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There have been suggestions to measure atomic parity nonconservation (PNC) along an isotopic
chain, by taking ratios of observables in order to cancel complicated atomic structure effects. Precise
atomic PNC measurements could make a significant contribution to tests of the standard model at
the level of one-loop radiative corrections. However, the results also depend upon certain features
of nuclear structure, such as the spatial distribution of neutrons in the nucleus. To examine the
sensitivity to nuclear structure, we consider the case of Pb isotopes using various recent relativistic
and nonrelativistic nuclear model calculations. Contributions from nucleon internal weak structure
are included, but found to be fairly negligible. The spread among present models in predicted
sizes of nuclear-structure efFects may preclude using Pb isotope ratios to test the standard model at
better than a 170 level, unless there are adequate independent tests of the nuclear models by various
alternative strong and electroweak nuclear probes. On the other hand, sufBciently accurate atomic
PNC experiments would provide a unique method to measure neutron distributions in heavy nuclei.

PACS number(s): 21.10.Ft, 21.10.Gv, 12.15.Ji, 42.50.Wm

I. INTRODUCTION

Parity nonconservation (PNC) in atoms arises from the
electroweak interaction between the electrons and nu-
cleons, primarily due to exchange of the neutral gauge
boson, Zo. The dominant contribution in heavy atoms
comes from the coupling of the axial electronic current
to the vector nucleon current. Because the vector cur-
rents are conserved, atomic PNC essentially measures the
electroweak coupling to the elementary quarks, bypass-
ing many of the difficulties of hadronic physics. Thus
in principle atomic experiments can measure certain key
electroweak parameters quite accurately, and also help
probe for new physics beyond the presently successful
standard model of the electroweak interactions.

In fact, there remains much to be learned about the
standard model, including the masses of the top quark
and the predicted Higgs boson(s), and whether there are
additional generations of quarks and leptons. In addition
the standard model faces the well-known gauge hierar-
chy problem, and it is certainly possible that electroweak
measurements may reveal something totally new, such as
technicolor or supersymmetric particles. Accurate mea-
surements of PNC in atomic cesium already play an im-
portant role in addressing such questions.

Two major issues affect the interpretation of atomic ex-
periments and will become more crucial as experimental
accuracy improves, namely, the small but non-negligible
effects of nuclear size and structure [1] and the reliabil-
ity of the atomic theory of heavy atoms [2, 3]. Atomic
theory, the source of the largest uncertainty, has received
a great deal of attention leading to increasingly precise

calculations of PNC for a number of elements. Cesium,
in particular, is now believed to be understood at the 1%
level.

To advance further may require canceling out all un-
certainties of the atomic theory by comparing PNC mea-
surements on different isotopes of the same element. Such
experiments in fact have been proposed [4] using strings
of isotopes of such elements as Cs, Dy, and Pb.

As we discussed in a previous work [1], hereafter re-
ferred to as I, it then becomes important to find the
level at which nuclear structure interferes with interpret-
ing atomic PNC purely in terms of particle theory. The
wave function of the atomic electrons varies over the di-
mensions of the nucleus, causing the net electroweak in-
teraction with the nucleons to depend on the spatial dis-
tribution of both the protons and neutrons. As demon-
strated in I, the PNC observable is (for sin e~ —1/4
and R„-R~) very roughly proportional to

1 —7so(Za)z 1+5Rz/Rz

where R„and R„are the equivalent rms radii for the nu-
clear distribution of neutrons and protons. The proton,
or rather the nuclear charge, distribution is well known
from electric probes: electron and muon scattering, opti-
cal isotope shifts, muonic atoms, etc. The extraction of
the neutron distribution, however, is quite model depen-
dent and dificult to determine to the same high accuracy.

On the one hand, the neutron distribution is needed
in order to extract the weak parameters in heavy atom
experiments. On the other hand, to the extent the weak
parameters are known, the experiments provide a method
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of measuring the changes in the neutron distribution, pri-
marily the rms radius. Thus atomic experiments on iso-
topes of heavy atoms may provide a unique opportunity
to test nuclear model calculations.

In this paper we explore the nuclear structure issues
extensively. We have utilized several recent detailed nu-
clear structure calculations from various authors, in order
to quantitatively estimate the nuclear model-dependent
corrections to atomic PNC in the isotopes of 8~Pb, an el-
ement of interest experimentally. Our major conclusions
are the following.

(1) For single isotope measurements on zasPb, Za is
sufficiently large that the effects of nuclear structure on
atomic PNC cannot be neglected. The uncertainties due
to neutron distributions appear to be less significant for
the extraction of electroweak parameters than the cur-
rent uncertainties due to atomic structure. However,
unless the change in neutron distributions along an iso-
topic chain can be better predicted (or independently
measured, e.g. , via parity violating e scattering), PNC
ratios of s2Pb isotopes will not be able to provide an ex-
traction of the weak mixing angle to better than a 1%
level.

(2) In lighter nuclei (including the important case of
ssCs), Za is sufBciently small that uncertainties in nu-

clear structure can probably be safely ignored compared
to current uncertainties in atomic theory, when using a
single isotope. Calculations for the nonmagic, odd-Z,
Cs nuclei pose additional difficulties, and further investi-
gation is still required to determine how accurately the
standard model could be tested when using ratios of iso-
topes.

(3) Atomic PNC experiments provide perhaps one of
the cleanest opportunities yet available to study the nu-

clear neutron skin. The situation is similar to atomic
isotope shifts which have provided precise measurements
of the ratios of changes in the nuclear rms charge radius
in strings of isotopes. Here we have a weak probe of the
neutron distribution which is free of the gross uncertain-
ties associated with strongly interacting probes. At the
level of precision that the standard model is known, this
yields another testing ground for nuclear models.

We note that alternative weak probes, such as parity-
violating intermediate energy e -nucleus cross section
asymmetries, are also sensitive to the neutron distribu-
tions. In combination with atomic PNC, these may help
simplify the separation of nuclear structure effects from
electroweak radiative corrections.

The paper is organized as follows. In Sec. II we sketch
brieHy the relevant parts of electroweak theory. In Sec.
III we review the simple analytical model we presented
in Ref. [I]; this provides a convenient framework for dis-

cussing the effects of nuclear structure on atomic PNC
in terms of the rms radii of the proton and neutron dis-
tributions in the nucleus. In Sec. IV we discuss the elec-
troweak nucleon form factors. The intrinsic electroweak
structure does begin to contribute at the level we are in-

terested in, but the uncertainties in this structure (due
to strangeness admixtures, etc.) should have a negligi-
ble effect on the total PNC amplitude of the nucleus.
In Sec. V, we examine the key ingredients of currently

available theoretical models for heavy nuclei, including
both nonrelativistic and relativistic formalisms. We con-
sider the reliability of these models, and discuss the need
for calculations which include correlations beyond the
Hartree-Fock level. We also discuss alternative experi-
mental means to measure the desired neutron distribu-
tions. In Sec. VI we discuss the relevant standard model
parameters, and the accuracy desired in their extraction
from atomic parity violation. We derive the propagation
of error from nuclear model uncertainties to electroweak
parameters, focusing on isotopes of lead and (to a lesser
extent) cesium. These two elements are of current ex-
perimental interest, and are representative of the very
heavy and moderately heavy regions of the periodic ta-
ble. In Sec. VII we discuss our numerical results, using
various existing Hartree-Fock nuclear calculations, sum-
marize, and discuss the conclusions from the previous
sections.

