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“Shadow” model for sub-barrier fusion applied to light systems: Determination of the reaction rate
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The fusion cross section is obtained in the framework of the “shadow” model. The parameters, which
appear in the analytical expression of the fusion cross section, are determined by fitting the experimental
values of the fusion cross section. The cross section factor {owv ) is obtained by using this fusion cross
section and by assuming that the distribution of the relative velocity between two different sets of parti-
cles is described by a Maxwell-Boltzmann distribution. The values of {ov ) at different temperatures are
determined by performing numerical integrations. At energies at which the experimental data are avail-
able the obtained cross section factor values coincide with those reported in the literature; at very low
energies experimental data are not available and our approach is able to give the values of the cross sec-

tion factor.

PACS number(s): 25.70.Jj, 95.30.Cq

I. INTRODUCTION

The understanding of our cosmic heritage combines as-
trophysics and nuclear physics and forms what is called
nuclear astrophysics. Nuclear fusion plays a key role in
nuclear astrophysics. In fact, for the energy production
rate in stars or for the course of nucleosynthesis, it is the
fusion cross section that is needed. The determination of
the nuclear fusion cross section for stellar nucleosynthesis
usually requires determining the fusion cross section at as
low an energy as feasible; these astrophysical energies are
so low, with respect to the Coulomb barrier, that direct
measurements are in general impossible, so that the
fusion cross section must be extrapolated to still lower
energies. A possible approach to determine the fusion
cross sections at low energy consists in parametrizing the
available experimental data and extrapolating them to
lower energies. This method has several drawbacks. In
many cases experimental data do not exist. Moreover,
the extrapolation is sensitive to the accuracy of the avail-
able data, and finally some effects can be hidden in the en-

FIG. 1. Rutherford trajectories for different values of the im-
pact parameter. The dashed line shows the range of the strong
interaction.

ergy range considered experimentally. In any case this
extrapolating procedure is a crucial point for the deter-
mination of the reaction rate in nuclear astrophysics.
Moreover, the values of the nuclear cross sections adopt-
ed in the calculations of the reaction rates are relevant to
obtain the neutrino fluxes by using stellar evolutionary
codes so that the determination of the “right” expression
for the fusion cross section can be considered the “nu-
clear physics solution” of the solar neutrino problem.

In previous works [1-5], we suggested to determine
the reaction rate by using for the fusion cross section the
expression obtained in the elastic model or in its generali-
zation (extended elastic models I, II, and III) [1-7]. In
the present paper, a systematic analysis of sub-barrier
fusion for light systems is performed in the framework of
the “shadow” model. We remind the reader that in the
shadow model the analytical expression of the fusion
cross section is obtained by assuming that the fusion pro-
cess is the shadow of the elastic scattering [8,9]. To ob-
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FIG. 2. Comparison for the reaction 2H(p,y)*He between
the experimental values of the fusion cross section [12-14] and
the values of o, defined in Eq. (8) obtained by using four free
parameters (dashed line) and six free parameters (solid line).
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TABLE I. Values of the parameters Eg, Eg, y,,, ¥1, V1, and ¥, obtained by fitting the experimental
data with Eq. (8) using four free parameters (« ) and six free parameters («« ).

Reactions Ep Eg Vm Y1 Y1 Y2
’H(p,y)’He (%) 7.119 7.555 0.8635 0.7517 2.531 0.4496
(x%) 7.671 8.180 0.8518 0.9272 2.421 1.4643
’H(d,p)’H, *H(d,n)’He (%) 0.1809 0.1980  0.8236  0.7057 4.524 2.062
(xx) 0.1892 0.2125 0.8459 0.7181 4.481 3.649
He(d,p )*He () 0.1885 0.1650 1.111 1.037 3.870 9.521
(xx) 0.1478 0.1278 1.156 1.003 —0.2297 7.403
SHe(*He,2p )*He (%) 1.292 1.269 0.9620 0.8657 5.206 6.808
(xx) 1.337 1.367 0.9179 0.7662 6.439 5.339
He(a,7)"Be (%) 10.51 9.883 1.018 0.9312 4.582 1.504
(%) 11.84 11.20 1.032 0.9901 3.636 3.760
Li(p,a)*He (%) 1.701 1.913 0.7887 0.6657 3.979 1.787
(%%) 1.797 2.066 0.8158 0.6928 3.786 3.246
"Be(p,7)°B (x%) 14.5330 13.7724 1.0278 0.9796 2.9478 2.4049

