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Multiple scattering theory of proton elastic scattering at intermediate energies
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We derive and calculate the multiple scattering expansion of the Kerman-McManus-Thaler optical
potential to second order in the free nucleon-nucleon transition amplitude and clarify the physical con-
tent of the interaction. Calculations are presented for the elastic scattering of protons from ' 0 at 135,
200, and 300 MeV incident energies, paying particular attention to the nonlocalities inherent in the
second-order potential. It is shown that these effects result in a significant reduction in the proton-target
absorption.
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I. INTRODUCTION

A large number of very precise data on proton-nucleus
elastic and inelastic scattering have recently been ob-
tained using intermediate energy beams [1]. In addition,
a number of important high-energy experiments have
been carried out or are planned with weak probes, for ex-
ample, (e, e'p ) reactions [2]. Whereas in elastic scattering
the reaction is surface dominated the (p,p') and (e,e'p)
reactions are sensitive to the proton-nucleus wave func-
tion within the target nucleus. It is timely therefore to
study quantitatively the proton-nucleus optical potential
in the nuclear interior as well as at the nuclear surface.

In parallel with these experimental developments, re-
cent investigations of the free nucleon-nucleon (NN) tran-
sition amplitude calculated from realistic NN interactions
[3] have shown the on- and off-shell behavior of the am-
plitude to be remarkably stable to the choice of interac-
tion [4]. This, combined with more detailed information
on nuclear wave functions now available from electron
scattering data, has stimulated a renewed interest in finite
nucleus calculations of the nucleon-nucleus (NA ) interac-
tion based on the free NN transition amplitude and multi-
ple scattering expansions, as formulated, for example, by
Kerman, McManus, and Thaler (KMT) [5]. From the
preceeding discussion, the KMT optical potential is ex-
pected to be relatively insensitive to the assumed NN in-
teraction. Since the on-shell NN amplitude is constrained
by the experimental phase shifts it follows that the NA
optical potential should be fairly well determined by
empirical NN information, at least on the energy shell.
This approach builds in automatically, on the energy
shell, the subtle cancellations arising from the attractive
and repulsive contributions of the NN interaction in each
angular momentum state.

The second most often used procedure of generating
the microscopic NN information required as input to the
NA optical potential is to construct the NN g-matrix
effective interaction appropriate for nuclear matter [6].
Several groups have evaluated the g matrix, for a variety
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of NN potentials and approximation strategies [7—9]. The
validity of these approximations has been discussed in the
literature [10]. In this approach the local density approx-
imation has to be used in applying the nuclear matter re-
sults to finite nuclei. This approximation is suspect [9]
for two reasons. Firstly, in processes such as elastic
scattering which are surface dominated the procedure is
ill defined due to rapid variations in the spatial density
distribution. Secondly, the approach involves an approx-
imate solution of the g-matrix equation which introduces
approximations to the direct and exchange parts of the
amplitude and to the short-ranged repulsion and long-
ranged attraction of the NN effective interaction. These
approximations compromise the delicate cancellations
between these terms referred to above. In addition, or as
a result of the above, g-matrix calculations have been
found to exhibit considerable sensitivity to the adopted
NN potential model [9,11].

The first-order term of the KMT nucleon-nucleus po-
tential will be referred to as the single scattering approxi-
mation (SSA). Given by the expectation value of the free
NN transition amplitude, in the target nucleus ground
state, the SSA is expected, at intermediate energies, to
generate most of the scattering from the nucleus. The
off-energy shell effects of the NN transition amplitude,
which arise because the projectile scatters from a bound
nucleon in the NA center-of-mass system, have recently
been the subject of a number of very detailed investiga-
tions [12—14] and will not be covered in detail here.
Clearly, however, the significance of any agreement or
disagreement of these SSA calculations with experimental
data is impossible to assess without realistic calculations
of the importance of higher order and in particular
second-order contributions to the NA interaction. In this
paper, we address this problem. We present the most
complete calculations to date of the second-order term of
the nucleon-nucleus potential. We will pay particular at-
tention to the effects of the nonlocalities, inherent in the
potential, on the absorptive nature of the optical poten-
tial. We derive the KMT optical potential to second or-
der in the free NN transition amplitude, assuming that
the target ground state is described by a Slater deter-
minant of occupied single particle states. The proton-' 0
optical potential is calculated, in momentum space repre-
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sentation, at 135, 200, and 300 MeV incident energies us-

ing both harmonic oscillator and Woods-Saxon single
particle wave functions. The free NN transition ampli-
tude is that of the Paris potential [15]. In the present
work the spin-orbit component of the second-order NA
potential is neglected. An estimate of the importance of
this term for polarization data was made recently by
Feshbach [16].

The second-order term of the multiple scattering ex-
pansion to the NA potential involves a "double scatter-
ing" between the incident and target nucleons and will be
referred to as the DSA. We show that this term modifies
the free NN transition amplitude, appearing in the SSA
term, to account for Pauli blocking medium effects due to
the identity of the target nucleons. The evaluation of the
DSA terms requires a knowledge of the two particle
correlations in the target nucleus and a complete descrip-
tion of the spin and isospin dependence of the free NN
amplitude. In this work we consider only Pauli correla-
tions.

A basic problem with the DSA potential is its nonlo-
cality which originates from two sources. Firstly, as in
the SSA, nonlocality arises through the NN transition
amplitude. In addition, nonlocality arises from the prop-
agation of the nucleons in the intermediate state between
scattering events. It is the role and importance of these
two sources of nonlocality which will be clarified in this
paper. Due to the complexity of the nonlocal second-
order potential, previous calculations have attempted to
localize it using the eikonal approximation to the propa-
gator, simple models for the target correlation function,
e.g. , that deduced from a Fermi gas, and approximate
prescriptions for the NN transition amplitude [17]. Two
analyses, by Fesbach et al. [18] and Johnson and Martin
[19],did include the nonlocality associated with the inter-
mediate states propagator. Both analyses reduce the
evaluation of the DSA terms to the solution of a finite set
of coupled equations. Neither approach however includ-
ed fully the folding of the nonlocal NN transition ampli-
tude with the target wave function. These effects are in-
cluded explicitly in the present work.

Very recently detailed calculations of proton scatter-
ing, and a discussion of off-shell effects, have been
presented by Ottenstein et al. [20] within the relativistic
(Dirac equation) SSA optical potential formulation.
Second order medium effects in the relativistic frame-
work have also been evaluated by Kaki [21]. The relativ-
istic approach includes virtual pair contributions in addi-
tion to the dynamics incorporated in the nonrelativistic
calculations. It wi11 be important to reconcile the relative
importance of off-shell and medium effects obtained using
the two approaches [22].

