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Momentum distributions in reactions with radioactive beams
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We investigate the longitudinal and transverse momentum distributions of charged fragments
originating from reactions with radioactive, neutron-rich beams. It is shown that the width of the
narrow peak of the longitudinal momentum distribution is insensitive to the details of the collision
and the size of the target nucleus. In contrast, the width of the peripheral region from which trans-
versely moving particles originate is signi6cantly narrowed via absorption of the outgoing neutrons.
This difFractively broadens the width of their transverse momentum distribution, in a manner which
depends on details of the collision, and so makes the transverse distribution less reliable than the
longitudinal one for measuring the size of the original neutron halo.

PACS number(s): 25.60.+v, 25.70.Mn

Fragmentation reactions with secondary beams of ra-
dioactive nuclei have shown that the total reaction cross
sections and the transverse momentum distribution of
the fragments are sensitive to the separation energy of
the last neutrons and to the size of the density profile
in these nuclei [1]. These two quantities are linked since
the "size" of the nucleus is roughly proportional to the
inverse of the square root of the separation energy. Us-
ing the Goldhaber model for soft fragmentation, the au-
thors of Ref. [I] were able to relate the widths of the
narrow peaks in the transverse momentum distributions
with the separation energies and sizes of the radioactive
nuclei. However, this approach is not free of bias. The
interaction of the fragments with the target broadens the
narrow peak and makes the extraction of quantitative in-
formation about these quantities strongly model depen-
dent and potentially inaccurate.

We show here that a better measure of the interac-
tion size of the radioactive projectile is obtained by the
longitudinal momentum distribution of its fragments. It
is also shown that the Coulomb and nuclear fragmen-
tation amplitudes have longitudinal momentum distri-
butions with very nearly equal widths. This fact has
indeed been verified in a recent experiment at the Na-
tional Superconducting Cyclotron Laboratory at Michi-
gan State University (NSCL/MSU) [2]. On the other
hand, the transverse momentum distributions are sub-
stantially broadened by the size and diffuseness of the
region of overlap with the target and contain Coulomb
and nuclear contributions with different widths. The in-
terpretation of the "wide" (core-neutron) component of
the transverse momentum distributions is therefore less
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straightforward than is that of the longitudinal ones.
In what follows we shall use a simple cluster description

of the radioactive nuclei. The conclusions drawn however
are of general validity. The cluster model only serves as
a guide to obtain a simpler insight into the results. The
systems studied experimentally involve reactions of the
form

a+ A —+ b+ x+ A'=b+X.
According to Ref. [3], a spectator model of a = b+ z

gives the singles spectra of the particle b as

d 0'

dna@ =P( ')n kdAbdEb hV~ k~

IS*&(b*) I (2)

where
2

(qr, b )~
= f d rr r'r' ' Srg(br) p (rr —r )

The quantity S,~(b;) is the 8 matrix for the scatter-
ing of cluster i (i = b, x) from the target A. We ob-
tain it from a complex optical potential by means of the
eikonal approximation. For the optical potential we use
the "tp)o" formalism (see, e.g. , Ref. [4]), which is ob-

tained by folding the nuclear densities of the participant
nuclei weighted by the nucleon-nucleon scattering cross
section, with medium correction effects. We shall here
concentrate on reactions involving Li, Be, and 6He,

and compare our results with the measurements of the
momentum distributions of the Li, Be, and He frag-

11 6ments, respectively. Thus in the cases of L1 and He,
we are assuming the two removed neutrons behave in the
projectile as a single cluster, which the collision removes
as a unit. The Hartree-Fock densities for these nuclei
were taken from Ref. [5], except for the sHe, which was
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taken from Ref. [6]. The density distributions of the
knocked-out neutrons were taken as the difference be-
tween the neutron distributions of the original nuclei and
of the observed fragments.

In Eq. (3), P represents the cluster wave function for
the incoming a = b+ x projectile. If one assumes that
the fragment b does not interact with the target, i.e.,
Sb"(b) = 1, one finds

2cr = u(Eb) ~*"~ I&~(&b) I'
b Eb

where o~z is the total reaction cross section of fragment
z with the target A, and p, (qb) is the Fourier transform
of p'(rb —r*) with respect to qb. The above result is
known as the Serber model limit [7]. It tells us that in
this approximation the breakup mechanism measures the
momentum-space internal wave function of the projectile,
so that the singles spectrum of fragment b provides im-
portant information about the internal structure of the
projectile. This is especially useful for the study of ex-
tremely short-lived nuclei in secondary beam reactions.