tain the cross-section factor, we determine the parame-
ters which appear in the fusion cross section by fitting the
experimental data. After, by assuming that the interact-
ing nuclei collide with a Maxwell-Boltzmann distribution
of relative velocity and by using the expression of the

fusion cross section obtained in the framework of the sha-
dow model, we obtain the cross-section factor by per-
forming a numerical integration. An extrapolation to
low temperature is obtained for the cross-section factor.
New numerical procedures are used for systems previous-

TABLE II. Comparison between the values of N ,{ov ) (cm®s™ ' mol~!) obtained with our approach
and those reported in Ref. [11] for different systems and at different temperatures corresponding to an
energy range where experimental values of fusion cross sections are available.

N (ov) N (ov)
Reaction Temperature (K) Present work Ref. [11]
H(p,y)’He 1.0x 108 0.663 X 10! 0.703 X 10!
3.0X 108 0.522 X 10? 0.653 X 10?
5.0X 108 0.118x10° 0.149 X 10°
1.0x10° 0.338x10° 0.388 X 10°
3.5X10° 0.197 X 10* 0.153 X 10*
’H(d,p)*H, ?H(d,n)*He 5.0X 10° 0.525x10° 0.473 X 10°
1.5%x 10’ 0.473 X% 10° 0.456 X 10°
2.5%107 0.476 X 10* 0.496 X 10*
5.0% 10’ 0.611X10° 0.660 X 10°
1.0Xx 108 0.461 X 10° 0.485 X% 10°
1.5x 108 0.118 X 107 0.125x 10’
3.0X 108 0.455% 107 0.473 %10’
*He(d,p )*He 3.0x10’ 0.536 X 10? 0.586 X 10?
5.0x 10’ 0.129 X 10* 0.151x 10*
1.0x 108 0.590% 10° 0.506 X 10°
3.0x 108 0.503 X 107 0.447 X 107
SHe(*He,2p )*He 2.0X 108 0.870 X 10? 0.126 X 10°
3.0X 108 0.105X% 10* 0.134x10*
5.0x10% 0.151x10° 0.163 X 10°
1.0x10° 0.219X 10° 0.233 X 10°
2.0%x10° 0.160X 107 0.170% 10’
3He(a,y ) Be 3.0%x10° 0.329%x107! 0.555x107!
5.0x 108 0.434% 10° 0.757X 10°
1.0x10° 0.688 X 10! 0.122X10?
2.0X10° 0.544 X 10? 0.924 X 10?
3.5x10° 0.219X% 10° 0.297 X 10°
"Li(p,a)*He 1.0x10% 0.446 X 10? 0.477 X 10?
3.0x 108 0.677 X 10* 0.660x 10*
5.0x 108 0.368 X 10° 0.362 X 10°
1.0X10° 0.229 X 10° 0.237 X 10°
2.0X10° 0.924 X 10° 0.934 X 10°
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FIG. 3. Same as Fig. 2 for the reactions *H(d,p)’H,
*H(d,n)’He [15].
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FIG. 4. Same as Fig. 2 for the reaction *He(d,p )*He [15].
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FIG. 5. Same as Fig. 2 for the reaction *He(’He,2p)*He
[16,17].
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FIG. 6. Same as Fig. 2 for the reaction *He(a,y )’Be [18].
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FIG. 7. Same as Fig. 2 for the reaction "Li(p,a)*He [19].
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FIG. 8. Same as Fig. 2 for the reaction "Be(p,7)®B [20].
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FIG. 9. Comparison at different temperatures between the integrand of Eq. (11) obtained by using for o(E) the experimental
values and the integrand of Eq. (16) (solid lines) for the reaction 2H(p,y )*He [12,14]. Both integrands are multiplied by Avogadro’s

The dashed line represents an extrapolation at low temperature.
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FIG. 10. Same as Fig. 9 for the reactions H(d,p )*H, 2H(d,n )*He [15].
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ly considered [1-7]. Moreover, the reaction "Be(p,y )!B

FIG. 11. Same as Fig. 9 for the reaction *He(d,p )*He [15].

is investigated by using these procedures.