II. THE OPTICAL POTENTIAL

A. The KMT multiple scattering expansion

In the KMT multiple scattering formalism [5] the an-
tisymmetrization of the projectile with the struck nucleon
and of the struck nucleon with the remaining A —1 tar-
get nucleons is properly taken into account. No attempt
is made however to consider the full antisymmetrization

U=(A —1)ro,(E) 1+ QoU

Here A is the antisymmetrization operator for the A tar-
get nucleons and 5=E+ —Ko Hz w—ith E =A' ko/2p~q
and p~~ the NA reduced mass. H~ is the internal Ham-
iltonian of the target, Ko the kinetic energy operator of
the incident nucleon, and ko its on-shell NA momentum.
The Pauli blocking operator Qo projects off the target
ground state Po, i.e., Qp=l Po wh—ere J'o=lyo&&yol.
The antisymmetrized effective NN transition operator
ro&(E), which describes the scattering of the projectile
with any one of the target nucleons (labelled "1"),
satisfies the integra1 equation

A
ir«o) =

Uio+ Dip~ &pi«) (2)

The presence of the antisymmetrization operator allows
only physical states of the nucleus as intermediate states.
Upon expanding the integral equation for the optical po-
tential operator, Eq. (1), to second order in 'Tp& we thus
obtain the second-order optical potential for elastic
scattering

U'" =( & —I ) & P,l, (E) I P, &

+(~ —1)'&yol.»(E), Qp.»(E)leap) . (3)

We now introduce the NN transition operator

1
rp](E)=op&+o

&
r (E)

5
(4)

which is not that describing free NN scattering since the
propagator remains a many-body operator. The unit par-
tition in the propagator refers to the full Hilbert space of
the target nucleus and includes both symmetric and an-
tisymmetric states of the target nucleons. The relation-
ship of ro, to to, is, from Eq. (2),

A —1
7 of(E)=to)(E)+to)(E) rp](E) (&)

and, substituting this expression for ~o, in the optical po-
tential, and retaining terms to second order in to, then

U'o'=( & —1)(/piro, (E)leap&

+(~ —1)(y,lr„(E) r„(E)ly, )

+( 2 —1)'(P,lr„(E) Q, r„(E)lP, ),

of the projectile with the latter (A —1) spectator nu-
cleons. Thus one neglects target exchange effects in
which a target nucleon other than the struck nucleon is
removed from the target and the incident nucleon
remains in the nucleus. Such contributions, which in-
volve the overlap of nucleon bound and scattering states,
can be neglected at intermediate energies [23,24].

The optical potential operator for the scattering of a
nucleon with energy E from a target of mass A is written
[5]
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which can be reorganized, using Po+ Qo = 1, to give

U'i' =(A 1)&goltoi(E)l(to&

P0—( A —I )'& P, i t„(E) t„(E)i/, &

0

+ y &y, lt„(E)—t,,(E)lg, &,
lWJ

with 50=E+—E0.
If the target ground state wave function is assumed to

be a single Slater determinant of occupied single particle
states ia &, with single particle energies e, then (see Ap-
pendix A for details) the optical potential reduces to
U '= U +U, where the first-order term U is

U"'= g &alto, (to )ia&
a

and the second-order term U' ' is the sum of two corn-
ponents, U' '= UI '+ UII ', where

y&alt„(a, )lp&I g 01 P

&k le,.lk&=&k'pltf (a.)lka&

=fdp f dp'& pip'& &k'p'Itoi(~. )lkp&&pla&.

(13)

The effective operator tofi(to ), with energy parameter
defined by Eq. (12), is still a three-body operator due to
the presence of the struck nucleon-core binding potential
V1 =h 1 K 1 ~ This potential is typically of order —40
MeV. To allow an unambiguous reduction to a two-body
operator it is usual at intermediate energies to assume the
impulse approximation such that, for the evaluation of
co, the projectile is assumed to scatter from a free nu-

cleon. That is, we assume that the incident nucleon ener-

gy is suSciently large that the single particle energy e
and the nucleon-core potential V1 of the struck nucleon
can be neglected [13,14]. The medium effects arising
from the distortion generated by V1 in the intermediate
states propagator are thus not considered.

Using momentum conservation for the interacting nu-

cleon pair now gives

&
k'p'

i t» (to) i kp &
=&(k'+ p' —k —p)

X tf co

x + & pltfo, (to.)la&,E+—K +e —e0 a P

Utl'=
z g &altoi(to )la& + &pltoi(~p)lp&

A p
E+—E0

with

=s(v ' —P) &m'i tf (~)I &

x'lk+pl'
4m 4m

(14)

(15)

the sums in a and p running over all occupied states In.
Eqs. (8)—(10) tofi(co ) is now the NN transition operator
far energy parameter co which satisfies the integral equa-
tion,

1
toi(Q~) Uoi+Uoi ~ + toi(Q~) '

co Ea

where E is the NN relative kinetic energy and the energy
parameter is, according to Eq. (A 1 1) of Appendix A,

iri p
co =E+e — +E —ha a 4 1 1 (12)

B. The impulse approximation

The formulas for the first- and second-order optical po-
tentials involve momentum space matrix elements of the
form

In this equation h, is the single particle Hamiltonian of
the struck nucleon, P the momentum operator for the
center-of-mass motion of the interacting NN pair, and m
is the nucleon mass.

The formulation of the KMT multiple scattering ex-
pansion above does not include the effects of antisym-
metrization of the projectile and struck nucleon. These
effects are taken into account by using a properly an-
tisyrnmetrized free NN transition amplitude.

in which the initial and final relative momenta of the two
active nucleons are denoted by R and %' and the
momentum transfer by q=k' —k=%"—%'. The second
term in the energy parameter accounts for the recoil of
the target nucleus.

Since tof, (co) is a slowly varying function of energy [25],
for the evaluation of ~ we also neglect the momentum p
of the struck nucleon compared to the incident nucleon
momentum and take for k its on-shell value
ko=+2rnE/fi It then f.ollows that the required NN
transition amplitude should be evaluated at a fixed energy
t0=E/2, corresponding to free NN scattering at half the
beam energy in the NN center-of-mass frame [13,14].
This is the approximation used throughout this paper.
Hence nonlocalities arising from the energy dependence
of t (co) are not considered.

In Ref. [12] an attempt was made to include the nonlo-
calities associated with the center-of-mass momentum of
the active pair P. A correction to the impulse approxi-
mation was also made by including the single particle en-

ergy e . Since the resulting calculations were affected
significantly by these inclusions a full treatment of the
binding corrections, including the effects of the distorting
potential V1 is needed to clarify the accuracy of the
co =E /2 prescription.

C. The physical content

In the KMT formalism the elastic scattering observ-
ables are calculated in terms of the NA transition ampli-
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with 5 tt=E+ Ko—+e ett
—It .can also be shown [5]

that the NA transition amplitude satisfies the exact rela-
tionship

T( A I') = T([ A —1]r),A
(17)

1 1r =r r —r—=r r —r—+0(r'}+
&o ~o

Equation (17) shows that the physical scattering ampli-
tude is generated by the potential AI . Substituting in
this expression for r from Eq. (16) and retaining terms to
second order in the NN amplitude, the term of second or-
der in r exactly cancels the third term of Eq. (16) and
gives

AI = g (altfo&(to )la&

—y (~ltf»(m~)lp& (pltf»(a. )la&+0(t') .
ap ap

(19)

Thus the term UzP, Eq. (10), which arises naturally in the
KMT expansion for the second-order optical potential,
has to be included to account correctly for all contribu-
tions from target ground state matrix elements of the NN
transition amplitude to the physical scattering amplitude.

The meaning of the second term in Eq. (19) is clear. Its
role is to subtract off contributions from the first-order
term from collisions between particles 0 and 1 which pro-
duce an intermediate state with particle 1 in an occupied
state and which are therefore forbidden by the Pauli prin-
ciple.

