).

A,„o=A,„,=0 at the beginning and end of the neutron

decay chain. The neutron emission rate is calculated by
the Weisskopf formula [16]

2mR 2 E*—Bn

m6'

where m is the mass of the emitted neutron and R is the
radius of the nucleus. In order to calibrate this formula,
a is adjusted to give the neutron emission rate of 50
keV/A' which is calculated in a more elaborate statistical
model for ' 0+' Nd~' Er at 207 MeV and J=65k
[17]. Also, let Y, f(t) be the probability of ending the
process with fission at time t at the sth step. It then
satisfies

dYSf =A.f, (t) Y,(t)
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plicity v prior to fission. First, we have solved Eq. (5) nu-

merically assuming DI3 does not depend on T along the
decay chain. The thin dashed line is obtained by taking
Af(t)=A(t)D& while the thin solid line is the result of
neglecting the transient behavior of the fission decay rate
and taking Af(t)=Ao" D&, where Ao" is the constant
stationary value of A(t) (see the last column of Table I).
These two thin lines clearly demonstrate that the tran-
sient behavior in the fission decay rate does not affect the
prescission neutron number very much. Bhatt et al. have
also reached the same conclusion [18]. The reason is as
follows. For small values of D&, the neutron decay rate
A,„ is much larger than the fission decay rate initially (be-
cause of the diffusion hindrance). As neutrons are emit-
ted, the system cools, eventually favoring fission because
of its lower barrier. On average, the fission occurs when
the two decay rates are comparable. Thus, in this limit
the initial transit time t0 plays no role. In the unphysical
opposite limit of large values of Dp t0 becomes very
short compared to the neutron decay lifetime and does
not affect v either. Therefore, we conclude that most of
the enhancement in v comes from the reduction of the
fission decay rate in the overdamped process [19]. In
view of this, we have calculated v neglecting the effect of
the transient time completely. The thick solid line of Fig.
4 is the calculated result taking the temperature depen-
dence of D& into account. The fission decay rate of the
sth nucleus is then given by A,f, =Ao", D&(T, /T&),
where D& is the diffusion coefficient in the parent nucleus

Er. This temperature dependence causes emission of
up to almost one more neutron than in the case of the
temperature independent D&.

Gavron et al. measured the prescission neutron multi-

plicity for the reaction ' 0+' Nd~' Er at 207 MeV
and reported the value v=2. 7+0.4 [2]. However, there
has been a convicting report on the neutron multiplicity
by Hinde et al. in their more recent measurement for the
same reaction at the slightly lower energy of 178 MeV
[3]. They found that v=4. 2+0.3. Since v is expected to
increase with increasing excitation energy [15], the
conAict between the two measurements is quite severe.
Assuming v increases by 0.4 for each 10 MeV of excita-
tion energy [15],the expected v at 207 MeV would be 5.4.
One might hope that a microscopic calculation of v
would shed some light on this problem. We examined
the recent theoretical predictions for D& by Bush,
Bertsch, and Brown [6]. They obtained D&=3.8+1.6
keV/A for ' Er at T=2.5 MeV which is shown by a
shaded area in Fig. 4. The uncertainties in the theoretical

DI3 are due to the Monte Carlo averages and sums. In

Fig. 4, the data by Gavron et al. (lower rectangle) and by
Hinde et al. (upper rectangle) are also shown. From the

thick solid line, we can extract the range of DI3 corre-

sponding to the two measured v's; D&(Gavron)
=42.0+9.0 keV/tri and D (Hinde)=17. 7+3.0 keV/tri.

They are larger than the theoretical value of Bush,
Bertsch, and Brown by a factor of 11.1 and 4.7, respec-
tively. Clearly, the theory of Bush, Bertsch, and Brown
is incompatible with either measurement. Further pro-
gress might result from examining other effects of the
fission hindrance, for example, the giant-dipole photon
spectrum [4]. It would be interesting to see what values
of D& are favored by this data.

In summary, we have solved the Smoluchowski equa-
tion for quadrupolar deformations. The solutions exhibit
two nice properties which help us to analyze the fission

process systematically. One is the scaling relation and
the other is an analytical expression for the stationary
value of the decay rate. The latter is just the overdamped
limit of the well-known Kramers' stationary decay rate.
We find that the equilibration time is pretty much the
same for any combination of the height of the fission bar-
rier and the nuclear temperature. One of the important
results in our calculations is that the transient behavior in

the fission decay rate plays a very small role in determin-

ing the prescission neutron multiplicity, quite contrary to
the underdamped process. It is due to the fact that the
Smoluchowski equation scales the equilibration time and
the fission decay rate in an opposite way. The diffusion
coefficient extracted by our calculation from the existing
two data is larger by a factor of 5 —11 than the theoretical
estimation of Bush, Bertsch, and Brown based on their
recent derivation of the diffusion coefficient from mixing
of Hartree-Fock configurations [6]. On the other hand,
we predict that the neutron multiplicity of
' 0+' Nd~' Er at 207 MeV which corresponds to the
theoretical Dp would be v'"=6.6+0.5, which can be

compared to v= 5.4 extrapolated from the Hinde's result

according to a recent calculation on the neutron multipli-

city in terms of the excitation energy [15].
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