
PHYSICAL REVIEW' C VOLUME 46, NUMBER 1 JULY 1992

Analysis of neutron+nucleus scattering data with nonlocal optical potentials based
on the resonating-group formulation
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A nonlocal optical model is used to analyze the scattering of neutrons by ' C, ' 0, 'Si, S, and Ca in

the energy region from about 13 to 40 MeV. The real part of the internuclear interaction is obtained by
using the prescription of a recently proposed nucleon + nucleus model E, which is a microscopic model
based on the resonating-group formulation. A simple approximation, called the spherical approxima-
tion, is introduced to treat the cases involving non-closed-subshell target nuclei. The imaginary part
used is purely phenomenological, and is obtained by simply adopting the imaginary potentials which
have been found previously by other authors in their analyses with the usual local optical model. The
influence of the Percy effect is taken into account by the introduction of an additional multiplicative fac-
tor. The results obtained for the differential scattering cross sections and the analyzing powers are quite
satisfactory. The essential characteristics of the measured angular distributions are well reproduced.
This suggests that model K is a viable model of great simplicity and can be employed to make systematic
and large-scale analyses of all existing nucleon + nucleus scattering data.

PACS number(s): 24.10.—i, 25.40.Dn, 24.10.Ht

I. INTRODUCTION

The resonating-group method (RGM) has been em-

ployed over the last fifty years to study nuclear-structure
and nuclear-reaction problems from a microscopic and
unified viewpoint (see, e.g. , Refs. [1,2]). By utilizing mul-
tiple cluster configurations in the formulation [3,4] or by
simply introducing phenomenological imaginary poten-
tials to account for eff'ects of open reaction channels [5,6],
good agreements between calculations and experiments
have generally been obtained. On the other hand, be-
cause of analytical complexities in deriving the kernel
functions representing the nonlocal internuclear interac-
tions, resonating-group calculations have been limited to
light nuclear systems with A &12 and a rather small
number of selected systems involving heavier nuclei [7].
It is clear that, to extend the domain of practical applica-
bility of the RGM, some simplifying assumptions have to
be made. Recently, we have taken an initial step in this
direction by considering the nucleon + nucleus case
within the RGM framework, but adopting the simplifi-
cations of approximating target-recoil effects and taking
into account only the direct and the knockon-exchange
contributions. The resultant model [8], called model K, is
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then still a microscopic nonlocal model, but possesses the
important advantage that the kernel functions for
closed-subshell target nuclei can be analytically derived
with little difficulty.

The domain of validity for model K has been carefully
examined. By comparing model-E and exact ROM re-
sults in the n+a, n+' 0, and n+ Ca systems for
bound-state energies, phase shifts, differential scattering
cross sections, and polarizations, it was found [8] that
model K works very well when the nucleon number of the
target nucleus is larger than about 10 (see also Ref. [9])
and when the scattering energy is higher than about 10
MeV/nucleon. Thus, model K covers all the nucleon +
nucleus scattering cases that have customarily been ana-
lyzed with the usual local optical model [10—12], and,
therefore, can be adopted to provide a microscopic un-
derstanding of the parameter values which have been
phenomenologically determined by this latter model.

There is one important advantage associated with mod-
el K which is especially worth mentioning. This advan-
tage is that the equivalent local potential corresponding
to the nonlocal interaction of model K [13], obtained by
using a WKB procedure [14], exhibits already the major
part of the energy dependence which was found to be
necessary in phenomenological optical-model analyses
employing local potentials [10—12]. For example, in the
n+ Ca case at 20 and 40 MeV, the volume integrals per
nucleon pair of the &KB-equivalent local potentials are
equal to 412.5 and 366.8 MeVfm, respectively [13],
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which should be compared with the corresponding values
of 418.5 and 363.7 MeV fm obtained from a global nu-
cleon + nucleus optical-model potential called the CH-
89 potential [10]. Thus, for this energy range, model E
yields a respectable 83/o of the empirically determined
energy dependence. This suggests, therefore, that when
model E is used to analyze the experimental data, the real
part of the internuclear interaction can be chosen to be
explicitly energy independent, thereby reducing the num-
ber of adjustable parameters which are required in the
analysis.