II. PNC IN THE STANDARD MODEL

A. Theoretical considerations

Because the Z boson is massive (91.16+0.03 GeV),
the quark-electron interaction due to Z exchange may be
taken to be of zero range compared to atomic or nuclear
dimensions. What we observe in atoms is the electron
interaction with nucleons, not individual quarks. Nucle-
ons are, of course, composite structures consisting each
of three quarks net, but also qq pairs as well as gluons.
We make the assumption here, which we justify in Sec.
IV, that we can neglect the internal nucleon structure
and simply add the point coupling of the three quarks to
obtain the net nucleon weak coupling. The PNC part of
the nucleon-electron interaction can be written in terms
of axial and vector currents

&PNc = &iv~. + ~nr&e (2.1)

If, in addition to neglecting internal nucleon structure,
we treat the nucleons nonrelativistically (a very good ap-
proximation), we have

~PNC = ) +1B 0~0B0q 7 Wed r

+ +2B 0~~B0B ' V~~0ed r

where B stands for n (neutron) or p (proton) and

(2.2a)

~(1 —4sin 8~),
—(1 —4 sin 8~)g~,

(2.2b)

These expressions assume tree-level standard model cou-

plings. In Sec. VI, we discuss the important effects of
radiative loop corrections.
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+PNc, l Np„—(r ) + Z(1 —4 sin Hw) p~(r )
2 2

x @cp Q, dr, (2 3)

where here p„and p„are normalized to unity. The neu-
tron and proton densities include a folding with the weak
form factors (see Sec. IV).

We need the spatial variation of Qctp @, over the nu-

cleus, its normalization, and its dependence on nuclear
structure. PNC effects are dominated by squiz electrons
(~ = —1) coupled to pq~z electrons (r. = +1). We define

p. (~) —= 0,'(r )~'4. (r ) (2.4)

which turns out to depend only on the magnitude of r
ps(r) can be factored conveniently as follows:

The first term in Eq. (2.2a) grows coherently with nu-

cleon numbers N and Z [5—7]. The second term, together
with the anapole moment term (which also depends upon
o ~ n), amounts to at most a few percent of the first term
in heavy atoms, and furthermore sums to zero when all
hfs sublevels are combined, since all directions of cr~ are
then weighted equally. Thus in this paper we will con-
sider the first term only. The effective interaction is

Qn = PnT T )

Qp
= Pp T T

(2.9a)

(2.9b)

B. Experimental considerations

We note that 1 —4 sin 8~ is a small number; from high
energy experiments, sin 8~ ——0.230 + 0.004. The value
of sin 8~ can also be deduced from atomic experiments
with an accuracy that will be limited in part by nuclear
structure effects, as we discuss in Secs. VI and VII.

The proton (charge) nuclear form factors needed for

q„and JV are generally well known from measurements
of the charge distribution of nuclei close to the stable
valley and many unstable nuclides as well. Neutron nu-

clear form factors are needed for q„, and are not well-

determined experimentally, and statements about them
are quite model dependent. Neutron and proton distri-
butions are often taken to be proportional to each other,
scaled by N and Z. However, neutron-rich nuclei have
larger neutron distributions than the protons and the re-
verse is true for proton-rich nuclei. In an isotopic se-
quence, the A ~s law is not followed for either the charge
or the neutron distributions separately.

p (&) = C(Z)hf(Z, R) f(r), (2.5)

lV=R ~, (2.6)

where C(Z) contains all atomic structure effects for a
point nucleus including many-body correlations; JV =
gt (0)ps@,(0) is the normalization factor for a single elec-
tron; f(r) contains the spatial variation and is normalized
to f(0) = 1.

Because the electric potential is very strong near the
nucleus, we can safely neglect atomic binding energies in

f(r). In Pb, for example, the potential at the nuclear
surface is about 15 MeV compared with valence electron
binding energies of a few eV. In addition, to a very good
approximation [1]

As first pointed out by Bouchiat and Bouchiat [6],
the effect of HpNc in neutral atoms grows rapidly with
atomic number Z, approximately as Z . Thus ex-
perimental interest has concentrated on heavy atoms,
namely, s&Cs, s&Tl, s&Pb, and ssBi. (For some reviews,
see Ref. [7].) The measured quantity in all experiments
is the electric dipole amplitude E'pNc between two elec-
tronic states which, in the absence of HpNg, would have
the same parity and hence would have no electric dipole
amplitude connecting them. Denoting the initial and fi-

nal states by i and f, we can write

(f IEiln) (nl&PNc li)
PNc = g. W —WA

where p = 2 1 —gl —(Zn)2 and R, often called the

equivalent charge radius, is given by
+ (fIHpNc ln) (nIE& Ii)

Wf —W„
(2.10)

s (r )charge
5 2 - S/2

(2.7)

x —Nq„+ Z(1 —4 sin ew)qp

(2.8)

As mentioned above, this is modified by radiative correc-
tions which we discuss in some detail in Sec. VI. Effects
of nuclear structure on PNC are contained in JV and the
two quantities

We are not interested in the absolute value of JV, but only
its variation with nuclear structure. Observable PNC
effects are proportional to the matrix element between
two atomic states i and j:

(il~pNc, l lj) = &'&(Z) &GF
2 2

where the first and second terms give the mixing due
to HpNC of opposite parity states into the initial and
final states, respectively. W is the energy of the atomic
states, and Eq = —P. er~ is the electric dipole charge
operator. The magnitude of EpNg is of order 10 eao for
the heaviest atoms of interest.

Two experimental techniques have evolved for mea-
suring 8'pNc. One involves applying an external static
electric field which, like HpNt:, mixes in opposite parity
states and creates an electric dipole amplitude between
the states i and f. The interference between this Stark
amplitude and SpNc leads to a parity-violating signature
in the optical transition from i to f in which the sign of
the interference term reverses with the sense of circular
polarization of the incident light, and with other vectors
specifying the handedness of the experimental arrange-
ment. The other technique uses no external fields, but
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instead exploits the interference between 8'I Nc and the
magnetic dipole (Ml) amplitude between the same two
states. This interference causes parity-violating optical
rotation, i.e. , a rotation of the plane of polarized light
passing through the atomic vapor at wavelengths near
the magnetic dipole absorption line.

The Stark interference technique has been used in the
all-important measurement of PNC in Cs on the highly
forbidden 6Si-7Si Ml absorption line at 532 nm, and

2 2

in the measurement on the 6Pl-7Pl Ml transition in

Tl. The optical rotation technique has been applied to
the allowed Ml absorption lines at 876 and 648 nm in
Bi, and to the similar 1278 and 1283 nm lines in Tl and
Pb, respectively; all of which involve transitions among
low-lying configuration of 6p electrons, for example 6Pl-
6P3 in Tl. Both techniques have reached the l%%uo level of
accuracy.

Among the elements studied thus far, Cs and Pb are
the most likely candidates for comparing different iso-
topes. It may be possible in the case of Cs to use optical
atom traps to carry out measurements on a long string of
radioactive isotopes. Measurements on Pb will probably
be restricted to stable or long-lived isotopes. In either
case, achieving the level of accuracy discussed in this pa-
per (a few percent down to 1'%%uo in the isotopic difference),
although possible in principle, will be a challenging task
in the next generation of atomic PNC experiments.

III. A SIMPLE MODEL FOR THE NUCLEAR
FORM FACTORS

Given proton and neutron distribution functions, there
is no difficulty in calculating q„, q„, and the variation in
JV. In I, we used a simple model to estimate the im-

portance of nuclear structure on PNC observables. We
review those results here.