We now discuss briefly the relationship of the KMT
and g-matrix formalisms. We will work to second order
in the free 1ViV transition amplitude in the nuclear matter
limit. In the g-matrix formalism the optical potential for
the elastic scattering of a nucleon of incident momentum
k„ is expressed as the matrix elements, between antisym-
metrized two nucleon states, of the g matrix g (fl ) evalu-
ated at an appropriate starting energy II [6], i.e.,

Ug(k. )= g ($.(0)p (1)lg(fl.)lp. (0)p (1)&~ . (20)

We show in Appendix 8 that to second order in the free
NÃ amplitude and at intermediate energy this equation
reduces to

tude T = A /( A —1)T( U), where T( U) is the transi-
tion operator generated from the optical potential U of
the previous section. Thus, to second order in to„we can
write using Eqs. (8}—(10), U =( A —1)r where

r= —„g&i ltof, (Q. )lt &

1

a

——„g&~lt„(~tt)lp& &pit„(~.)l~&
1 1

ap ap

+, g(alto)(co )la& —(plto)(~p)lp&, (16)

—g&(j).(0)((.(1}ltf (II.)lptt(1) &

a,p

x '
&ytt(1)ltf, (n.}ly.(0)y.(1)&

eap
(21)

D. The absorptive content

The absorptive part of the optical potential plays an
essential role in determining the elastic scattering. Tan-

dy, Redish, and Bolle [26] made a detailed analysis of the
reactive content of the SSA optical potential using unitar-

ity relations. They concluded that the SSA predicts too
much absorption [17,26]. It is important therefore to
consider the mechanisms which could lead to a reduction
in the absorptive content of the optical potential. In the
impulse approximation to the SSA, represented in Fig.

with e p=e,'+'+e —Ko —
ep, Q =e, +e, and e, is the

kinetic energy of nucleon i. It is implicit in this equation,
that the free NN transition amplitude is antisymmetrized
with respect to the interacting pair.

In the nuclear matter limit the interaction of the pro-
jectile with the target is severely restricted by momentum
conservation. Momentum conservation in the nuclear
matter limit restricts one to diagonal forward matrix ele-
ments of A I' in Eq. (19). A comparison between the di-
agonal matrix elements of this equation and the g-matrix
optical potential, Eq. (21), shows that in the nuclear
matter limit and at intermediate incident energies the two
formalisms are essentially equivalent. Thus, as stated
above, in the KMT formalism the identity of the projec-
tile and struck nucleon is taken into account using a
properly antisymmetrized NN transition amplitude. The
SSA term thus already includes effects due to exchange of
the projectile and struck nucleon. Additionally the DSA
terms modify the SSA potential to include those Pauli
blocking medium effects due the identity of the struck
and the other ( A —1) target nucleons.

As has been discussed in the literature [26], the SSA to
the Watson multiple scattering expansion, which makes
use of an effective interaction in which the struck nucleon
is projected outside the target ground state in all inter-
mediate states, is completely equivalent to the KMT SSA
term. Like the KMT SSA therefore, the Watson SSA
does not include Pauli blocking modifications to the free
NN amplitude due to the identity of the struck and the
other (A —1) target nucleons. The accurate evaluation
of such terms, which enter the second-order KMT poten-
tial, is the subject of this paper.

The physical content of the second-order KMT poten-
tial is best displayed by the development that leads to Eq.
(19). However, as will be discussed later in the text, there
are delicate cancellations between the two components
Uz

' and Uil' which need to be treated accurately to ob-
tain a realistic estimate of the effects of the DSA terms to
the optical potential. We therefore proceed to calculate
the KMT potential in the form of Eqs. (9) and (10) and do
not use the truncated expansion for the potential given by
Eq. (18).
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lated to the antisymmetrized transition matrix elements
by the usual relation

,~ (%'~tf, (cp)IK), (23)

A-1 A with p the NN reduced mass. The most general form of
this amplitude, consistent with invariance under rotation,
time reversal and parity is [27]

M=A+X(op n)(cr, n)+C(op+o, ).n

+$(crp m)(cr, m)+h(op 1)(cr] 1)

+9'[(cr 1)(o, m)+(o m)(cr 1)] (24)

A-1

FIG. 1. (a) Diagrammatic representation of the single
scattering approximation for the optical potential. (b) The NN
transition amplitude in (a) is open to show the intermediate
states propagation of the interacting NN pair.

where n=% X%"I~K &&%"~, 1=(gi"'+Ji') I~A"'+%~, and
m=lXn are the unit vectors defined by the NN scatter-
ing plane. The KMT amplitudes A,S,C,S,C, and 9
can be expressed as complex functions of the relative en-

ergy cp, momentum transfer q= (%"—%'), and total
momentum 6=(%"+%)/2 of the NN pair in their
center-of-mass frame. Each amplitude depends on the
isotopic spin of the incident and struck nucleon in the
form

l(a), the projectile knocks out a target nucleon, assumed
free. The core of ( A —1) target nucleons are assumed to
remain in their occupied states. In Fig. 1(b) the NN tran-
sition amplitude is opened to show explicitly the inter-
mediate states in which nucleons 0 and 1 interact as free
particles with energy E/2. In the intermediate state the
A nucleons (1, . . . , A ) are thus in a complicated linear
superposition of states P of the target, i.e.,

(22)

with significant amplitudes outside the ground state.
Clearly these configurations result in a loss of elastic flux.
Since, in the impulse approximation, the assumption of a
free struck nucleon removes all coupling with the core
nucleons, the SSA generates, in some sense, the max-
imum loss of flux available within the KMT formalism.
To reduce the absorption we expect to have to reintro-
duce a coupling of the struck nucleon to the core nu-
cleons. One source of such coupling is the single particle
interaction V, . The inclusion of this term requires the
solution of a three-body problem [26]. Another source of
coupling is the action of the Pauli principle on the A tar-
get nucleons which restricts the available phase space in
the intermediate states. It is the latter effects which are
the subject of the present paper.

A(cp, &',%') =A (cp, q, o)=A p+A, (r r] ) . (25)

4A =(2M]]+Mpp+Mpp),

4$=(Mt]p —2M], —
Mpp ),

C =i (M Ip MtI] )/2&2

(26)

(27)

(28)

and

4g) =2(y +2x —1)M]]—&8xy (M]]]+Mp] )+2yM]

+ (2y —1)Mpp —Mpp, (29)

4@=2(x +2y —1)M,', —V8xy (M', p+Mp] )+2xM] ]

+(2x —1)Mpp —Mpp,

9'=&xy (M]] —
M]]p

—M] ] )+&2(x —y)(M]p+Mp] ),

For ease of calculation the KMT amplitudes are ex-
pressed in terms of the decomposition of the scattering
amplitude into components describing spin singlet
(S =0) and spin triplet (S =1) scattering, M„. , where v
and v' refer to the incident and final spin projections in
the triplet state. In the representation in which these
projections are referred to an axis of quantization along
the incident beam direction (%) then

III. THE NN TRANSITION AMPLITUDE

Assuming the convention of a plane wave normalized
such that

(r~k) =(2m. )
~ exp(ik. r),

the NN elastic scattering amplitude for scattering from
relative momentum %' to%", denoted M(cp, &',%'), is re-

where O=cos '(R4"I~X gt"
~
) is the NN center-of-

mass scattering angle. In these equations x =JV% sin 8
and y =JV(%'+%"') with A'= 1!~%"+%'~ .

The amplitudes M„. = (%'Sv' ~M~%'Sv) and hence the
amplitudes A through 9, are readily obtained in terms of
the partial wave components of the NN amplitude,
ML.L (%",%'), defined according to
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(4 )M" m" m)
JLL'SM

X 5'(Is)q(%),

where 'P(Ls)J is the spin-angle function

&(Ls)z(% )= g(LASvl JM)Yiw( )Xsv ~

(32)

(33)

and YL~ and Xz are the spherical harmonic [28] and
spin wave function of the NN pair, respectively. Explicit-
ly,

M...=— g i (L'A'Sv'l JM)(L ASvl JM)
JMLL'AA'

X YL,„.(&')Yr'~ (A')MI. I (A', %') .