In this investigation, we use model E to analyze the
scattering data of neutrons by the target nuclei ' C, ' 0,

Si, S, and Ca in the c.m. energy region between
about 13 and 40 MeV. The main purpose is, of course, to
examine the general utility of this model in studying ex-
perimental results. For the cases with ' 0 and Ca, the
expressions for the direct potentials and knockon-
exchange kernel functions given in Ref. [8] can be im-
mediately adopted, because these particular nuclei can be
considered to be well described by closed proton and neu-
tron subshell configurations. The situation is somewhat
different when the target nucleus is ' C, Si, or S. For
these nuclei, the higher (nl ) subshells are not completely
filled; hence, further considerations must be made in or-
der to render model E applicable. Prompted by our
desire to keep model E as simple as possible, we shall in-
troduce into the calculation an additional approximation,
to be called the spherical approximation, which has the

desirable consequence that the expressions given in Ref.
[8] can be readily adapted to the case involving a non-
closed-subshell target nucleus. In the next section, this
approximation will be presented, together with an ex-
planation of the plausibility for its adoption.

The nonlocal optical model to be used in this analysis
is described in Sec. II. In this model, the real part of the
internuclear interaction is based on model E, together
with the spherical approximation mentioned above. Re-
action effects are taken into account by the introduction
of a phenomenological imaginary part. In Sec. III, we
compare the calculated and experimental results for
differential scattering cross sections and analyzing
powers. As will be seen there, the agreement is quite sa-
tisfactory, thus suggesting that the use of the microscopic
model E in analyzing experimental data is a good pro-
cedure. Finally, in Sec. IV, we discuss the essential
findings of this investigation and make some concluding
remarks.

II. THE NONLOCAL OPTICAL MODEL

A. Brief description of the model

With a nonlocal optical model for neutron + nucleus
scattering, one solves the following integro-differential
equation for the internuclear radial wave function
fJL(R):

d

2p gg ~
E+ V (R —) + r)/L V"(R ) +i W(R ) fJL (R )

+f [kL (R,R')+pe kL'(R, R')]far (R')dR'=0, (1)
0

where p is the reduced mass of the neutron + nucleus
system, gzL is given by

/L+1/2L ~
& 9L —1/2L + (2)

and E is the relative energy in the c.m. system. The
quantities V and V" denote the direct nuclear-central
and the direct spin-orbit potentials, respectively, while

kL and kL" denote the partial-wave nuclear-central and
spin-orbit kernel functions representing the knockon-
exchange contributions. The expressions for these quan-
tities in the case of closed-subshell target nuclei, such as
' 0 and Ca, are given in Ref. [8]. Also, in Eq. (1),
8'(R ) is a phenomenological imaginary potential which
is introduced into the formulation to take into account
the effects of reactions on the incident channel.

For the target nuclei 1zC, zsSi, and S, the expressions
for V, V", kL, and k~" given in Ref. [8] cannot be im-
mediately used, because some of the (nl) subshells in
these nuclei are not completely filled. In these cases, the
straightforward procedure is to derive these expressions,
within the framework of model E, by using target-
nucleus wave functions which have the proper proton
and neutron configurations to yield the observed proper-

I

ties for the ground states of these nuclei. However, this
will result in a rather lengthy analytical derivation;
hence, for the purpose of preserving the important
features of simplicity and generality for model E, we shall
instead adopt a simple approximation, to be called the
spherical approximation, to treat the cases involving
non-closed-subshell target nuclei. In this approximation,
what we do is to simply multiply the closed-subshell ex-
pressions for V, V", kL, and kL' by a factor equal to
c„&/N„&, where c„~ and N„~ denote the occupation number
of nucleons in the (nl ) subshell and the nucleon capacity
of an (nl) subshell, respectively. For example, if one
chooses the proton configuration in Si to be c„&=2,6,
and 6 for (nl )=(00),(11), and (22), then the (nl) =(22)
subshell is unfilled, because the capacity N„& of this sub-
shell is equal to 10, and the contribution to the n+ Si
direct spin-orbit potential from the target protons in the
(nl ) =(22) subshell will then be taken to be —,', Vzz', with
V~zz' given by Eq. (36) of Ref. [8]. In a crude way, one
can say that the spherical approximation amounts to
omitting the intrinsic deformation of the target nucleus,
but treating it as a spherically symmetric system. Macro-
scopically, the use of the spherical optical model (SOM;
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see, e.g. , Ref. [15]) to perform systematic analyses of a
large body of nucleon + nucleus scattering data can be
considered to be acting in the same general spirit.