Consider a uniform nuclear charge distribution of ra-
dius B. This charge produces an electric potential

(—3+ r2/R2)/2R,
1/r, —

r&R,
r &R. (3.1)

A power series for the Dirac wave function inside the
nucleus yields

f( ) = 1 —2(Zn) (r/R) —s(r/R) + 7s(r/R)

+ O(Zn) (3.2)

Again for the sake of simplicity here, we assume that, as
for a uniform distribution (for either n or p), (r4) = 7R4
and (re) = IRs, where R~ = s(r2). From (2.9a) we
find (neglecting here any difFerences between charge and
proton radii)

q„= 1 —0.260(Zn) + O(Zn) (3.3 a)

which is insensitive to nuclear structure to this order.
From (2.9b), we find

IV. INTRINSIC NUCLEON STRUCTURE
EFFECTS

The usual treatment of atomic PNC begins with an
effective Hamiltonian for the parity-violating electron-
nucleus interaction, as in Eq. (2.2a), which involves nor-
malized proton and neutron distributions:

Zp (r) = ).(4,'(r)@.(r))

&p-(r) = ).(@t(r)0-(r))

(4.1a)

(4.1b)

where g is a destruction (creation) operator for nu-

cleons, and the matrix elements are between nuclear
ground states. However, these formulas implicitly as-
sume a point-like nature for nucleons, and thus the usual
analysis makes no distinction between weak, electromag-
netic, or point nucleon distributions, aside from overall
charges.

Of course, nucleons do have an internal structure, and
this must be properly folded into the above distributions.
The internal weak structure is related to, but different
from, the electromagnetic structure, and can be calcu-
lated in the context of the standard model. We demon-
strate in this section that the known, electromagnetic
structure of nucleons yields a rather small overall effect
on atomic PNC calculations, but must be included when
extremely high precision results are required.

There has been considerable discussion in recent litera-
ture [8—10) concerning the possibility of nontrivial strange
quark matrix elements in the nucleon. This could lead
to a sizable "strangeness radius" of the nucleon, which in
turn would modify the weak radius in a well-defined way.
We allow for this possibility in our analysis, although
such a strangeness contribution to atomic PNC is likely
to be quite negligible.

In the standard model, assuming in addition that
strong SU(2) isospin is a good symmetry for the nucleons,
one can extract relations between weak and electromag-
netic form factors [11] which then describe the internal
nucleon structure:

3 R„'

R')=1 —(Zn)
~

0.038+0.221 " [+O(Zn), (3.3b)
R„')

which does depend on the neutron nuclear form factor.
Here we have introduced equivalent neutron and proton
radii of the form (2.7); the second form in (3.3b) assumes
that (R„/R„)z —1 is small.

In this section, we have made rough approximations
in order to illustrate the sensitivity of the results to mo-
ments of the neutron and proton distributions. For com-
parison with experiment, a more detailed analysis is nec-
essary, using actual solutions of the Dirac equation for
realistic charge distributions and the best available the-
oretical neutron distributions. This is done in Secs. VI
and VII.
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Gweak, p( 2) 1 (1 4 ~

8 )Gp,p(

——,
' (G'"(q') + GR(q'))

Gz' '"(q ) = 2(1 —4sin 8~)G~z"(q )
—

2 (Gz"(q') + Gz(q'))

(4.2a)

(4.2b)

Here, 0&' is the usual Sachs electric form factor for a
current operator J„,where X can represent weak, elec-

tromagnetic, or specific quark flavor currents:

(p', x(JX[p, x)

(r )I„- 2(l —4sin 8gr)(2. 1 fm ),

(r )I — —2(0.74 fm ).

(4.7a)

(4.7b)

The quantities in parentheses above can be interpreted
as the physical size (squared) of the weak distributions.
Note that using numbers of order +0.1 [12] for the
strangeness radius will have a large effect on (r )I for
both the proton and (somewhat less so) the neutron.

To a good approximation, considering only rms radii,
but no higher moments, the relevant PNC matrix element
is then given by a convolution of (point) nucleon centers
with their intrinsic structure, yielding a replacement for
Eqs. (2.3) and (2.8):

(4 3,) (il&PNc, i [i)

G (q):—F, (q)+(q /4M )F (q),
and

(4.3b) f ((~@=&-(~)+~Q,~,(~))e!~'4.)&"

J~—:2s(up„u) —si (dp„d + sp„s)
—= —:(~„")——.'(~„'+ ~.'),

gweak (i 4 Sin2 8 )(Ju)

+(—2i + 2 sin 8i4 ) (J„"+ J„'),

(4.4a)

(4.4b)

(4.4c)
C,, ( Z)JV[N Q„q„+ZQ„q„],2"

(4.8a)

(4.8b)

are the standard model electromagnetic and weak vector
currents in terms of quark field operators. (We ignore
quarks heavier than strange. ) G~z is thus the strangeness
electric form factor, and is constrained to be strictly 0
at q2 = 0. Note that one recent estimate [12] gives
a strangeness mean square radius of around 0.14 fm~,

roughly as large as that for the neutron electric charge
radius (but of opposite sign). (This quantity can in prin-

ciple be measured in, e.g. , parity violating e scattering
from nucleons at forward angles. )

With the above relations, we see immediately that at
q2 = 0, the usual weak charges are exactly obtained:

with the quantities q& and q„slightly modified from Eqs.
(2.O):

q(+ ) = d I p(+ ~) T

+l ("')I,(,.) 7'&i.,-)/Q(. ,-) ~
f("»

(4 9)

where p„'„(r) is now the density distribution of nucleon
centers, normalized to 1.

Assuming, for simplicity, uniform nucleon distribu-
tions, with Rz —R,

Q„= 2(1 —4sin 8gr), (4.5a)

(4.5b)
q„= 1 —(Zn)

~

0.26 + (2.1 —(r ) /2Q„) ~,
O.32

and one can also predict weak rms radii

(r2) = -(1 —4sin 8 ) (r ) „——(r )
—-' (r )' + 6(2)(1 —4 sin 8i4 ) /(8M ),

(4.6a)

(r2) = 2i(1 —4sin 8~) (r )I „—2 (r )I„
——,

' (r2) + 6(——,')/(8M2), (4.6b)

where the subscript I indicates intrinsic nucleon struc-
ture, and the last terms in (4.6a) and (4.6b) are the
inclusion of the small Darwin-Foldy correction to the
radii. Note that the neutron (electromagnetic) contribu-
tion to the proton weak radius is not suppressed by any
(1—4 sin 8~) factor, and thus is surprisingly significant.

Using sin 8~ —0.23, (r )I —0.7 fm2, (r )I„=
—0.11 fm2, (r2) = 0 gives

q„= 1 —(Za) [
0.038+0.221

, (O.74 —(~2)', /2Q„) [,
(4.10)

with all radii measured in fm.
For Pb, the internal nucleon structure contributes

about 0.002 to q„, and a possible strangeness radius
discussed above (0.14 fm ) would contribute about five
times less. The internal structure corrects q„by about
0.005, and the strangeness contribution here would be
comparable, about 0.004. In Cs, these numbers turn out
to be smaller by about 40%.

From the discussion to come in Sec. VI, we will see that
these contributions from (known) finite nucleon structure
contributes at about the 0.2'%%uo level in an extraction of the
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weak nuclear charge when measuring a single isotope of
Pb (0.170 level for Cs). This might need to be taken into
account in an extremely high precision analysis, but it
will not add to the uncertainty in testing the standard
model. (See also the complete discussion in Sec. VI to
compare with the expected scale of nuclear, atomic, and
electroweak radiative corrections and uncertainties. ) On
the other hand, strangeness contributions, which are cur-
rently very uncertain, might affect a determination of the
weak charge at below the 0.1'%%uo level in Pb, and even less
in Cs, and thus are likely to be quite negligible. They
could only become relevant if the nucleon strangeness ra-
dius were comparable to the electromagnetic radius itself.

In the case of isotopic ratios, the internal nucleon struc-
ture plays an even smaller role. This is because errors
then come from uncertainties in the difference q„' —q„(see
Sec. VI). To a good approximation, nucleon structure ef-
fects are simply additive in mean square radii and thus
cancel in the differences. Thus neither nucleon struc-
ture, nor the uncertainties therein, are significant when
extracting sin 8~ from isotope ratios.

V. NUCLEAR MODELING

suits in no phase shift (for pairs in occupied states) and to
the two-body wave function "wound" which extends over
a "healing distance. " The P's are to be identified with the
HF single-quasi@article functions. We have used F here
to denote the two-particle correlation function. For re-
pulsive core potentials, F has a hole (wound) centered
about r = 0. The Brueckner G is nonlocal, and both
energy and density dependent.