(34)

Ao;q=1fm' Bo;q = 1 fm'

I I I2 0.6
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Q(fm ')

-0.6
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+zeerrr
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FKJ. 2. Real jlsolid curves) and imaginary (dashed curves) parts of the isoscalar scattering amplitudes as a function of NN total
momentum for the Paris potential at NN laboratory energy of 135 MeV. The angle P is fixed at Po=rr/2. The crosses and dotted
points show the corresponding real and imaginary parts with P =a./4.
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In the present work the free NN amplitudes were calcu-
lated from the Paris potential [15,29]. For the evaluation
of the potential matrix elements, the NN amplitudes were
expressed in terms of the NN energy, the magnitudes of
the momentum transfer and the total momentum and the
angle between these two vectors P. Calculations of the
off-shell isoscalar central and spin-orbit components, Ao
and Co, for realistic NN interactions show that, for NN
relative momenta less than 3 fm ' and 50 MeV ~ co ~ 200
MeV, their dependence on the variables co and P is weak

[25]. In Fig. 2 we plot the real (solid lines) and imaginary
{dashed lines) parts of the isoscalar scattering amplitudes
as a function of the total momentum. The angle P was
fixed at Po=m/2 and the laboratory energy was 135 MeV.
The plusses and solid points are the corresponding curves
with angle P=n. /4. Figure 3 shows the corresponding
isovector components. Since the optical potential for
proton nucleus scattering strongly favors the diagonal
components of the NN amplitude we shall fix this angle
to Po. In this case the contribution from the amplitude 9

A, ;q=1fm' 1 fm'

I I I1

0 /eSAO'~V0
gJJJ. v f

T+
+

-1
0 2 3 4 5 6

Q(fm ')

0 1 2 3 4 5 6

Q(fm ')

1 fm' D, ; 1 fm'

0.5 1.0

0.0

~~% 0
~r4 Q 0

o~~ yyyyyyy ~ ~ ~ ~ I&

a-o en

0.5-

0.0
+yy

-05

-0.5
0.0 2.0

Q(fm ')

4.0 6.0
—1.0

0.0 2.0 4.0

Q(fm ')

6.0

E, ; 1 fm' 1 fm'

1.0

-10
0 ~ ~

e ~ r~~+ ~ o ~ & t+t++t'
+ ++

+~+g++ ~+ +

-2.0
0.0 2.0 4.0

Q(fm ')

6.0 0 1 2 3 4 5 6

Q(fm ')

FIG. 3. The curves have the same meaning as in Fig. 2 but for the isovector components of the N1V scattering amplitude.
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vanishes while 2) and 6 satisfy

2)= [(M Ii +M I i
—Moo )

—sece(M', ,
—M I )

—Moo )]/4, (35)

f (r, Ro, ao)= I 1+exp[(r —Ro)/ao]]
(39)

6 =[(M', , +M', i
—Moo)

+sec8(M I,
—M', ,

—Mto)]/4 . (36)

IV. THE FINITE NUCLEUS MODEL

Detailed formulas for the required M, „amplitudes in
terms of the partial wave amplitudes ML.L (R',R) for a
quantization axis along the incident beam direction are
collected in Appendix C.

The Coulomb potential is taken as due to a uniform
spherical charge density with the same radius parameter
as the central interaction, i.e., r& = r0.

In order to obtain a good description of the empirical
charge density for ' 0 within the single particle model we
followed a similar fitting procedure to that of Elton and
Swift [31]. That is, for a particular potential radius,
diffuseness, and spin-orbit depth, the depths of the S- and
P-shell central interactions were adjusted to reproduce
the binding energies of the 1S&&2 and 1P»2 single particle

The requirement of the antisymmetrization of the sys-
tem of A nucleons introduces a subsequent diSculty,
namely, the center-of-mass motion of the target. Only
3 —1 nucleon spatial coordinates r;, referred to an arbi-
trary point in space, are independent as g;r;/A =R,
where R is the center of mass of the target. To analyze
the many-body problem in terms of these ( A —1) coordi-
nates becomes involved, in particular because of antisym-
metrization since the particles are not treated in a sym-
metric manner. In the shell model, the system is referred
to a fixed point in space in which case the total momen-
tum is not a constant of motion. A number of attempts
have been made to treat the center-of-mass motion
rigorously [30]. However, in practical calculations, such
corrections are not considered beyond the harmonic-
oscillator model.

We consider a description of the target nucleus where a
shell model single particle potential of Woods-Saxon
form is assumed. In determining this shell model poten-
tial from the empirical target charge density, we do not
consider center-of-mass corrections. We will also consid-
er calculations in the case of the harmonic-oscillator
(HO) shell model. For consistency with the Woods-
Saxon case we will not consider center-of-mass correc-
tions to the oscillator model. Thus, the target density
distribution is evaluated directly from the HO single par-
ticle wave functions using the relative frequency obtained
by Donnelly and Walker [33].

The single particle radial functions R„» are taken to"a a~a

be independent of the isospin of the nucleon. They are
orthogonal for different n and are assumed normalized
to unity, i.e.,

f dr r R„& (r)R, (r) =5 (37)
0 a la&a ~ ala Ja a a

1
0-2A

1 p-aO

0.0

0.10-

0.05

1.0 2.0 3.0 4.0

= Ftt
E:xpertmental----- HP

The target nucleons are assumed to move in a shell model
potential, comprising central and spin-orbit nuclear in-
teractions, in addition to the Coulomb interaction for a
proton moving in the field produced by the core of the
other target nucleons, i.e.,

0.00
0.0 |.0 2.0

r(fm)
3.0 40 6.0

V(r) = Vc(r) Vof(r, R&,ao)—
df (r Ro ap)+ V, , — 1.o. ,

m c r dr

with f (r, Ro, ao) the Woods-Saxon form factor

(38)

FIG. 4. The charge form factor for ' 0 as a function of
momentum transfer (a) using the modified Fermi distribution of
Ref. [32] (solid line), the HO model (dashed line) and the

Woods-Saxon model obtained by fitting the experimental data

(solid line with dots). (b) The corresponding spatial density dis-

tributions.
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Fit
V

(MeV) (fm) (fm)
V, ,

(MeV)

E'

(MeV)

TABLE I. Woods-Saxon shell model parameters for ' O.

&It'I+p. li &
= &I 'I+p".'Il &+ & lt'I+p".'Il &+ (43}

Thus, writing the required matrix elements in increasing
orders in P,

1~i/2
1~3m
1S]/2

47.8
47.8
87.21

1.37
1.37
1.31

0.61
0.61
1.66

1.16
1.16

12.4
13.01
44.0

where, considering only the central component of to, for
simplicity, the zeroth-order term is

states. The radial functions and hence the charge density
were then calculated and a fitting routine then adjusted
the radius, diffuseness, and spin-orbit depth parameters
so as to reproduce the modified Fermi charge distribution
of Ref. [32], which reproduces the experimental electron
scattering data. In Table I we reproduce the searched
values of potential parameters and in Fig. 4 we compare
the calculated charge density with that of Ref. [32] and
with the HO density [33].

When using the single particle wave functions in the
optical potential calculations we do not in fact include
target spin-orbit forces. The S- and P-state single particle
wave functions R„& (r) are therefore calculated as eigen-

functions of the fitted single particle potentials but in the
absence of the Coulomb and spin-orbit interactions. In
our fit the latter is in any case very small.