To discuss the plausibility of the spherical approxima-
tion, we first make the following observation. From ex-
tensive analysis of nucleon + nucleus scattering data
with the phenomenological optical model, it was learned
[16] that, in the real nuclear-central potential, the impor-
tant quantities which dominate the scattering charac-
teristics are the volume integral per nucleon pair Jz and
the rms radius R&. With the target-nucleus wave func-
tions constructed in terms of single-nucleon spatial wave
functions in a harmonic-oscillator well of width pararne-
ter a, we have found by constructing equivalent local po-
tentials [13] that the contribution to JN from the nu-
cleons in an (nl ) subshell depends weakly on the quan-
tum number n and, for the same value of n, has almost no
I dependence. In addition to this, the contribution to the
mean-square radius of the dominant direct nuclear-
central potential also turns out to be l independent for a
given n value (see Eq. (64) of Ref. [8] and Eq. (18) of Ref.
[16]). Based on these considerations, we can state that,
from the viewpoint of the elastic-scattering process, the
precise way in which nucleons distribute themselves

among the various l states within a major n shell should

not be of primary importance. To show the validity of
this assertion, we shall perform calculations in the
n+ Si and n+ S cases by adopting target-nucleus
configurations which are different in their distributions of
nucleons in a particular major shell ~

Because of our anticipation that the scattering results
will not be greatly sensitive even with respect to the dis-
tribution of target nucleons in different I states within a
major n shell, we are of the opinion that the adoption of
the spherical approximation, which is based on the mild-
er assumption of the relative insensitivity of the scatter-
ing results with respect to the distribution of nucleons in
different magnetic substates within an l state, should be a
reasonable procedure. This is especially so, if we further
take into account the important advantage that the resul-
tant model will be so simple as to be suitable for a sys-
tematic and large-scale analysis of all existing nucleon +
nucleus scattering data in the future.

Using the spherical approximation, one can now easily
obtain the expressions for the direct potential and the
knockon-exchange kernel functions. As an example, let
us consider the case of n+ Si, with Si having proton
and neutron configurations specified by c„I=2, 6, and 6
for (nl)=(00), (11), and (22). With a nucleon-nucleon
potential having the basic form

VJ = —Voexp( I4rj )—(w mP JP J+—bP; hP;;) — —V&exp( Ar,")(o;+cr —
) (r; —r ) X(p; —p~), (3)

the results are as follows:

V (R)= —Vo(4w —m+2b —2h)
a

a+K

3/2

R
a+K

[ 1+2aR R'+ —,
' a [3(R R') —R R '

] ]

7a +Sax+ad 2am (3a+v) z 4a K
R exp

(a+~) (a+a) 5(a+a)
' 3/2

K (R,R')= —Vo( —w+4m 2b+2h)—

(4)

Xexp — —+a. (R +R' )+2&R R'
2

(
—1+ 2aR + 4a (6)

and K"(R,R') obtained by using Eq. (54) of Ref. [8]. In
deriving Eq. (6), we have adopted a zero-range approxi-
mation by letting the spin-orbit range parameter k ap-
proaching infinity. As a consequence of this approxima-
tion, the nucleon-nucleon spin-orbit potential is then
characterized by a single parameter J& given by

(7)

In the actual analysis, we have used the Minnesota
(MN) potential given by Eqs. (65)—(67) of Ref. [8]. This
potential has a somewhat more complicated central part
than the nucleon-nucleon potential of Eq. (3). We should
emphasize, however, that this does not cause any prob-
lern. The calculation can still be readily carried out by

making only trivial modifications of the expressions given
in Ref. [8] for the direct potentials and the knockon-
exchange kernel functions.

B. Choice of parameters in the real part
of the internuclear interaction

The real part of the internuclear interaction is
represented by the direct potentials and the knockon-
exchange kernel functions that involve three parameters.
These parameters are (i) the width parameter a of the
harmonic-oscillator well which provides the single-
nucleon wave functions for the target nucleus, (ii) the
exchange-mixture parameter u in the nuclear-central part
of the MN nucleon-nucleon potential, and (iii) the spin-
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C. Choice of parameters in the imaginary part
of the internuclear interaction

Since the main purpose of this investigation is not to
obtain detailed fittings of the neutron + nucleus scatter-
ing data, but to study the general utility of model E in
providing the real part of the internuclear interaction, we
shall adopt a very simple recipe for the imaginary part
W(R ). What we do for a particular scattering system at
a given energy is to write

W(R )=C W, , (R ), (8)

where W,~, (R) represents the phenomenological imagi-
nary potential already obtained by other authors in their
analysis of the experimental data with the usual local op-
tical model, and C is a multiplicative factor to be called
the Percy factor. It is necessary to introduce this multi-
plicative factor, because it has been found that, in the re-
gion of strong interaction, the magnitude of the relative-
motion wave function in a nonlocal potential is con-
sistently smaller than that determined from a phase-
equivalent local potential (i.e., the so-called Percy efFect)
[6,19,20].