B. Two-body correlations

The dependence of the single-particle density distribu-
tion on the correlation function is relatively small. We
can estimate it as follows. I et

(") = d ri d r2 ~i p(ri, r2)

p2(rl r2) —pl (rl) pl (r2)f (rl r2) ~

Let pi(r) oc e " i'~~ and f(r) oc e " ~~. . For a, (( aiv,
one finds for the rms size of the single particle density
distribution

From the rather simplistic model of Sec. III, we already
observe that the desired high precision measurements of
electroweak parameters will require knowledge of neutron
radii in heavy nuclei to within at least several percent (see
also the discussion in Sec. VI). At this level, one clearly
must treat higher moments with some care, and the mi-
croscopic details of the nucleon distributions may be of
some importance. For this reason, we have attempted to
evaluate q„and q„numerically, utilizing the best existing
nuclear models for neutron, proton, and charge distribu-
tions available to us. In this section, we discuss some
of the basic features of these models, along with some
caveats on their reliability for neutron observables.

The nuclear many-body problem presents a formidable
challenge for infinite nuclear matter, and an even greater
one for heavy finite nuclei. The most popular route being
taken today is some version of Hartree-Fock theory, which
has had considerable success in describing a variety of
nuclear properties semiquantitatively.

A. Brueckner-Hartree-Fock

The underlying basis of nuclear Hartree-Fock (HF) cal-
culations is Brueckner theory. The elementary two-body
interactions are too strong (especially the short-range re-
pulsion) to lead to meaningful HF calculations. Although
there has been extensive work on nuclear matter calcula-
tions using Brueckner theory and beyond, for finite nuclei
only light ones have been considered [13] and nothing for
the nuclei of interest here.

The lowest level is the independent pair approxi-
mation. The effective interaction is not v but the
Brueckner G matrix, where G = v F, with @(1,2)
F(1,2)P(l)P(2). G satisfies a scattering-type equation
with a projection operator in intermediate states which
excludes scattering back into the Fermi sea; this also re-

(5 2)

where (r )i corresponds to pi. For heavy nuclei (say,
a~/a, = 7.0/0. 7 fm), the correction is less than 2 x 10 4,
which is below our level of current concern.

C. Phenomenological Hartree-Fock calculations,
including deformation and pairing

Because of the numerical complexity, most HF calcu-
lations have employed phenomenological potentials in-
tended to simulate the Brueckner G' matrix. The most
commonly used potentials are varieties of the very conve-
nient Skyrme interaction. The Skyrme interactions are of
the delta-function form and as such lead to single-particle
equations with local one-body potentials and spatially
dependent effective masses, with no more complication
than Hartree calculations. In contrast, finite-range inter-
actions lead to nonlocal single-particle potentials arising
from the exchange term. Momentum-dependent Skyrme
interactions do not lead to further complications and sim-
ulate some effects of finite range. Calculations have also
been done with finite-range forces, using, e.g. , the Gogny
interaction [14]. Note that none of these phenomenolog-
ical potentials are intended to reproduce free nucleon-
nucleon scattering. There are of the order of 8 (more or
less) adjustable parameters in any model [15].

Most nuclear structure calculations on heavy nuclei are
carried out in the deformed Hartree-Fock or the Hartree-
Fock-Bogolyubov (HFB) approximations. The latter in-
clude BCS-type pairing. Hartree-Fock encompasses a
limited class of correlation structure. Only correlations
of a collective nature are included. It is not surprising
to find that in HF neutron and proton densities tend to
track one another. Nevertheless, they do exhibit the ex-
pected behavior that the neutron rms radius increases
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more rapidly than the proton one with increasing A in
an isotopic sequence. The relative tracking (variation in
the neutron skin) depends on the way in which symmetry
energy is handled.

Intrinsic deformations play a key role in spherically
averaged proton and neutron densities. In the uniform,
incompressible approximation, for example, the mean
square radius is increased according to [16]

where P is the nuclear shape parameter, proportional to
the quadrupole moment. P can attain values of the or-
der of s and changes in (Pz) among isotopes can produce
deviations in spectroscopic isotope shifts by an order of
magnitude from the Ai~s law. Although HF calculations
tend to yield spherical (Pz) = 0 or near spherical equi-
librium shapes for the Pb isotopes, (Pz) is not zero and
changes in (P2) have been considered by some authors.

D. Relativistic mean field

Although nuclear structure is primarily nonrelativistic,
considerable success has been achieved by treating the
nucleons and protons as point Dirac particles [17] (see,
however, Achtzehnter and Wilets [18]) interacting with
phenomenological vector and scalar mesons in the mean
field approximation. The vector mesons can be identified
with the isoscalar omega and the isovector rho mesons;
the scalar meson is a simulation of two-pion exchange.
The mesons are treated in the mean field, or c-number
approximation. An attractive feature of the model is
that the strong spin-orbit potential appears to emerge
"naturally. " While this turns out to be true for isoscalar
potentials, it fails badly for the isovector potentials, but
can always be parametrized to yield reasonable results
[18].

In order to fit nuclear properties, it has been necessary
to go beyond linear field theory. Self-interaction of the
scalar field has been introduced, with additional parame-
ters. Among other problems, this solved the compression
modulus anomaly, which is much too large in the linear
model. The total number of adjustable parameters which
must be introduced is comparable to that required in
models using Skyrme forces. As with Skyrme forces, the
mean field approximation does not lead to nonlocality in
the one-body potentials.

E. Random phrase approximation and
multiconfiguration Hartree-Fock theory

The tail of the neutron or proton distribution has cor-
relation/polarization corrections not described by HF, at
least for large distances. The reason for this is that the
individual nucleon wave functions see the potential of
the "mean" self-consistent core. In the tail region, the
residual core tends to relax. This is most evident for
the separation energy: In HF, the separation energy of a
nucleon is just the energy eigenvalue (Koopmanns' the-
orem) if the core is frozen. If the energy of the residual

nucleus is recalculated self-consistently, the separation
energy is reduced by what is termed the rearrangement
energy. Correlations of this type are included through
the random-phase approximation (RPA), which is equiv-
alent to small amplitude, time-dependent Hartree-Fock
calculations.

Other types of correlations could be included through
multiconfigurational Hartree-Fock calculations, which, as
the name implies, means that the trial wave function is
not a single determinant, but a sum of determinants (con-
figurations). This serves two purposes: correlations of
the kind allowed by the choice of configurations are in-
cluded, and the occupation of these configurations modi-
fies the mean field potential and single-particle functions.

F. Beyond Hartree-Fock plus

Most HF and HFB calculations do reasonably well in
reproducing atomic isotopic shifts for the even-even iso-
topes of Pb below 208. So, incidentally, does the droplet
model of Meyers [19]. They all fail to reproduce even-odd
staggering, which shows odd nuclei to be smaller than the
mean of their even-even neighbors, and also do badly on
the shifts above 208.

There are no giant shell model diagonalization cal-
culations available which yield densities for heavy nu-
clei. Such would be very valuable for comparison with
Hartree-Fock results, since in principle they include all
types of correlations, limited only by the size of the ba-
s1s,

An idealized shell model calculation should be based
on realistic two-body interactions, the kind which fit free
two-body scattering data. The Hilbert space could be
divided into a "near" and a "far" space. The effective
two-body interaction could be obtained by solving for
the Brueckner G matrix with the intermediate states ex-
cluded from the near space. The far space scattering
states could be approximated by plane waves if the mo-
mentum sphere separating the spaces is suSciently large
[13]. The Hamiltonian matrix for the inner space, using
the efFective interaction, is then diagonalized.