Unfortunately, the Serber model is only a rough ap-
proximation for most cases and the elastic scattering (in-
cluding absorption) of the fragment b on the target has
to be included, leading to an unavoidable broadening of
the momentum distributions [8]. The physical origin of
this broadening is simple diffraction (i.e., the uncertainty
principle), as an examination of Eq. (3) makes clear.
For instance' if Sb" = 1, the Fourier transform given by
this equation would be exactly the Fraunhofer diffrac-
tion pattern (as a function of qb) of the "source distri-
bution" p~(rb —r*). Including the factor Sb"(bb), with

~Sb" (bb) ~

& 1, effectively decreases the transverse width
of the source by eliminating the part that overlaps with
the target A, and this will of course broaden the trans-
verse diffraction pattern. A. second possible source of
transverse broadening is final-state Coulomb deflection,
which is not included in Eq. (2).

This broadening makes it harder to extract the internal
momentum structure of the projectile. However, since for
high energy collisions the S matrix Sb" does not depend
on the longitudinal coordinate, the longitudinal momen-
tum distribution is expected to be much less altered by
the Sb& absorption. This can be illustrated by using a
separable wave function, e.g. , a Gaussian, in which case
the longitudinal and transverse parts of the integral in
Eq. (2) factorize completely. That is, if we take for
the projectile cluster wave function the approximation

ocexp( —(rs —r)s6), onefinds
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where the C~ is a normalization constant and Ia a Bessel
function. Thus, the dependence on

q&&
is given by a(&)

Gaussian function multiplied by a geometrical factor.
Therefore, the longitudinal momentum distribution mea-
sures the internal momentum function of the projectile
and is insensitive to the details of the nuclear interaction.
This result is exact for a Gaussian wave function, and is
expected to be approximately true in general simply be-
cause S;~ is independent of the longitudinal coordinate.

Due to their low separation energies, the projectiles
near the P-instability line are also easily Coulomb excited
or fragmented [9]. The momentum distribution of the
fragments will be determined by a matrix element of the
form (in the dipole approximation)

A/if ——fr Y& (r)d'(r)d;(r)dr. (6)

and

(Q, q) = f J (Qb)K (—) fin(b)bdb. (9)

In the equations above k, = kb+ k„q = (rn kb-
mbk)/mo, Q = k', —k, ~d» = B+&'q'/2yb~,
where B is the binding energy of the system 5+ x. To
obtain the momentum distributions of fragment b we in-

tegrate the above equations with the constraint of energy
conservation.

We have evaluated the Coulomb cross sections as well
as the nuclear cross sections of Eq. (2) using a Yukawa
wave function, P oc e "/r for the initial cluster, with
hn = 27.8 MeV/c for Li, corresponding to a bind-
ing energy of 0.25 MeV for the two valence neutrons.
Their final-state wave function was plane waves for the
Coulomb breakup and Glauber for the nuclear breakup,
as described in Ref. [3].

The longitudinal momentum distribution of sLi
from the fragmentation of Li projectiles with 70
MeV/nucleon has recently been measured at the
NSCL/MSU using several targets [2]. The data were
taken using light and heavy targets, thus probing the
relative strengths of the nuclear and the Coulomb inter-
action on the breakup. We assume for simplicity that
the momentum distributions for Be and Nb targets are
induced by the nuclear interaction only, while for Ta tar-
gets the Coulomb interaction dominates. The distribu-
tions are then calculated by the separate use of Eqs. (2)
and(7), respectively. The results are shown in Fig. 1,
together with the experimental data.

We also repeated the calculations using a Gaussian
wave function and found no significant difference in the

The Coulomb fragmentation cross section is given in
terms of this matrix element by [9]

dao Pb, k kb 2
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distributions if the Gaussian parameter was chosen to be
hE = 20 MeV/c in the three cases, too. This confirms
our statement that the longitudinal momentum distribu-
tions are rather independent of the inducing interaction.
However, since only a limited amount of data is available
up to now, and in view of our simplifying assumptions
about the wave functions, we consider our conclusions
as qualitative ones. Further experimental and theoreti-
cal investigation is clearly needed in order to settle these
ideas.