The Percy factor C wi11 be chosen in the following
manner. We consider the n+ Ca system as a typical
case, and calculate the total reaction cross section o.

&
when the real part of the internuclear interaction is given
by either the nonlocal potentia1 of model EC or its
equivalent local potential through a WKB procedure.
With imaginary potentials of pure surface geometry, we
find that, to reproduce the az values in the local case,

orbit strength parameter Ji defined by Eq. (7) in the
preceding subsection. In the following, we shall discuss
the ways in which we assign values to these three parame-
ters in the cases of neutron scatterings by the target nu-
clei' C, '0 Si, S, and Ca.

The width parameter a is determined by using empiri-
cal information on the rms charge radius of the target nu-
cleus [17]. By choosing the lowest configurations for the
various target nuclei, the resultant values for a turn out
to be equal to 0.389, 0.334, 0.306, 0.290, and 0.253 fm
for C, 0, 2 Si, S, and ~Ca, respectively.

The parameters u and J& in the nucleon-nucleon poten-
tial are chosen by using information which is available
from exact single-configuration RGM calculations in the
n+a, n+' 0, and n+ Ca cases. By best fitting the
bound-state or resonance energies, it was found [18] that
the u values should be taken to be 0.970, 0.924, and 0.856
in these three systems, respectively, and J& can assume a
constant value of 50 MeV fm . Then, by adopting a sim-
ple interpolation procedure, we decide to use u =0.938,
0.924, 0.887, 0.876, and 0.856 in the n+' C, n+' 0,
n+ Si, n+ S, and n+ Ca systems, respectively, and a
common value of J&=50 MeVfm in all these systems.
The finding that u needs to be system dependent and
slowly decreasing with the nucleon number of the com-
pound nucleus is likely a consequence of the fact that our
chosen nucleon-nucleon potential has only a weak repul-
sive core and does not quite satisfy the requirement of
saturation.

TABLE I. Percy factor and references for W,~, used in the
analysis of neutron + nucleus scattering data.

Target
nucleus

12C

16O

28si

32S

Ca

(MeV)

16.8
24.0
16.94
21.65
13.5
29.26
13.58
39.08
13.56
29.3

Cp

1.20
1 ~ 15
1.20
1.15
1.20
1.10
1.20
1.10
1.20
1.10

Refs.
for W,pt

[21]
[22]
[23]
[24]
[25]
[15]
[25]
[22]
[26]
[27]

III. ANALYSIS OF NEUTRON + NUCLEUS
SCATTERING DATA

With the parameters chosen according to the discus-
sion given in the preceding section, we calculate the
difFerential scattering cross sections o (8) and the analyz-
ing powers A~(8) in the n+' C, n+' 0, n+ Si, n+ S,
and n + Ca cases. The results in the energy region from
about 13 to 40 MeV are shown by the solid curves in
Figs. 1 —5 for o (8) and in Figs. 6—8 for A„(8). To obtain
these results, we have adopted the same configurations
for the protons and the neutrons in the target nuclei.
These configurations are ( ls ) ( lp ) for ' C, ( ls ) ( lp ) for
' 0, (ls) (lp) (ld) for Si, (ls) (lp) (ld) (2s) for S,
and (ls) (lp) (ld)' (2s) for Ca, where the spectro-
scopic notations 1s, 1p, 1d, and 2s denote the single-
nucleon configurations in a harmonic-oscillator well with
( n 1 ) = (00), (11), (22), and (20), respectively. In the
n + Si and I+3 S cases, we have additionally performed
calculations with Si assumed to have the configuration
(ls) (lp) (ld) (2s) and with S assumed to have the
configuration (1s) (1p) (ld) . The results obtained with
these configurations are shown by the dashed curves in
Figs. 3, 4, and 7.

First, we discuss the comparisons of the calculated
o.(8) results with experimental data (solid circles, Refs.

one must introduce in the nonlocal case multiplicative
factors C equal to 1.15, 1.09, and 1.05 at E=20, 40, and
60 MeV, respectively. When volume absorptions are
used, similar features are found although Cz turns out to
be slightly larger. The finding that Cz decreases with en-

ergy and converges toward unity simply rejects the fact
that, as the energy increases from 20 to 60 MeV, the
knockon contribution, which gives rise to the nonlocal
part of the interaction, becomes effectively weaker in re-
lation to the direct contribution which is represented by a
totally local potential.