G. Summary and discussion

Unfortunately, not all of the theoretical considerations
discussed above have been incorporated in any single cal-
culation. Heavy nuclei pose a diKcult challenge for re-
liable, detailed modeling at the level of precision we re-
quire. There do exist in the literature a number of recent
efforts, as discussed in Secs. VC and VD above, which
involve either relativistic or nonrelativistic Hartree-Fock
nuclear calculations. We have accumulated densities
from several of these authors in order to evaluate q„and
q„and make comparisons among the different models.
These include various HF calculations with Skyrme forces
[20, 21], an HFB calculation with a Gogny finite-range
D1S interaction [14, 22], and several relativistic mean
field models [23, 24]. The results are presented in Sec.
VII.

The modelers fit their adjustable parameters to choices
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among various bulk properties (energy per nucleon, com-
pressibility modulus, symmetry energy, etc. ), and prop-
erties of particular nuclei (energies, charge radii, defor-
mations, spectra, multipole sum rules, etc.). Indeed, the
physics behind the models comes, in part, from the choice
of the particular observables included in the parameter
fits. The models we have selected all do roughly equally
well in fitting the wide range of nuclear observables avail-
able across the periodic table [21, 23].

The analysis of atomic PNC, as discussed in Secs. II
and III, relies on a detailed knowledge of neutron dis-
tributions in nuclei. The lack of unambiguous, precise
experimental measures of neutron radii means that all
of these models must "extrapolate" to the desired neu-
tron properties. Charge radii, on the other hand, are
in a certain sense "built in, " in that the set of observ-
ables to which the nuclear model parameters are fit in-
cludes charge radii of several even-even nuclei, one of
which is 2o Pb. In defense of the models, they predict
with good success the charge radii of other even-even nu-
clei not included in the fit [24], and also reproduce the
well-measured isotopic charge radius shifts for, e.g. , the
even isotopes of Pb [20, 25]. However, they do not re-
produce the observed even-odd staggering of charge radii
very well, nor are the results as good for the charge radius
of sPb, an indication that some care should be taken
when considering nonclosed-shell cases.

There do exist some data which may give more direct
information on the neutron skin. This might be used as
additional input to these nuclear models, and could help
further constrain the predictions for neutron radius, and
neutron isotope shifts, if one could demonstrate consis-
tency in the results. Perhaps the best known data comes
from 800 MeV polarized proton scattering from Pb
[26, 27]. This gives R„—R„= 0.14 6 0.04 fm. The
quoted error, which is quite small for our purposes, con-
tains both statistical and certain theoretical uncertainties
as stated. However, there are still additional theoretical
uncertainties, involving, e.g. , assumptions about the in
medium nucleon-nucleon t matrix, and the result seems
to exhibit a rather large and troubling energy dependence
[28]. The absolute value of R„ in one isotope is believed
to be fairly diKcult to obtain with confidence using such
experiments. However, it may be that the relative shift
in R„among isotopes involves cancellations that reduce
these theoretical uncertainties. Measurements on other
Pb isotopes (data [29] apparently exist for csPb) would
clearly be of interest in this context. Further experirnen-
tation and theoretical analysis at other energies are also
crucial to demonstrating the consistency of the results.

Experiments involving intermediate-energy charged
pion scattering from nuclei may also help further con-
strain the neutron radii, or the relevant isovector model
parameters, as well. Such data exist for ~osPb [30], but
again the absolute normalization poses a real challenge
to analyses [27]. Taken at face value, the p and vr results
for lead neutron radii do agree with one another reason-
ably well, and also match with, e.g. , the Gogny finite-
range Hartree-Pock calculations. Another experimental
possibility involves energies and sum rule strengths of
giant multipole resonances [31]. The uncertainties here

are even larger, and diKcult to estimate. Clearly, a reli-
able set of such additional "strong probe" inputs, includ-
ing yet other options such as o, particle scattering, kaon
scattering, Coulomb displacement energies, etc. , could be
an aid in constraining the theoretical models on neutron
properties.

Another promising experimental possibility for the
future might be direct electroweak experiments, such
as parity-violating asymmetries in elastic, intermediate-
energy e -nucleus scattering, as proposed by Donnelly,
Dubach, and Sick [32), or perhaps elastic v scattering.
The reactions and analyses are quite clean, just as in
the charge scattering case. There would be, for example,
no serious ambiguities in the absolute scale of the radii
measured. Such experiments would in fact be sensitive
to the full nuclear weak charge distribution, rather than
just the rms radius, which many of the strong probe mea-
surements are primarily sensitive to. Because such exper-
iments could be done at moderate momentum transfers
(q 1 fm ), the extraction of nuclear distribution in-
formation would be much less sensitive to the precise
values of electroweak parameters than in the correspond-
ing atomic parity-violation case. The asymrnetries and v
cross sections are naturally extremely small, and the ex-
perimental challenges are formidable. Nevertheless, re-
cent estimates for the parity-violating asymmetries in-
dicate that measurements sensitive, e.g. , to the neutron
rms radius in scsPb at the l%%uo level are feasible [32]. As
we will see in Secs. VI and VII, such a level would make
the nuclear structure uncertainties quite negligible for the
purposes of extracting standard model parameters from
single isotope atomic PNC measurements.

In any case, current model fitting has been done with
the best and most reliable data at hand, most of which
are not directly sensitive to neutron distributions. It is al-
ways difBcult to estimate the theoretical uncertainties in
such model calculations. In this section, we have already
mentioned several potentially important missing features
that future work should address, especially involving nu-
cleon correlations. We have not attempted here to try to
choose a "best model" from the various ones we exam-
ined, but rather wish to evaluate the existing spread in
predictions as an efFective lower bound on the theoretical
uncertainties involved. One might, however, try to make
a selection based on detailed comparisons, specifically
targeting a good fit to heavier nuclei energies, isotopic
shifts, giant dipole properties, and other quantities po-
tentially sensitive to isovector properties. We encourage
work in such directions. The goal should be to find the
most reliable model(s) while still retaining an estimate of
the remaining theoretical uncertainties.

VI. ERROR ANALYSIS AND TESTS OF
ELECTROWEAK PHYSICS

One of the motivations for further improving atomic
parity-violation experiments is to test the standard
model at the level of its one-loop electroweak radiative
corrections. This allows one to probe for possible small
"new physics" sects, which would appear as further loop
corrections or more directly as additional interactions at
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the tree level (i.e. , without loop corrections). A good ex-
ample of the latter, to which atomic PNC is particularly
sensitive, is exchange of a second, more massive, neutral
Z boson required in theories with larger gauge groups. In
the standard model, the loop contributions are separated
into two parts: fixed radiative corrections due to con-
tributions from the known quarks, leptons and bosons,
and the heavy physics part due to contributions from
the top quark and the Higgs boson. One is interested
in an experimental determination of the heavy physics
part, which in the language of Marciano and Rosner [33]
is expressed in terms of weak isospin-conserving, S, and
isospin-breaking, T, effects. These two constants [34] are
a convenient way not only of including uncertainties in
the top quark and Higgs masses, but of parametrizing the
effects of some specific classes of new physics as well. It
turns out that low energy PNC measurements are nicely
complementary to high energy measurements such as di-
rect Z-boson production, since both the radiative correc-
tions and the sensitivities to new tree-level interactions
are quite different.

To show how the radiative corrections and the possible
new physics enter into atomic PNC, and how they might
compare in size to nuclear structure effects, we begin by
rewriting Eq. (2.9) in the form

where Qw(N, Z), known as the nuclear weak charge, is
the quantity of primary interest to electroweak theory,
and in the standard model without radiative corrections
reduces to

Qw —— N+ Z(1 —4—z), (6.2)

where x—:sin Hw. Qw(N, Z) is determined from
atomic experiments by combining atomic measurements
of (i~Hp~c, i~j) with calculations of both atomic struc-
ture (contained in the factor C,~) and nuclear struc-
ture. The nuclear structure corrections are contained in
Qg~'(N, Z), which is given by

Qw'(N, Z)—:Qw([q„—1]N, [q„—1]Z)
N(q„—1) + Z(—1 —4x)(q„—1) . (6.3)

Nuclear structure is also contained in the normalization
JV, but as we will see in Sec. VII, A' is determined by
the nuclear charge distribution, which is usually known
experimentally.