We turn now to the investigation of the transverse
momentum distributions. Figure 2 shows the transverse
momentum distributions of sLi, MBe, and 4He from the
breakup of ~~Li, ~~Be, and sHe projectiles, respectively,
incident on carbon at 800 MeV/nucleon. For this target
only the nuclear contribution to the break-up needs to
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be considered. The data are from Ref. [1]. The dot-
ted curves are the result of the Serber model calcula-
tion following Eq. (4). The momentum parameters ot

of the Yukawa were taken as 27.8, 29, and 49.2 MeV/c
for Li, Be, and He, respectively, corresponding to
binding energies of 0.25, 0.5, and 0.97 MeV, respectively.
The dashed curves were obtained using the more correct
approach of Eq. (2), with the same values of n

In the case of ~~Li the result of the Serber model agrees
with the one obtained for the longitudinal momentum
distribution data of NSCL/MSU, since the momentum
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FIG. 1. Longitudinal momentum distributions of Li frag-
ments from the breakup of "Li incident on (s) Be, (b) Nb,
and (c) Ts targets, at 70 MeV/nucleon. The data are from
Ref. [2], snd the curves are from Eqs. (2) snd (7), normalized
to the data.

pT [MeV/c]

FIG. 2. Transverse momentum distributions of (s) Li
fragments from the breakup of 'Li, (b) MBe fragments from
the breakup of "Besnd (c) He fragments from the breakup
of He projectiles incident on carbon at 800 MeV/nucleon.
The data sre from Ref. [1]. The dotted snd dashed curves
describe halo neutrons only, the dotted curve neglecting final-

state neutron interactions with the target, and the dashed
curve including them vis Eqs. (4) snd (2), respectively. The
solid curves are 2-Gaussian fits to the data, using widths de-
termined by the binding of the core and halo neutrons of the
projectile.
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distribution given by this model is isotropic. The in-
teraction of the fragments with the target broadens the
peak, and this is displayed by the dashed curves in this
figure. However, it is also seen that the wings of the mo-
mentum distributions cannot be reproduced by using a
single Yukawa parametrization for the ground state wave
function. This fact may be due to the simple cluster
model picture that we have undertaken. More realistic
models are able to describe these wings (wide cornpo-
nent) [10], but our analysis is consistent with the idea
that the narrow peak is closely related to the separation
energy of the halo fragments.

An attempt to explain the wings of the momentum dis-
tributions, displayed in Fig. 2 (solid lines), can be made
by assuming that also neutrons from the core of the pro-
jectile could be removed with appreciable probability [1].
One can assume that the cross sections for the removal of
the loosely bound valence neutrons and the more tightly
bound from the core add incoherently. The results are
shown by the solid lines in Fig. 2. In this calculation we
added two results of Eq. (2), for simplicity using Gaus-

QQsian wave functions P oc e "~+ for the core and halo
neutrons. The values of hh for the halo neutrons were
taken as 19.5, 20.6, and 34.7 MeV/c and those for the
core neutrons as 55, 92, and 79 MeV/c, for ii Li, i iBe and
sHe, respectively. They correspond to the approximate
binding energies of valence and core nucleons, respec-
tively. The Hartree-Fock densities for the core nucleons
were taken from Refs. [5, 6]. The momentum widths of
the "wings" are much wider than the ones cited earlier,
and are related to the separation energies of the core neu-
trons. The contributions of the two Gaussian simulation
for the internal wave functions were chosen so as to repro-
duce as well as possible the experimental data. The good
agreement with the experimental data (solid lines in Fig.
2) should therefore be approached with some caution,

since any two-Gaussian fit can reproduce the transverse
momentum data [1]. The ratio between the two contri-
butions presumably gives roughly the spectroscopic fac-
tors for the removal of neutrons from the core and from
the halo, respectively. This ratio, o;d, /o'„„, , is sus-
piciously large, being about 0.4 for the fragmentation of

Li. It is hard to believe that so many events could arise
from the removal of tightly bound neutrons.

Another interesting feature shown in Fig. 2 is a small
shift of the peaks with respect to the central position
(qT = 0). This shift arises from the phase of the 8,
matrices originating in the real part of the potential, but
is small and may be neglected.

The above qualitative analysis shows that the longi-
tudinal momentum distribution which results from the
fragmentation of weakly-bound light projectiles is rather
insensitive to the interaction, and may be a reasonable
probe of the internal momentum wave function of the
projectile. On the other hand, the transverse momentum
distribution depends on the reaction mechanism, and the
extraction of definite information about the halo size is
not free of bias. One interesting problem to be stud-
ied is the extension of the experimental measurements to
look for the possible existence of wings in the longitu-
dinal momentum distributions, which do not appear in
the data of Ref. [2]. The existence of such wings might
provide a more definitive measure of the contribution of
more tightly bound nucleons, from the core of the pro-
jectiles, which have been assumed to explain the wings
of the transverse momentum distribution [1].
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