In Table I, we list the Percy factors C~ used in the
analysis and the references in which the absorptive poten-
tials W, , appear. The values of C are chosen according
to the information learned in the n+ Ca case discussed
above, and have not been fine tuned to obtain best fits
with measured results.
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FlG. 1. Comparison of calculated and experimental

differential cross sections for n+ ' C scattering at 16.8 and 24.0
MeV. Experimental data shown are those of Refs. [23,28].

[15, 22 —28]). By examining Figs. 1 —5, we can make the
following statements.

(i) The agreement between calculation and experiment
is quite satisfactory. From these figures, one can see that

B (deg}

FIG. 3. Comparison of calculated and experimental
differential cross sections for n+ Si scattering at 13.5 and
29.26 MeV. The solid and dashed curves represent results ob-
tained when Si is described by the configurations
(1z) (1p)~(1d) and (1z) (1p) (1d) (2z), respectively. Experi-
mental data shown are those of Ref. [15].
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FIG. 2. Comparison of calculated and experimental
differential cross sections for n+' 0 scattering at 16.94 and
21.65 MeV. Experimental data shown are those of Refs.
[23,24].

the calculation correctly yields the oscillatory features of
the experimental angular distributions and the general
magnitudes of the measured cross sections.

(ii) The quality of fit obtained with the present nonlocal
model is rather similar to that obtained with the phenom-
enological spherical optical model (SOM) which contains
an energy-dependent real-central local potential.

(iii) The quality of the calculated cross-section results
in the n+IzC, n+zsSj, and n+ S cases which involve
nonclosed-subshell target nuclei is comparable to that in
the n+' 0 and n+ Ca cases which involve closed-
subshell target nuclei. This is an indication that the
adoption of the spherical approximation is a reasonable
simplifying procedure.

(iv) Cross-section results obtained with different target
configurations in the n+ Si and n + S cases, represent-
ed by solid and dashed curves in Figs. 3 and 4, are seen to
be different in relatively minor ways. This shows that, at
least for the differential scattering cross sections, the re-
sult is mainly sensitive to gross properties of the internu-
clear interaction, such as the volume integral per nucleon
pair and the rms radius [16],but much less so to the de-
tailed structure of the target nucleus, such as the distribu-
tion of nucleons among various I states in a major shell.

At 13.5 Mev, the calculated total cross sections o.T in
the n+ Si, n+ S, and n+ Ca cases, with Si and S
assumed to have the configurations (1s) (1p) (1d) and
(1s) (1p) (1d) (2s), are equal to 1766, 1972, and 2136
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FIG. 4. Comparison of calculated and experimental
difFerential cross sections for n+ S scattering at 13.58 and
39.08 MeV. The solid and dashed curves represent results ob-
tained when S is described by the configurations
(1s) (1p) (1d) (2s) and (1s) (1p) (1d), respectively. Experi-
mental data shown are those of Refs. [22,25].
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FIG. 6. Comparison of calculated and experimental analyz-
ing powers for n+' C scattering at 16.8 MeV and for n+' 0
scattering at 21.56 MeV. Experimental data shown are those of
Refs. [21,24].
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FIG. 5. Comparison of calculated and experimental
differential cross sections for n+ Ca scattering at 13.56 and
29.3 MeV. Experimental data shown are those of Refs. [26,27].

mb, respectively. These o T results agree well with the
measured values obtained by Foster and Glascow [29].
When one chooses instead the configurations of Si and

S to be ( ls ) ( lp ) ( ld ) (2s ) and ( ls) ( lp ) ( ld ), the
corresponding a T values are found to change to 1854 and
1872 mb. These changes, being only around 5%, are
however rather small, thus leading us to believe that the
use of 0.T data as a way to gain information on the struc-
ture of the target nucleus is not likely to be a fruitful task.

Calculated analyzing powers are compared with exper-
imental data (solid circles, Refs. [15,21,24 —26]) in Figs.
6—8. Here one notes again that the quality of fit is simi-
lar to that obtained with the spherical optical model [25].
The calculation correctly yields the essential characteris-
tics of the measured angular distributions, but there is no
detailed agreement. In fact, this is not too surprising, be-
cause it is known that the analyzing power is more sensi-
tive to the details of the model than the differential
scattering cross section. For example, our adoption of a
zero-range nucleon-nucleon spin-orbit potential to
represent the effects of noncentral forces may be some-
what problematic, and this particular simplification may
need to be carefully examined in future investigations.