When we include possible new physics, together with
the effects of radiative corrections which have been cal-
culated by others [33], Qw(N, Z) becomes

Qw (N Z) = (0.9857 + 0 0004) (1 + 0.00782T)
x (—N + Z [1 —(4.012 + 0.010)]x)
+Q,";„(N,Z), (6 4)

where x is assumed here to be defined at the mass scale
mz by modified minimal subtraction [33] and is given by

(i~% xc, i lj) = C,, (Z)&[Qw(N, Z) + Qw'(» Z)]
2 2

*'

(6.1)

Q,";„(N,Z) = 0.4(2N + Z)tnw/ z (6.6)

It is useful to consider how well the parameters in Qw
are currently known. The central value of Q,";,~(N, Z),
determined mainly by Cs PNC measurements, is about
2.2 + 1,6 + 0.9 [if all other heavy physics in Eq. (6.4)
is ignored], and corresponds in the SO(10) model to
mg„500 GeV. Conversely, assuming no new tree-level
physics (i.e. , Qt;„= 0), the experimental uncertainty in
T is currently around +1, and in 8 around +3, the latter
determined largely from Cs PNC. Ultimately, as Mar-
ciano and Rosner have indicated, an effort to reduce the
uncertainty in 8 to +0.2 is extremely important, since at
that level it is sensitive even to minimal one-doublet tech-
nicolor models. This sort of accuracy is an extreme chal-
lenge to either high energy or atomic experiments. Cur-
rent knowledge of sin 8~ from a global analysis of elec-
troweak data [36]can be summarized by x = 0.230+0.004
(roughly 2% uncertainty). If future high energy measure-
ments were to reduce the uncertainty in x beyond what is
attainable in atoms, the atomic experiments would still
be valuable for improving the limits, e.g. , on an addi-
tional Z.

In summary, any improvement in determining atomic
PNC is likely to provide useful information about elec-
troweak physics, and it becomes extremely important to
work out how much nuclear structure uncertainties may
be a limiting factor, and to reduce these uncertainties
where possible.

We first consider the impact of nuclear uncertainties on
PNC measurements of single isotopes. PNC experiments
to date have been done on stable isotopes of heavy atoms,
namely Cs, Pb, Bi, and Tl, and have not compared dif-
ferent isotopes of the same element. From Eq. (6.1) we
derive an expression for the uncertainty in Qw in terms
of the uncertainties in atomic and nuclear structure and
in the measured quantity 0 = (i~Hp~g i

~
j):

b C,~ Mf bQw"'

C~ A' Qw
(6.7)

If we assume that 0 can be measured to arbitrary accu-
racy, and that proton distributions (which will influence
6JV) are also well enough understood and/or measured,
there remain the uncertainties coming from atomic and
nuclear structure, which we can write in the form

x = 0.2323 6 0.0007+ 0.003658 —0.00261T . (6.5)

The errors indicated in (6.4) and (6.5) come from un-

certainties both in experimental input parameters and
in evaluations of known physics loop diagrams. The un-
known, heavy physics loop corrections are contained in
the parameters S and T, which depend upon the heavy
masses, and are defined suchthat 8 = T = 0 if mH = 100
GeV, m~ ——140 GeV, and if there is no new physics
beyond the standard model. Including Q"„;,(N, Z) in

Qw(N, Z) allows for additional tree-level physics beyond
the standard model. For example, exchange of the extra
Z in SO(10) models [33,35] (assuming no Z, -Z mixing)
would make
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~Qw —bq„,
Qw

(6.8)

where we have dropped all terms containing the factor
1 —4.012x, which should be quite negligible due to the
accidental value of 2: = 4. Rewriting in terms of the weak
interaction parameters, we obtain

Z bQt",e„(N, Z) bC,~ (6.9)

ignoring the contribution of the weak-isospin breaking
parameter T which cancels to better than 10%%ue for the
full range of Z/N found in the elements of experimental
interest. Thus a PNC measurement in a single isotope
can set limits on the weak-isospin conserving parameter
8 and/or new tree-level interactions, and in fact the best
limits on both of these parameters now come from PNC
measurements in atomic cesium. To determine the role of
nuclear structure, we must compare the uncertainty bq„
on the right-hand side of Eq. (6.9) to the atomic structure
uncertainty 6C,~/C, ~ . This we do later, in Sec. VII.

Because of the difficult atomic physics calculations,
there has been some serious interest in measuring parity
violation in a chain of isotopes. Taking ratios between
isotopes cancels essentially all dependence on atomic
structure. Unfortunately, although the atomic physics
indeed cancels in the ratio, the nuclear structure does
not. Referring to Eq. (6.1) we consider the ratio

0 [Qw(N, Z) + Qw"'(N, Z)]IV
0' [Qw(N', Z) + Qw'(N', Z)]JP ' (6.10)

NN' 6'R 6(~) 6 (Aq„)
b,N 'R JV q

where we have made simplifying assumptions that the
isotopes are close together, i.e. , AN =—N' —N &( N,
that sin 8w —4, and where we have used, e.g. , (6q„/q„—
&q„'/q„') b(Aq„)/q„, which is numerically accurate for
the models of Pb we have considered. Because of the
special sensitivity of atomic PNC to any additional heavy
Z bosons, we note as an example that a determination
of rnz. in the model of Eq. (6.6) would be constrained
by replacing the left-hand side of Eq. (6.11) by Z6x/x—
0.4Z6(m2w/m2z ).

The uncertainties on the right side of (6.11) are effec-
tively in the relative deference between quantities for two
isotopes. In principle, different nuclear models which dis-
agree on the absolute values of, say, q„may agree on the
relative change in this quantity to a much higher degree
of accuracy. However, such a reduction in uncertainty
in the terms within the large square brackets in expres-
sion (6.11) is roughly compensated by the factor N/AA
Comparing with Eq. (6.9) for a single isotope, in which

where primed and unprimed quantities refer to different
isotopes. The sensitivity of x and Qt"e„(N, Z), extracted
from this ratio, to the nuclear structure is then given
approximately by

pg~new
Z pQnew(N Z) + N Qtree

any new tree-level interactions enter with the equally un-
certain loop parameter 8, we see that when we instead
compare isotopes, Q,";„appears together with a different
parameter, x, which is independently measurable in high
energy experiments.

VII. DISCUSSION

To calculate q„, we use various theoretical predictions
of neutron and proton distributions from the literature.
Proton distributions are used to compute f(r), the elec-
tronic wave function overlap defined in Eq. (2.5). We
solve numerically for single electron Dirac s&j ~ and p~ j 2

wave functions near the origin, in the Coulomb potential
of the nuclear charge distribution (as discussed in Sec. II),
and make no approximation of a power series in Ze, as
was done, e.g. , for Eq. (3.2). We have neglected the con-
tributions to the nuclear charge distribution from internal
neutron structure, as discussed in Sec. IV. We estimate
the error associated with this assumption to be well be-
low the level of the model uncertainties themselves. The
quantity q„= f p„(r)f (r) dsr is then calculated directly
from the corresponding neutron distribution.

In Tables I and II, we present the rms radii B„and A„,
the correction factors q„and q„, and the electron normal-
ization JV, for several nuclear models of the Pb isotopes
202 and 210. Except for the norm, the spread in val-
ues in the final rows of Tables I and II should give some
indication of a loner limit on the current level of theoret-
ical model-dependent uncertainties, assuming that one
accepts these models as equally phenomenologically rea-
sonable.