& &'l&p". l& & =tof, (~(0),q, e(0))

X fdP&p~P —q/2&&P+q/2~a&

=tfo, {to(0),q, e(0))fdre 'q'&p~r&&r~a&

(44)

which thus involves integrals of the form

Stt (q) =fd P P & p ~
P—q/2 & & P+q/2 ~

a & . (46)

and the first-order correction term is

&k'~'9&" ~k& =[Vt,tfo, (co, q, e)]t,=o fdP P&p~P —q/2&

X &P+q/2~a&

(45)

V. THE OPTIMAL FACTORIZATION
APPROXIMATION

Assuming a single determinant for the target nucleus,
the evaluation of the matrix elements of the optical po-
tential, to any order, involves the calculation of matrix
elements of the NN transition operator of the general
form

(40)

X &P+q/2~a&, (41)

where the dependence of the NN total momentum , and
in the general case the NN relative energy co, on P is
made explicit and a sum over spin and isospin indices is
implicit.

In the diagonal case, a=P, the product of the single
particle radial wave functions is strongly peaked at P =0.
Since the NN transition amplitude is a slowly varying
function of both the energy and total momentum, we in-
troduce its Taylor expansion about P =0, i.e.,

tfo, {to(P),q, o(P}}=tof,(co(0),q, e(0))
+P [Vptfo, (co(P),q, e(P))]@=0

+ 0 ~ ~ (42)

I

If we neglect target recoil effects and make the change of
variable to P=p —q/2, we may write, using the notation
of Eqs. (13) and (14),

&lt'lp lit. &=f dp&p~p —q/2&to&(to(&), q, o(p))

For a closed j-subshell nucleus, summing over the projec-
tion m, the integral in the last equation, and conse-
quently the first-order correction term, vanishes in the di-
agonal case.

The zeroth-order term 'M&', with the NN energy pa-
rameter co(0) fixed at half the incident beam energy,
to=E/2, is referred to as the optimal factorization ap-
proximation. The accuracy of this approximation in the
diagonal case of the first-order KMT optical potential
was the subject of a number of detailed recent investiga-
tions [12—14].

VI. THE FIRST-ORDER OPTICAL POTENTIAL

Following Ref. [14] and Eq. (8) the first-order optical
potential for a closed shell isospin zero target nucleus is

fdP &~'I to( (e }I& &

Xp(P —q/2, P+q/2), (47)

where to, (co) is the spin-isospin averaged NN transition
matrix

&%'~ to& (co) ~%' & =AD(co, A",%')+ Co(co,&',%)o'o n,
(48)

with pro the Pauli spin matrix for the projectile, n the unit
vector normal to the NN scattering plane, and

(21 +1)
p(P —q/2, P+q/2}=4 g R„& (~P —q/2~)R„& (~P+q/2~)P& (cos8t, ) .

a a

(49)
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Here P& is the Legendre polynomial and Oz the angle be-
a

tween the vectors P+q/2 and P —q/2. Expressing the
matrix elements of the NN transition amplitude, as
above, in terms of q and 6, the optimal factorization
form for the single scattering potential is

(k
~

U'"~k) = U,"'(k,k)+ U,',"(k,k)a, .n (50)

with n the unit normal to the scattering plane in the NA
center-of-mass frame. The central and spin-orbit interac-
tion form factors are

U,"'(k', k) = ( A —1)AO(co, q, Q/2)p(q),

UI', "(k',k) = ( A —1)~0(co, q, Q/2)p(q)

(51)

(52)

where Q=(k+k')/2 is the mean of the incoming and
outgoing projectile momenta and p(q) is the Fourier
transform of the target density normalized such that
p(0) =1.

VII. THE SECOND-ORDER OPTICAL POTENTIAL

In the evaluation of the second-order optical potential
matrix elements we will assume the optimal factorization
approximation, Eq. (44). Leading corrections for the
evaluation of the second-order term, arising from the
terms Vl&" of Eq. (46), will be reported elsewhere. If, in
addition, in the evaluation of the second-order potential
of Eq. (9) we make the closure approximation, i.e., the
single-particle energy differences 6 E'p are replaced by
an average constant, the calculation is further simplified.
This constant will be taken equal to zero. We investigate
the accuracy of the closure approximation in the follow-
ing.

In order to assess the importance of the nonlocalities in
the second-order optical potential arising from the NN
transition amplitude and from the intermediate state
propagator, we will also consider two analogous but more

approximate calculations. In the first we assume the NN
amplitude to take its on-shell values, leading to a local
NN amplitude. The second-order potential obtained in

A. The closure approximation

If we neglect the single-particle energy differences
e —

e& in Eq. (9) the momentum space matrix elements of
the interaction UI ' can be rewritten in terms of the tar-
get correlation function [36]

D(r, r') = A p(r)p(r') —A ( A —1)p(r, r'), (53)

where p(r, r') is the probability density of finding a nu-
cleon at position r and another at position r', i.e.,

p(r, r')= (Po~g 5(r —r;)5(r' —rj)~go)
1

lWJ

(54)

and p(r) is the nuclear density normalized to unity. Thus
the correlation function defined by Eq. (53) satisfies the
normalization condition

—fdr f dr'D(r, r')=1 .
1

A
(55)

The volume integral of the correlation function D is
therefore nonzero for a finite nucleus. Assuming a single
Slater determinant for the target nucleus wave function
then

this approximation treats correctly both the nonlocality
of the intermediate states propagator and the folding of
the finite range and angular dependence of the NN transi-
tion amplitude with the target wave function and pro-
vides an estimate of the importance of the nonlocality of
the NN amplitude. We also consider the yet more ap-
proximate situation where, in the second-order term, the
NN amplitude is fixed at its on-shell, zero momentum
transfer value (the zero-range limit), which we refer to as
the zero-range potential, and which provides an estimate
of the importance of carrying out correctly the folding of
the finite ranged NN transition amplitude with the target
wave function. This approximation will be expected to
overestimate the second-order optical potential since we
assume the maximum value of the transition amplitude
for all values of the NA scattering angle.

A ( A —1)p(r, r') = A p(r)p(r') g( a(—1)P(2)~5(r —ri )5(r' —r2) ~P(1)a(2) )
aP

and therefore

D(r, r')= g (a(1)P(2)~5(r—r, )5(r' —r2)~P(1)a(2)) .
aP

(56)

(57)

In this form it is evident that D (r, r ) is generated by the exchange parts of the target wave function, i.e., due to the
effects of the Pauli principle. Short-range and center-of-mass correlations which arise in a more complete description
for the target wave function are not considered in the present work. The central component of UI ' can now be written

(k'~ UI '~k) = — dk"P(co, k', k",k)g(k") dr dr'e 'q'+q ' 'D(r, r'),A —1
(58)

where g (k") is the intermediate states propagator (in momentum space representation) and q=k' —k" and q'=k" —k
are the momentum transfers at the two NN vertices. For a target of zero total spin and isospin

P(co, k', k",k) = $2
2 [A +[2P+2C ](n n') +X) (m.m') +6' (l l')i],

4IM~
(59)
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where the unit vectors are defined with respect to the two
NN vertices, Eq. (24}, and A through 6 are given in
terms of the isoscalar and isovector components of the
KMT NN amplitudes, Eq. (25},according to

A =Ao+3A (60)

We have also adopted an abbreviated notation for the
squares of the components of the NN amplitude, such
that Ao=Ao(co, k', k")Ao(co, k",k), etc.

In the evaluation of Eq. (59) we make a small angle co-
planar scattering approximation in treating the unit vec-
tors. That is, we assume n.n'=m m'=1 1'=1, and there-
fore take

2

P(co, k', k",k)= IA +g2+2C +2)z+8'j
4@~
5= g [~"1' (61)

n=1

the index n in the final equality running over the 5 NN
amplitudes A to C. Thus 9'= [fi i4IJm ]A, 9
=&2[% /4pn. ]C, etc.