From Fig. 7, one finds that the analyzing power A~(8)
has a more noticeable dependence on the target-nucleus
configuration than the differential scattering cross section
tT(8). Again, because of the relatively larger degree of
sensitivity of A~(0) to the details of the model, this is not
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entirely unexpected. As one can see from this figure, the
general shapes of the analyzing-power curves obtained
with the two chosen configurations of the target nucleus
are quite similar, but the calculated magnitudes are some-
what different. This indicates that, although the distribu-
tion of nucleons among the different I states in an n shell
does not have a major infiuence on A (8), one must still

pay proper attention to this distribution if a detailed fit to
experimental data is desired. In fact, the present finding
seems to suggest that one might even use the analyzing-
power measurement in an elastic-scattering process as a
way to study the structure of the target nucleus. Howev-
er, we should mention that this may not be a practical
suggestion at this'moment. It is clear from our discus-
sion above that, for this specific purpose, one must first
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FIG. 8. Comparison of calculated and experimental analyz-

ing powers for n+ Ca scattering at 13.56 MeV. Experimental
data shown are those of Ref. [26].

IV. SUMMARY AND CONCLUSION

improve our present model such that detailed agreements
with experiment can at least be achieved in the cases
where the target nuclei have closed-subshell configu-
rations.
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FIG. 7. Comparison of calculated and experimental analyz-

ing powers for n+ 'Si scattering at 13.52 MeV and for n+ "S
scattering at 13.58 MeV. The solid and dashed curves represent
results obtained when Si is described by the configurations

( 1s ) ( 1p ) (1d ) and (1s ) ( 1p ) (1d ) (2s ), respectively, and when

S is described by the configurations (1s) (1p) (1d) (2s) and

(1s ) ( 1p ) (1d ), respectively. Experimental data shown are
those of Refs. [15,25].

In this investigation, we analyze the neutron + nu-
cleus scattering data with a nonlocal optical model. The
real part of the internuclear interaction is obtained by us-

ing the prescription of a recently proposed model K [8]
which is a microscopic model based on the resonating-
group formulation. A spherical approximation is intro-
duced to treat the cases where the target nuclei have
non-closed-subshell configurations. The parameters in-
volved are fixed by using information learned previously
from exact resonating-group calculations in the n+a,
n+' 0, and n+ Ca systems. The imaginary part used
is purely phenomenological. To avoid detailed adjust-
ments, we have simply adopted the imaginary potentials
which have already been obtained by other authors in
their analyses with the usual local optical model. The
inhuence of the Percy effect, associated with the use of a
nonlocal real part, is taken into account by the introduc-
tion of an additional multiplicative factor. This latter
factor is then chosen in each scattering case by a simple
procedure based on a detailed examination in the
n + Ca case.

The results obtained for the differential scattering cross
sections and the analyzing powers in the n + ' C, n + ' 0,
n+ Si, n+ S, and n+ Ca cases are rather satisfacto-
ry. The essential characteristics of the measured angular
distributions are well reproduced. A careful inspection of
the calculated and experimental results, especially in the
analyzing-power case, does indicate that the present mod-
el needs to be somewhat refined if detailed agreement
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with experimental data is desired. Even so, considering
the facts that the real part of the internuclear interaction
in this model is explicitly energy independent and that no
fine-tuning in the imaginary part is made, we are of the
opinion that model E is indeed a useful model of great
simplicity and the spherical approximation adopted in
this calculation constitutes a reasonable simplifying pro-
cedure.

The analyzing power is found to have a fairly notice-
able dependence on the configuration chosen for the tar-
get nucleus. This is an interesting finding, since it sug-
gests that the measurement of this particular quantity
may be a way to study nuclear structure by means of
elastic-scattering processes. At the present stage, howev-
er, we do not think that we can use this information to its
full advantage. The reason is that our present model is
not yet refined enough to enable us to examine the fine
details of the measured angular distribu'tions.

Encouraged by the success of this investigation, we are
now prepared to expand the domain of model E by con-
sidering other subjects of interest. What we have in mind

is to consider the case of inelastic scattering of nucleons
by nuclei, and the case of the internuclear interaction be-
tween a light ion (i.e., d, t, or a) and a heavier nucleus
such as Ca or Pb. In both of these cases, a consider-
able amount of tedious analytic derivation may have to
be performed. However, considering the importance of
achieving a microscopic understanding of these process-
es, we think that these projects are certainly worth pursu-
ing.
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