In the shadow model, the fusion cross section is ob-

II. SHADOW MODEL

of the elastic scattering [8,9]. From this assumption it
follows that the fusion cross section can be written

O, =27
f 9,

tained by assuming that the fusion process is the shadow
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FIG. 12. Same as Fig. 9 for the reaction *He(*He,2p )*He [16,17].
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FIG. 13. Same as Fig. 9 for the reaction *He(a,y)"Be [18].
where oz (%) is the Rutherford cross section,  is the  the scattering angle is
Coulomb parameter, k is the wave number, [J,—7] is
the shadow region (see Fig. 1), and b, is the impact pa- Z,Z,e?
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where E is the center-of-mass energy and R/ is the dis-
tance of closest approach of the trajectory with impact
parameter b,. By using Eq. (2), Eq. (1) can be rewritten
as

o,=mR}(1—2n/kR,) . (3)

In Ref. [9] we showed that the critical value of the dis-
tance of closest approach, R > can be written as

R, =(2n/k)(1+ exp{— exp[ exp(y)]}), 4)
where
y=(Ez—E)/Eq ()

and E and Eg are two parameters to be determined.
By using Eqgs. (4) and (5), Eq. (3) can be rewritten as

o,=m(2n/k)*[1+G(y)]G(y), (6)
where
G(y)=exp{ — exp[ exp(y)]} . (7

The parameters Eg,Eg can be determined by comparing
the values of fusion cross section o, obtained by using
Eq. (6) with the experimental data. We remind the
reader than Ej is the energy of the Coulomb barrier and
E; is a scale parameter [9]. At very low energy, we sug-
gest to modify Eq. (6) as follows [4-7]:

0p=0,1=gWl1—g:»)], ®)
where
_ Y1
g(y)=exp —(d Y | 27891,
d—=y,
_ Y2
g1(y)=exp|— 4=y | 5789 | 9)
d—y,

d=Ep/Eg, y,=(Eg—E,)/Es, y,=(Eg—E,)/Eg,

and Eg, Eg, E,,, E,|, v, and y, are parameters to be
determined.

A crucial point of our approach is the determination of
these parameters. In Ref. [6] we suggested to assume for
E,, the value of the energy at which 7 ,(E) attains a
minimum value and for E, the value of the energy at
which In(7 ;) shows an inflection point, so that Eg, Eg,
¥1,» and ¥, can be determined by comparing the values of
o ; defined in Eq. (8), with the experimental values of the
fusion cross section.

The theoretical values of o, can be determined, also,
by considering Eg, Eg, y,,, ¥1, Y1, and y, free parame-
ters. A comparison between the experimental values of
fusion cross sections and the values of o , obtained by us-
ing four or six free parameters is showed in Figs. 2—-8. In
Table I the values of these two sets of parameters are re-
ported.

III. NUCLEAR REACTION RATES

The study of stellar evolution requires the knowledge
of the reaction rate. In the usual astrophysical environ-
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FIG. 15. Same as Fig. 9 for the reaction 'Be(p,y)®B at
T=4.0X10% K [20].

ments, the interacting nuclei collide with a Maxwell-
Boltzmann distribution of relative velocity, and the reac-
tion rate is given by

rn=nny{ov) /(14+8,), (10)
with
(Uv>=fow[(8/7r)M12(kT)3]”20(E)
X exp(—E/kT)E dE , (11

where M, is the reduced mass of particles 1 and 2, n,
and n, are the number densities of particles 1 and 2, v is
the relative velocity, E is the center-of-mass energy, k is
Boltzmann’s constant, and 7T is the temperature. For
nonresonant reactions the cross section is usually written
as [10]

o(E)=[S(E)/E]exp(—2my), (12)