The momentum space matrix elements of the term
UII', Eq. (10), can similarly be written for a zero spin and
isospin target as

(k'i Uii'ik) =( A —1)fdk"y(co, k', k",k)

Xg (k")p(q)p(q'), (62)

where

+3R 11(r)R 11(r')[1+2P2(cos8) ]

+6R 1o(r)R11(r)R1o(r')

XR»(r')P, (cos8)j, (66)

or more usefully

6
D(r, r') =

z P f~M(r)AM�(r')P~(cosO)
4~ J+ 2,M

with

foo=R 1o~&6 fo1 =R11~~2

f1o=R1oR11 f20 R 11 .2

(67}

(68)

The partial wave decomposition of the central component
of UI ', definedby

(k'~ U' '~k) =—g Y1g(k')U' '(k', k) Y1'1 (k),
1A.

(69)

is therefore

UI (1k', k) = — g f k dk" VL"qM(k', k")
LTM

where I =v'21 + 1 and 8 is the angle between the vectors
r and r'. In the case of ' 0, this equation reduces to

1
D(r, r') = [R 1o(r)R 1o(r')

4m.

y(co, k', k",k) = $2
IAo+Co(n n')j .

4@m.
(63)

Xg (k")V~~(k", k),
(70)

Assuming as previously that n n' = 1, we have therefore
2

where the potential matrix elements V~M(k', k" ) are

y(co, k', k",k) = [Ao+ Co2] = g [&"]z . (64)
VDM(k', k")= g Cli'' ' '

1~12iM(k', k")
1)12K,

We note that the contributions from the dominant iso-
scalar central (Ao) and spin-orbit (Co) NN components
to UI '+ UII' are proportional to the correlation function
C(r, r') of Ref. [18]. When using the HO model for the
target nucleon wave functions, it can be shown [18) that
the Fourier transform C ( q, q' } vanishes for small
transferred momenta, i.e., C(q, —q)~0 when q~O.
Thus, there are delicate cancellations between the two
components of the KMT second-order optical potential.
As the momentum transfer is increased one can expect
the second-order optical potential to eventually compete
with the SSA term.

We now proceed to the evaluation of the partial wave
decomposition of the second-order optical potential. We
first consider the term UI '. Assuming that the nucleus is
described by a shell model wave function with no spin-
orbit forces, then for a closed shell nucleus

D(r, r'}= g I I+„& (r)R„& (r}
n I n&l&

XR„1 (r')R„& (r')aa PP
X g (I OI&OSLO) PL (cosO),

X Q1"„(co,k', k"),
the angular momentum coeScients are

C~ ' =[A, l1l 2/1](JOIz0~110)(A0120~LO)

X(AOI, 0~10)W(JI IA,;I,L)

(71)

(72)

and the target structure enters through the radial in-
tegrals

Z1 1 JM(k', k")=f r drj1 (k'r)j1 (k "r)fqj1r(r) . (73)

The Q1"„ in Eq. (71) are the multipole expansion
coefBcients of the nth component of the NN amplitude,
defined according to

0"(co,k', k")=—g Y1„(k')Q1"(co,k', k")Yg„(k") .
X~6,p

(74)

The corresponding partial wave decomposition for UII ' is

U1'1(k', k) = g f k 'dk" V"'(k'k")
n

(65) Xg (k" ) V"'(k",k), (75)
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but where now the potential and radial amplitudes, in
terms of the multiple expansion coefficients of the %",are

V"'(k' k "}=g C ' 2 (k' k")&"(co k' k")
11k a 11aa
a 1

with

c„' = [i.i, i/1]'(i, oxo~lo)' .

B. The no closure approximation

(78)

Jl ! ! !,(k'. k")=f"«gi, (k'. }J!(k &)Rn ! (&)R ! (&)

(77)

In the no closure approximation, in which the single-
particle energies in the propagator in Eq. (9) are retained,
the partial wave decomposition of UI ' becomes

U' '(k', k)= — g f k dk" V!"!~(k', k"}g!!(k")0'!"'I~(k",k),
nl lpI.J

where

n, l ll112A' .12 11!!LJ(k k ) g !!LJ ~l!!!(k k }~V~ k
1 2

and

(79)

(80)

~ n, 1 11112K, .12 11
~ ! l!!LJ(k &k} X ! lsLT! ~!~l)! ! ( «k}~D»k)

1 2

11112K,In this case the geometric coeScients C1 1'~ are
a P

C! '! 'LJ =( —)
' '[X l lpl)i2/l ](l Oli!O~LO)(L0120~1)0)()(ol!0~10)(120AO~ Jo) ILAIL/21K, ;I,J),

(81)

(82)

the integrals 2&&! ! (k', k") being given by Eq. (77). The

potential UII' is of course still given by the previous
form, Eqs. (7S) to (78).

C. The local second-order potential

(k'~ U' '~k) =i A( A —1) Po(co)F(q),
/2k

q=/k —kJ,
(84)

where ko is the on-shell entrance channel momentum and

Rf is the Fermi correlation length

R& =fdx G (x)= = l.38 frn .= 3~—
skf

(85)

In order to remove all nonlocalities and arrive at an en-
tirely local expression for the second-order potential, we
fix the NN transition amplitude as in the zero-range case.
In addition, the correlation function taken from nuclear
matter is applied to the finite nucleus using the local den-
sity approximation with appropriate Fermi momentum

kf =1.37 fm '. That is,

D (r, r') =—p ( [r+r'~ /2)Gg(kf ~r —r'~ ),
(83)

G~(x)=3j, (x)/x .

If in addition the eikonal approximation [17,37] is now
used for the intermediate state propagator and the princi-
pal value part of the propagator is neglected then we ob-
tain the local second-order potential

F(q) is the Fourier transform of the square of the target
density. The quantity po(co) is given by Eq. (61) but with
the NN amplitudes evaluated in the on-shell zero-range
limit.

VIII. ELASTIC SCATTERING OBSERVABLES

To estimate the validity of the closure approximation
in the intermediate state propagator we present in Fig. 5

the proton-' 0 elastic scattering observables at 135 MeV,
calculated using the zero-range optical potential [38].
The proton target Coulomb interaction is not included.
The figure shows that the closure approximation (dashed
curve) provides an excellent approximation to the full (no
closure) second-order optical potential (solid curve). This
is in agreement with the work of Miller, Austern, and
Silver [39] who showed that for a local target Hamiltoni-
an and NN amplitude, the leading corrections to the clo-
sure approximation vanish in the evaluation of the
second-order term.

In order to obtain a first indication of the importance
of the various nonlocalities present in the medium correc-
tions on the absorptive nature of the optical potential we
present in Fig. 6 the calculated partial wave re6ection
coefficients g(+ ) corresponding to total angular momen-
tum J=L+1/2. The calculations use the HO target
wave functions. To isolate the e6'ect of the treatment of
the nonlocalities in the nuclear component of the
second-order NA optical potential, these calculations
were performed in the absence of the nucleon-nucleus
Coulomb interaction. We see from the figure that, at all
energies, the nonlocal second-order calculations (solid



46 MULTIPLE SCA i
JEERING

THEORY OF PROTON ELASTIC. . . 291

curves) reduce the absorption present in the lower partial
waves in comparison with the Srst-order KMT calcula-
tions (dotted curves with open squares). The results of
calculations assuming the NN transition amplitude is on
the energy shell (dashed with filled triangles) show that
the contribution of the nonlocality of the NN amplitude

0(p, p) 135MeV

) 0&.o

to the second-order potential is negligible at these inter-
mediate energies, at least within the framework of the op-
timal factorization approximation. This result suggests
that the closure approximation still provides a good ap-
proximation in the evaluation of the second-order poten-

0 (p,p) 135 MeV

0.9

0.8

) 02+
M 0.5

0.4-

ge
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FIG. 5. (a) Calculated differential cross section and (b)
analyzing power for ' O(p, p) scattering at 135 MeV using the
zero-range second-order optical potential obtained without the
use of closure in the intermediate state propagator (solid curve).
The dashed curve is the corresponding calculation using the clo-
sure approximation. The Coulomb interaction is not included.