The normalization factor JV defined in Eq. (2.5), which
is proportional to 1/f (r )) Rz), is defined arbitrarily here
as 0.10361/f(300 fm). The numerator, f '"i't(300 fm),
is evaluated using a model-independent experimental
charge distribution from electron scattering off 2csPb. As
stated earlier, we are not concerned with the absolute
value of the norm, but only its dependence on atomic
weight and charge distribution. This definition simply
scales JV to be near 1.0. For OsPb, the model spread
in the normalization from Table II might appear to con-
tribute at a significant level. One can, however, consider
correcting JV by using an approximate formula relating
JV to the charge radius, namely JV = R ~, as in Eq. (2.6).
This is given by

JP = A (R~/R~ t). (7.1)

The model spread in this JP is significantly reduced. The
point is that these models are not precisely reproducing
the observed charge radii of the lead isotopes, which feeds
rather directly into a calculation of lV. The correction
factor above compensates for this, using the existing high
precision measurements of charge radii from optical iso-
tope shifts and electron scattering [25, 37].

Some of the results in Tables I and II are reproduced
in graphical form also, in Figs. 1, 2, and 3. In Fig. 1, we

plot the predicted B„versus atomic weight for several
even lead isotopes, and in Fig. 2 the ratio R„/R„. The
spread in B„among models is decidedly larger than the
spread in B&. We do note a systematically larger neu-
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TABLE I. Some properties of Pb relevant to atomic parity violation, for several nuclear models. Properties listed are
rms proton radius, neutron radius, ratio (R„/R„), difFerence in mean square charge radius from Pb, q„and q„, defined
in Eqs. (2.9a) and (2.9b), the normalization factor, A/', and a "renormalized norm" defined in (7.1). All distances are in fm.
The models listed are Hartree-Fock-Bogolyubov with a Gogny [22] finite-ranged D1S interaction, using a 15 shell spherical
harmonic oscillator basis (G:HFB), various parametrizations of the Skyrme interaction [20, 21] in the spherical Hartree-Fock
approximation, Skyrme A (SkA), asterisk (Sk ), and 3 (Sk3), and relativistic Hartree mean field calculations [23, 24] with a
nonlinear PL40 parameter set (rel). The first row contains experimental numbers, where known [25, 37, 40]. The final row

simply indicates the maximum spread among the models.

202Pb

Data
G:HFB

SkA
Sk*
Sk3
Rel

Spread

5.409
5.431
5.423
5.488
5.484

0.08

5.519
5.607
5.560
5.590
5.742

0.2

1.020
1.032
1.025
1.019
1.047

0.03

—0.330(4)
—0.274
—0.297
—0.296
—0.355
—0.319

0.08

0.90599
0.90604
0.90608
0.90638
0.90618

0.0004

0.90318
0.90141
0.90254
0.90382
0.89949

0.004

1.0087
1.0069
1.0076
1.0018
1.0023

0.007

1.0041
1.0039
1.0039
1.0028
1.0034

0.001

tron radius in the relativistic models [38]. The origin of
this is indeed not yet completely understood, but may
be connected with larger asymmetry energies found in
these models. This in turn might tend to pull neutron
and proton distributions together where the densities are
high, leaving a somewhat larger neutron tail.

In Fig. 3, we plot q„versus atomic weight for several
even lead isotopes. The spread is closely related to the
spread in R„/R„shown in Fig. 2, as might be expected
from the simplified formulas (1.1) or (3.3b) based on uni-
form nuclear charge density. Estimates of q„using these
simplified formulas yield the same general trends as the
detailed calculations, with absolute values differing gen-
erally by parts in a thousand or less. The relativistic
models yield somewhat smaller q„, due to their larger
R„/R„ratio.

In the case of single isotopes, the total nuclear model
spread does not appear to be the most serious problem
in using Eq. (6.8) or (6.9) to extract weak interaction
parameters from atomic PNC. For sPb, the typical full
spread in calculated q„ is ( 0.005. In the case of issCs,
the sensitivity to nuclear structure is even weaker, due
to the smaller value of (Za). A larger uncertainty, at
least at the present time, is due to atomic physics calcu-
lations [2, 3]. For example, Cs is one of the most favor-
able elements from the point of view of atomic theory,

and to achieve the current level of quoted uncertainty of
b'C;, (Z)/C, , (Z) =1% in Cs is an impressive task. But
this uncertainty is still probably larger than the uncer-
tainty in q„ for Cs. Significant future improvement in
atomic calculations is likely to be dificult. Thus, aside
from any experimental uncertainties, atomic structure is
the present limiting factor in getting Qiv and the asso-
ciated weak parameters from single isotope atomic PNC
measurements, and appears to remain so even after con-
sidering the possible nuclear physics effects. This con-
clusion is consistent with the findings mentioned in the
calculation of Ref. [2].

Consider next the ratios in an isotopic chain, for ex-
ample ( Pb/ MPb). Referring to Eq. (6.11) we see
that the PNC experiments would then be measuring g
and/or observing new tree-level physics. For definite-
ness let us assume no new tree-level physics. Then a
jlFO extraction of z would require bkq„( 6 x 10, and
blhJV'/A' ( 6 x 10 4. Assuming uniform nuclear distri-
butions, this implies bb, (R„/R„) ( 4 x 10 s. Referring
to Table III, which shows the change in various quanti-
ties between these two particular lead isotopes, the model
spread for 66q„ is around 9 x 10 4 and for b~/JV is
about 6 x 10 4. Note however that when JV' is corrected
as in (7.1) above, using experimental knowledge of charge
radii, this spread, at least, is significantly reduced to be-

TABLE II. Same as Table I, for Pb.

208Pb

Data
G HFB

SkA
Sk*
Sk3
Rel

Spread

5.453(2)
5.435
5.459
5.451
5.521
5.513

0.1

5.59(4)
5.569
5.670
5.620
5.646
5.822

0.3

R„/R„
1.03
1.025
1.039
1.031
1.023
1.056

0.03

0.0
0.00
0.00
0.00
0.00
0.00

q„

0.906(1)
0.90596
0.90599
0.90605
0.90636
0.90607

0.0004

0.90260
0.90051
0.90176
0.90334
0.89813

0.005

=1.0
1.0068
1.0049
1.0053
0.9992
1.0003

0.008

1.0018
1.0016
1.0016
1.0005
1.0012

0.001
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TABLE III. Changes in various nuclear properties between Pb and Pb. The models are
the same as in Table I. Properties listed are the change in relative neutron to proton radii, the
change in proton and neutron correction factors q„and q„, and the relative change in the norm.
The final column is for the "renormalized norm" defined in Eq. (7.1). The last row shows the
maximum spread among the models.

202Pb ~ 208Pb

G:HFB
SkA
Sk*
Sk3
Rel

Spread

AR„/R„
0.0043
0.0064
0.0056
0.0040
0.0091

0.0051

Aqp

3x10 '
5x10 5

3x10 '
2x10 '
1x10 4

8x10

Aq„

5.8x 10
9.0x 10
7.8x 10
4.8x 10
1.4x10 3

9x1Q 4

0.0020
0.0021
0.0022
0.0026
0.0021

6x1Q 4

0,00227
0.00232
0.00225
0.00230
0.00218

1x10

5.9 + PL40

~ NL06

low the +1% level. This is seen from the final column in
Table III. But the spread in Aq„remains, and is com-
parable to the accuracy needed for a 1'%%uo extraction of z.
Similarly, the model spread in (R„/R„) from Table III
is about 5x10 s, which likewise corresponds to a )l%%uo

spread in x.
If we exclude the relativistic models, which seem to

have substantially different neutron radii from the con-
ventional HF calculations, the model spread just among
the various Skyrme parametrizations considered gives
b'Aq„= 4 x 10 . It thus appears unlikely that PNC
measurements comparing Pb isotopes could yield much
better than a 1%%uo determination of X, unless there is sig-
nificant improvement in understanding of nuclear struc-
ture.