— — N N
(=) w S (93]
T T T T

NA-F (E,T)(cm3 sec! MeV mol")

U
T

0 05 10 15
Ec v (MeV)

FIG. 16. Same as Fig. 9 for the reaction 'Be(p,y)’B at
T=—1.0X10° K [20].
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FIG. 17. Same as Fig. 9 for the reaction "Be(p,7)’B at
T=2.5%10° K [20].
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FIG. 18. Comparison between the values of N ,{ov ) report-
ed in Ref. [11] and the results of our approach (solid line) for

the system H(p,y )>He [12—14]. The dashed line represents the FIG. 21. Same as Fig. 18 for the reaction *He(’He,2p)‘He

extrapolated values obtained by our method in the range where [16,17].
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FIG. 19. Same as Fig. 18 for the reactions *H(d,p)’H,
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FIG. 22. Same as Fig. 18 for the reaction *He(a,y)"Be [18].



2618
— o
5 0 e
E 'IO - 6//
7
;:n 8| ///o
£ 10 ,
S e
A el
> ]6 //
Al
<C yd
o
//,
’:_l N | 1l Ll PO |
10 10 108
T (K)

FIG. 23. Same as Fig. 18 for the reaction "Li(p,a)*He [19].

VAV A X

o =(Egz/E)"* . (13)

2 =2

E; is the Gamow energy, 7 is the Coulomb parameter,
Z, and Z, are integral nuclear charges of the two parti-
cles, and S(E) is the nuclear astrophysical S factor. By
using Egs. (12) and (13), Eq. (11) becomes

<au>=fO”[(S/w)Mu(kTP]VZS(E)
X exp[—(E /kT)—(Eg/E)"*|dE . (14)

The energy dependence of the integral is determined
predominantly by the product of the Maxwell Boltzmann
factor and the penetration factor, leading to a peak of the
integrand with its maximum at an energy E_,,:

E 7e?Z  Z,kT (M ,c?/2)#ic? >3 . (15)

max

By using for the cross section o, the expression given by
the shadow model [see Egs. (8) and (9)], the cross-section
factor can be rewritten as

<au>=f0°°[(S/mMu(kTP]“Zof(E)
X exp(—E /kT)E dE
:waF(E,T)dE ) (16)

The integrand of Eq. (16) versus the energy shows a peak
so that in Refs. [2-5] we suggested as approximate
method to determine the cross-section factor for light
systems. In the present paper, the cross-section factor
{ov) is obtained by using a numerical integration with a
suitable computer program. A comparison between the
integrand of Eq. (11) obtained by using for o ;(E) the ex-
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FIG. 24. Same as Fig. 18 for the reaction 'Be(p,y)®B [20].

perimental values of the fusion cross section and the in-
tegrand of Eq. (16) is shown in Figs. 9-17 for different
systems and at different temperatures. The dashed line
represents an extrapolation at very low temperature. The
integrand functions have been obtained by using a six free
parameters fit for o /.

In Figs. 18-24 the values of N, {ov) (N, is
Avogadro’s number) reported in Ref. [11] (romboids or
solid circles) are compared with the results obtained by
using the shadow model (solid line). The dashed line
represents the extrapolation obtained by our method in
the range where there are not experimental results. The
same comparison is also shown in Table II.

Finally, we can assert that if the shadow model is able
to describe the fusion process also at very low energies,
where there are not experimental results, then, for any
temperature, the cross-section factor can be obtained by
using our approach.

IV. CONCLUSIONS

From our analysis it follows that by extrapolating the
values of the reaction rates at energies where there are
not experimental results we obtain values which are
different from those present in the literature and obtained
by using the “Gamow formula” for the fusion cross sec-
tion. Our approach, based on a phenomenological
analysis of many fusion reactions, suggests a new under-
standing of the fusion process; moreover, astrophysical
implications of the new values of the reaction rates could
be investigated and the neutrino fluxes could be deter-
mined by using in the stellar evolutionary codes the new
values of the reaction rates.
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