FIG. 6. Calculated reflection coefficients in the J=L+1/2
partial wave for ' O(p, p) scattering at 135, 200, 300 MeV, pre-
dicted by the first-order (dotted with open squares) and the
second-order nonlocal (solid), nonlocal with on-shell transition
amplitude (dashed with filled triangles), zero-range (solid with
filled circles), and local (dashed) optical potentials.
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1.0
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0.5
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0.0

tial which in the optimal factorization approximation
probes nearly local components of the NN transition am-
plitude. The zero-range (solid with filled circles) and lo-
cal (dashed curves) calculations, on the other hand, give
considerably less absorption near the grazing partial
waves and make clear the need for an accurate inclusion

of the folding of the finite ranged NN amplitude with the
target wave function, within the second-order term. This
effect was taken into account in an approximate way in
Refs. [17—19]. The effects associated with the nonlocality
of the intermediate states propagator are, by comparison,
small and tend to reduce the absorption compared with
the local second-order potential calculation.

Figure 7 shows the analyzing powers at the three ener-
gies under consideration which display the most sensitivi-

ty to the inclusion of the second-order effects in the deep
minima. The figure shows the analyzing power for
' O(p, p) at 135, 200, and 300 MeV, predicted by the
first-order (dotted with open squares) and the second-
order nonlocal (solid), zero-range (dashed), and local
(dashed with filled triangles) optical potentials described
above. A realistic prediction of the medium effects in the
polarization observables requires the evaluation of the
spin-orbit contribution for the second-order optical po-
tential. The nucleon-nucleus Coulomb potential is in-
cluded in these calculations using the subtracted momen-
tum space method [34] and assuming a uniform charge
sphere density of radius R, = 1.3 A ' fm, and a cutoff ra-
dius R,„,=10 fm [34]. The effect of the nonlocal second-
order potential contributions on the elastic cross section
are small. As is evident from the figure, the introduction
of the second-order medium effects does not change the
qualitative angular shape of this spin-dependent observ-
able. The zero-range (dashed) and local second-order po-
tentials (dashed with filled triangles) by contrast, drasti-
cally overestimate the (Pauli blocking) medium effects at
large angles, as might be anticipated from their use of the
zero-range approximation to the NN transition ampli-
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FIG. 7. Analyzing power for ' O(p, p) at 135, 200, and 300
MeV, predicted by the first-order (dotted with open squares)
and the second-order nonlocal (solid), zero-range (dashed) and
local (dashed with filled triangles} optical potentials.

FIG. 8. Reaction cross sections for ' O(p, p) as a function of
the incident laboratory energy calculated using the first-order

optical potential with HO (unfilled squares) and Woods-Saxon
(filled circles) target wave functions. The filled triangles and
solid line show the results of the second-order nonlocal calcula-
tions using the HO and WS wave functions, respectively. The
data points are taken from Ref. [35].
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tude. A similar effect on the calculated differential cross
section was reported in Ref. [40].

Figure 8 shows the calculated and experimental reac-
tion cross sections at the energies of interest. Here, the
filled triangles and solid line show the results obtained
from the second-order nonlocal calculations when using
harmonic oscillator and Woods-Saxon wave functions, re-
spectively. The open squares and filled circles show the
corresponding calculations for the first-order potential
only. The data points, with associated error bars, show
the experimentally deduced values and are taken from
Ref. [35]. It is evident that the nonlocal second-order po-
tential calculations result in a significant reduction in the
reaction cross sections as compared with those obtained
from the first-order potential.

tion of the off-shell nucleon-nucleon transition matrix,
Professor R. H. Landau, for the computer program
LpoTp, and Dr. I. J. Thompson, for useful suggestions
concerning the numerical implementation of the second-
order calculations.

APPENDIX A

In this appendix we derive expressions for the first- and
second-order terms of the multiple scattering expansion
of the nucleon-nucleus optical potential, Eqs. (9) and (10),
assuming the target nucleus is described by a Slater deter-
minant of occupied states. We start from Eq. (7)

U'" =( ~ —1)& &ol toi «) l4o &

IX. SUMMARY AND CONCLUSIONS

We have derived the KMT nucleon-nucleus optical po-
tential to second order in the free NN transition ampli-
tude and shown that the second-order or double scatter-
ing term modifies the SSA to take account of Pauli block-
ing medium effects due to the identity of the target nu-
cleons. The off-shell NN scattering amplitudes were cal-
culated in terms of the amplitude components describing
spin singlet and spin triplet scattering and used the Paris
NN interaction.

The second-order nucleon optical potential was derived
explicitly, in momentum space, and evaluated for proton
scattering from ' 0 at 135, 200, and 300 MeV. The cal-
culated observables show that to obtain a realistic esti-
mate of medium effects in nucleon-nucleus elastic scatter-
ing, we need to treat very carefully the folding of the
finite range of the NN transition amplitude with the tar-
get wave function. In the optimal factorization form of
the second-order potential we find that the effects associ-
ated with the nonlocality of the NN amplitude can be
neglected at intermediate energies. The calculated medi-
um effects result in a significant reduction in the proton-
target absorption particularly in lower partial waves.
Due to the surface dominance of the elastic scattering,
the elastic observables are not very sensitive to such
effects. Our results suggest however that medium effects
generate significant modifications to proton-nucleus wave
functions in low partial waves which may have implica-
tions for distorted wave calculations of nuclear reactions.
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(A 1)

If we assume a shell model Hamiltonian

A

H„= g h„, h„=K„+V„
n=1

(A2)

where we use the fact that the internal Hamiltonian of
the target commutes with the incident particle kinetic en-

ergy operator, [Hg Kp] =0. We will deal separately with
each term in Eq. (Al).

Using the symmetry of the many-body operator tp&(E),
Eq. (4),

&~pit»(E) leo& =—„Z&~pltp. (E) l~o&
n=1

(A4)

and since tp„(E) satisfies

and a Slater determinant ground state wave function
l Pp &

for the target nucleus, with energy E0=0, then the
many-body propagator can be written

i f —dt exp[i (E+ Kp H„)t—]-E+—E —H0 A
0

i f —dt exp[i (E+ Ko)t—]

X exp ig h„t—, (A3)
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1
tp (E)=up +up + tp„(E)E+—K —H0 A

1=v +v E+ v

0 A VOn

then, according to Eq. (A3),

(A5)

tp„(E)= vp„iv p„ f dt exp[i(E—+ —Kp —h„—up„)t]up„exp[ i (H„—h„)t—] .
0

When acting in the target ground state clearly

(A6)
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& /pl p„(E)leap& = &Pplup„ 1 —i f dt exP[i(E+ E—
o
—h„—vp„}t]up„exP[ih„t] lgo&

g &a vo„ 1 —i f dt exP[i(E++e —Kp —h„—vo„)t]vp„ la& .
0

(A7)

Introducing the NN transition operator tfo„(tv )

1
On(&)=VO n+Vp n ~ t0n(N),

co E (A8)
&pplto, (E} to, (E}lpo&= ~ g &altofi(co )la&

where E is the kinetic energy operator for the relative
motion of the active nucleon pair, and using

x &pltf (ipp)lp& .
0

(A12)

RP
I( 0+X„=K+ (A9)

To evaluate the third term we write

with m the nucleon mass and P the momentum operator
for the center-of-mass motion of the pair, we can there-
fore write

& yolto;(E) —to, (E)lyo&

i f —dt & Ppl to;(E)exP[i(E+ Ep )t ]T—OJ(E) Igp &,
0

(A13)

& (t}pl to|(E)lgo &
=—„y„&alt»(a. ) Ia &,=1

a
(A10} where

where the energy parameter 9 in the NN transition
operator is

5'o (E)=exp[ —ih tl]t (ojE)exp[+ih tJ] .