The same results can be seen perhaps more clearly in
Fig. 4, which displays in graphical form the values of
Aq„(202 ~ 208) from Table III versus the difFerent mod-
els considered. The spread in predictions of this quantity
is actually larger than 100%. Also shown in the figure
is a typical scale of 1%%uo in the weak angle. As noted al-

ready, the model spread is too large for extractions of z
at the sub 1'%%uo level if one cannot otherwise eliminate or
improve any of the models used. On the other hand, the
nuclear structure uncertainties may not preclude a sig-

nificant improvement in sensitivity to new Z bosons or
other new tree-level physics in Eqs. (6.11), particularly if
z is determined well by high energy experiments.

Although the nonrelativistic models do appear to clus-
ter together somewhat, one should perhaps be a bit wary
of their apparent self-consistency. For example, a mod-
ification of the coefficient of the isovector (n-p asyrnme-

try) surface term, a (p„—p„)V (p„—p„) term in the
Skyrme Lagrangian [21], has little effect on most bulk
properties, and hence on the goodness of the Skyrme fits
[23]. This term, however, does modify the neutron skin
significantly. Reinhard's rough estimates show that an
uncertainty of AR„- +0.15 fm is not unreasonable [23].
This in turn can modify the quantity shown in Fig. 4 by
amounts of 6x 10 4, larger than the spread in the given
Skyrme models. The relativistic models do not have such
flexibility, as the isovector rho couplings are largely con-
strained by isotopic trends in ground state energies and
charge radii, but this is of course no guarantee that these
models correctly describe all isovector properties equally
well.

In the case of Cs isotopes, accurate calculations for
neutron radii (or even proton radii) are difficult. They
have odd Z, and require additional approximations to
deal with unfilled shells, as well as deformations. The
lack of success in predicting the even-odd staggering of
b'(r ),h in lead isotopes indicates the seriousness of these
problems. An estimate of the scales involved, however,
can be made using calculations with existing nuclear

5.8

5.5
202 204 206

A

208 210

+ NL1

+ NL075

0 SkA

o Sk3
:-"- Sk+

x GHFB

1.07

1.06

1.05
x~

1.04

1.03

FIG. 1. Root mean square neutron radius, in fermis, for
lead isotopes, plotted vs atomic weight. Models are defined
as in Table I. We also show points for several additional rela-
tivistic Hartree parametrizations, NL1, NL06, and NL075 [23,
24]. Skyrme calculations are connected with dashes to guide
the eye. Gogny HFB is connected with dots. Relativistic
models are connected with dot-dashes.

1.02

202 204 206 208 210
A

FIG. 2. Ratio of neutron to proton radius for lead iso-

topes, plotted vs atomic weight. Symbols are defined as in
Table I and Fig. 1.
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0.9075

0.9050

0.9025

0.9000

0.8975

0.8950
202 204 206 208 210

A

FIG. 3. Neutron correction factor q„ for lead isotopes,
plotted vs atomic weight. Symbols are defined in Table I and
Fig. 1. The large error bar on the right side represents the
allowed spread corresponding to a +~% uncertainty in the
weak charge, as given by Eq. (6.8). The vertical position of
this error bar is arbitrary.

(for lead isotopes near osPb) yield predictions for the
PNC ratios which are fairly linear with h, A. Since this
prediction is also roughly linear with sin 8~, it appears
that the various nuclear models could be internally con-

sistent, each yielding a unique sin 8~ but differing from
model to model about the extracted value. Of course,
one cannot draw any firm conclusions about this until
after the data are known. There are indeed some slight
deviations from linearity, especially for nonclosed-shell

isotopes, and one may be able to take advantage of this.
In essence, this bootstrap idea uses PNC atomic isotope
ratios themselves as our desired additional constraint on
neutron properties —with a large enough set of PNC
data, one could hope to simultaneously constrain the nu-

clear model parameters arid measure the weak mixing

angle.

VIII. CONCLUSIONS

0.0015

0

0.0010
I

P

Sk A
0

NL1

+ NL06
PL40

NL075

X
0.0005 — G HFB

Sk Star

a
Sk 3

Models

FIG. 4. Change in q„between Pb and Pb, shown vs
model weight. (The x axis is arbitrary. ) The error bar on the
right side represents the allowed spread in the plotted quan-
tity corresponding to a +1% uncertainty in x, as discussed
following Eq. (6.11). The vertical position of this error bar is
again arbitrary.

codes. One such result [39] gives R /R„1.03 for ssCs,
and b,R„/Rr ( Cs -+ ssCs) 5 x 10 . If this lat-
ter number itself has a 100% uncertainty (for compari-
son, see Fig. 4 for the case of lead which does show a
100%%up spread among model predictions of the equivalent
quantity b,q„ for about the same 6A/A), then the uncer-
tainty in X from this fairly small range of isotopes would
be approximately 1%. 6A of up to 10 or higher may
be experimentally possible for Cs, which might help to
reduce the nuclear physics uncertainties. From the ex-
perimental side, the absence of stable isotopic partners
to issCs makes it difficult to obtain values of AR„/R„
from parity-violating electron scattering, or p elastic, or
pion experiments, as may be possible for the lead iso-
topes. Further work on theoretical estimates for Cs iso-
topic radii is clearly called for.

Given a set of experimental results for isotopic PNC
ratios, one can also consider a bootstrap procedure: from
atomic experiments over several isotope differences, use
the various models to extract the weak mixing angle.
Then, only those models which yield the same sin eiv
for the various isotopic pairs are acceptable. Unfortu-
nately, the various nuclear models we have considered

For the case of Pb, in order to extract electroweak pa-
rameters from atomic PNC experiments at a level of pre-
cision which would be considered "significant" for testing
the standard model, we have shown that it is necessary
to have confidence in the isotopic relative neutron/proton
radius shift, A(R„/R„)/AA, to better than a few times
10 . We have examined various nuclear model calcu-
lations, and find that the spread in theoretical values
corresponds to an uncertainty in the weak mixing an-
gle greater than 1%, with the assumption that no new
physics is present. Without some further basis for dis-
criminating among the various models, the spread repre-
sents a lower bound to the uncertainties in the calculated
values.

The basic problem is essentially that the models have
been parametrized to fit properties like charge distribu-
tions, which are not directly sensitive to neutron distribu-
tions. As Reinhard has shown, it appears that a surface
symmetry energy term in certain nonrelativistic (Skyrme
interaction) nuclear models can be "dialed" somewhat to
change the neutron size without significantly spoiling the
basic fits. Including data which are more sensitive to neu-
tron properties, such as isotopic trends in ground state
properties, and perhaps giant resonance energies and sum
rules, could be useful to constrain such terms.

There do exist experiments which are sensitive to neu-
tron radii, e.g. , ir /vr scattering, and medium energy
polarized proton scattering. If the quoted errors on the
latter can be taken literally, one could use it to discrim-
inate among the various models and provide the confi-
dence one needs to extract the desired electroweak pa-
rameters from atomic experiments. It would be valuable
to repeat the experiments and analyses at other energies
in order to demonstrate the consistency of the results,
and to consider both sr+ and p scattering on multiple Pb
isotopes for a direct experimental measure of the isotopic
shift; in neutron radii. We have also noted in this work
that the detailed distribution of neutrons, beyond just
the rms radius, is of some importance. This implies that
we may still have to rely on the nuclear models for an
extraction of the electroweak parameters. As discussed
earlier, the use of alternative electroweak probes, such as
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parity-violating (polarized) electron scattering at inter-
mediate energies [32], would be of obvious value for in-
dependently extracting the desired neutron distribution.

We can turn the problem around, however, and note
that an accurate measurement of x from high energy ex-
periments presents a unique opportunity to extract the
isotopic neutron radius shifts from atomic experiments
cleanly, and hence test the nuclear models. The situa-
tion is quite analogous to the extraction of changes in
charge radii from atomic isotope shifts.
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