Upon defining the symmetric two-body operator

(A14)

RP
a) =E+e — +K —ha a 4 1 1 (Al 1)

Vii
= tp;(E)exp[i (E+—Kp )t ]'Tpi. (E)

+ toj (E)exp[i (E+—Ko )t]'To, (E) (A15)

Following similar steps, the second term of Eq. (Al) is then

g &pplto, . (E)—tol(E)lpo&= —(i/2) p f dt&QOIV~lko&

= —(i/2) g f dt[&a(1)p(2)IVi2la(1)p(2)& —&a(1)p(2)IVi2lp(1)a(2)&]
a, P

0

from which we obtain

(A16)

g &pplto, (E)—toj(E)leap&= g&altof, (tp )Ia& + &pltof, (tv&)lp&

—y &altp|(~~)lp&, &pltfo, (a.)la& .
E+—K0+e —

EP

(A17)

Collecting these results, the NA optical potential to
second order in the free NN transition operator is
U 1"=U +U

(A20)

U'"= g &altof, (co )Ia&,
a

and U' ' is the sum of two components

(A18} where, by Eq. (All}, the energy parameter in the NN
transition amplitude still depends explicitly on the bind-
ing energy of the struck nucleon.

g & altf, (a,) Ip& E+—E0+e —
e&

x&pltf (~.)la&, (A19)

APPENDIX B

In this appendix we expand the g-matrix optical poten-
tial [6] to second order in the free NN transition ampli-
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tude. The optical potential for the elastic scattering of a
nucleon with incident momentum k, is

elbp&=(e.++~. —e, —ep)lbp&, (85)

Ug(k, )= g &&/, (0)$ (1)lg(Q )IP, (0}$ (1)&~, (Bl)

g(Q )=v+v g(Q ),
e

(83}

where v is the free NN potential between the two nu-
cleons and Q& projects off the (Pauli blocked) occupied
states of the target, i.e.,

Ibp&&bpl
b (P unocc

In the propagator in Eq. (83)

(84)

where the sum in a runs over all occupied single particle
states, P, represents the incident plane wave and the two
particle states are assumed antisymmetrized, i.e.,

ly. (0)y.(1)& =[ly. (0)y.(1)&—Iy. (1)y.(0)&]/&2.

(82)

The g matrix (for a starting energy Q ) is the solution of
the integral equation

e =R k /2m + U( e) . (86)

There is no unique prescription for the choice of this aux-
iliary potential, however there are a number of arguments
[6] that favor the use of a self-consistent potential. Some
authors take this potential to be the real part of the
effective interaction [8] while others [7] assume U(e) =0.
Here, in order to establish the relation between the g ma-
trix and the KMT multiple scattering formalism, we take
this potential to be zero. The g matrix and free NN tran-
sition amplitude are then simply related by

g(Q )=tf(Q )+tf(Q ) g(Q ) .
e

(87)

Thus, expanding g(Q ) to second order in the free NN
transition amplitude

where the starting energy is 0 =e, +e . The energies e
are the sum of the particle's kinetic energy and an "auxi-
liary potential" [6) chosen so as to improve the rate of
convergence of expansion of the self-energy operator.
That is,

„&((}.(0)y.( 1)lg(n. ) l(t. (0)y.(1)&„= & y. (0)y.(1)lrf(n. )l((}.(0)y.(1)&

+ &y. (0)(t'.(1)lrf(n. )
' rf(n. )ly. (0)y.(1)&„ (88)

the first term of which yields the matrix elements of the antisymmetrized free NN transition amplitude

& y. (0)y.(1)lrf(n. ) ly. (0)y.(1)&
=

& y. (0)y.(1)lr f(n. )(1—P„)ly. (0)y.(1)& .

The second term can now be written in terms of the projections on to the occupied states as

P, (0)+P, (1)—P, (0)P, (1) f— &y. (0)y.(1)lrf(n. )
' ' ' ' rf(n. )ly. (0)y.(1)&

e

(89)

P (1)= —&p, (0)p (l)l(1 —Po, )r (Q ) r (Q )(1—Po&)lp, (0)p (1)&, (810)

where the contribution from the double projection term P& (0)P & (1), which involves an intermediate state in which
there is no high-energy particles, has been neglected at these intermediate energies. To second order in the free NN am-
plitude therefore we write Us(k, )= &/, (0)l Uslp, (0}&,with

(1)U'= g &p.(i)lr (Q.)(1—P„)ly.(1)&
—g &y.(1)l(1—P„)r (Q.) r (Q.)(1—P„)ly.(1)&, (811)

or

U'= y & y.(1)Ir/(Q. )(1—Po)) l(t.(1)&
—y & y.(1)l(1—Poi)rf(n. )leap(1) & & yp(i) lrf(n. )(1—Po) ) l(t}.(1)&, (812)

a a,P e &

with e &=e,++a —Ko —e&.

APPENDIX C

Since published tabulations [41] contain certain typographical errors, in this appendix we include explicit formulas
for the NN spin amplitudes M ~ in terms of partial wave NN transition amplitudes ML L (%',%},Eq. (34), for an angu-
lar momentum quantization axis along the incident beam direction %". We have
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Moo =2C g PL (cos8)(2L+ I)MLLLs
L=0

(Cl)

M11=C g PL(cos8)[(L+2)M +' '+(2L+1)M '+(L —1)M
L=0

—[(L +1)(L +2)]1/zML+1S=1 [(L 1)L]1/2ML —1$=1]
' 1/2

L +2 L+1s=1
L+1 LL+2 L

1/2
L —1MIo=&2C g PL(cos8) M +' ' —M ' '+

L=1
ML —1S=1

LL —2

(C2)

(C3)

M' =C ~ P (cos8) M +' ' — M '+ —M1 —1 ~ L L+1 LL L(L+1) LL L LL

1/2 ' 1/2
1

(L +1)(L +2)
ML +1S=1

LL+2 (L 1)L
g~L —1S= 1'"~LL —2 (C4)

MII, =&2C g PL(cos8)
L=1

L+2 L+1S 1 2L+1
ML+1 L(L+1)
1/2

+ L 1 ML 1S —1+ L +2 ML+1s=1
LL L +1 LL+2

L —1

L

' 1/2

a+L —1S=1'"'I.L —2 (C5)

Moo=2C y PL(cos8)[(L+1)M +' ='+LM ' ='+[(L+1)(L+2)]' M +' ='+[(L —1)L]' M ' ='
I

L=0

(C6)

the sums running over all partial wave components for which J, L, and L' are greater than or equal to zero and that
satisfy the generalized Pauli principle (L +S +T = dod). The remaining amplitudes are obtained from the symmetry
relation M' „,=( —1)" 'M,'. . In these equations the PL (cos8) are the associated Legendre functions,

dM
PL (cos8)=sin 8 PL(cos8), x =cos8

dx

and, according to our partial wave conventions, C = I /4m. .

(C7)
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