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Doorway state approximation and sign correlations in parity nonconservation
in compound neutron resonances
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The nonzero average parity-nonconserving longitudinal analyzing powers for p-wave neutron reso-
nances in compound nuclear systems are analyzed within the giant J=O resonance doorway model.
Assuming that the parity-nonconservation interaction can be approximated by a one-body operator of
the type cr p, we find that the observed fixed sign of the asymmetry arises naturally within the doorway
model. The J=0 giant resonance does not enhance the size of the constant asymmetry. The model
prediction for the average symmetry is shown to be similar to that obtained in the single-particle model.
In particular, if one retains only the first-order contribution to the analyzing power, a very large single-
particle matrix element (4p&&2~ V~„~5s, ~2) =75+50 eV is needed to reproduce the observed average
asymmetry. This large value is in contradiction with the value of 2 eV estimated from the experimental-
ly measured spreading width of the parity-violating interaction using the doorway model.

PACS number(s): 24.80.Dc, 25.40.Ny, 24. 10.—i

I. INTRODUCTION

It is now well established that neutron resonances in
compound nuclear (CN) systems exhibit large parity-
nonconserving (PNC) asymrnetries. In these systems
PNC analyzing powers P, measured [I] in polarized neu-
tron transmission experiments, can be as large as 10%.
However, extracting information on the weak interaction
from these measurements requires knowledge of the nu-
clear many-body levels involved. The very complex na-
ture of compound nuclear states precludes microscopic
descriptions of the wave functions in terms of shell-model
states, for example. On the other hand, statistical models
of the nucleus, in which the expansion coefficients of the
CN states in a particle-hole basis are assumed to be
Gaussian-distributed independent random variables, pro-
vide a good description of the properties of CN systems.
For this reason theoretical analyses of parity nonconser-
vation in CN systems have been developed mainly within
the statistical framework. It had been assumed that the
statistical model of the CN implied that the mean value
of the PNC asymmetry was zero [2], and that the sign of
the parity-violating longitudinal analyzing power, if mea-
sured for sufficiently many p-wave resonances, should be
found to have random sign. This result simply reflects
the fact that the parity-mixing matrix elements and neu-
tron reduced width amplitudes which determine the
value of P are themselves expected to be uncorrelated
random variables with mean zero. In strong contrast to
this expectation, a recent measurement [3] at LAMPF of
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PNC in p-wave neutron resonances in Th found that
all analyzing powers of greater than 20. statistical
significance have positive sign.

The purpose of this paper is to examine the correla-
tions between the neutron reduced width amplitudes and
the parity-mixing matrix elements which must be respon-
sible for the very nonrandom nature of the sign of P.
Some of the material presented here has appeared else-
where in briefer form [4,5]. However, we recapitulate
and expand it here for the purposes of a coherent presen-
tation of our new results. Recently a doorway state ap-
proach was introduced [4] to describe the parity violation
in compound nuclear states. In the framework of such an
approach phase correlations are inherent. Also recently,
a single-particle tnodel (which could be viewed as a spe-
cial case of the doorway model) was discussed, and an
analysis in the framework of this model showed [5] that
the common sign could be understood as arising from
contributions to the analyzing power from the s, &2

single-particle components of states approximately hen

distant in energy. The observed magnitude of the aver-
age asymmetry could then be explained if a single-
particle matrix element of the PNC interaction of about
50 eV is allowed. The role of such distant ( —5 MeV)
states is generally assumed in statistical models to be very
small because of the large difference in the energy denom-
inator compared to neighboring s-wave resonance where

E~ —E is typically —10 eV. The doorway state ap-
1/2 ~ 1 /2

proach [4] to parity mixing in compound states, which
also emphasizes the importance of distant states, is that
of the J =0 resonance model, where it is proposed that
the J =0 giant resonance acts as a doorway state for the
reaction. The doorway nature of this state arises because
the one-body approximation to the PNC interaction in-
volves the operator o'p, which is closely related to the
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operator o"r, which is responsible for the spin-Hip dipole
resonance in nuclei.

A microscopic shell-model calculation of the o"p and
neutron strength distributions contributing to the asym-
metry would be neither elucidative nor possible, as it
would require diagonalization of the strong Hamiltonian
in a basis containing at least 10 states —the average en-

ergy spacing between p-wave resonances is —10 eV. It is
the purpose of this work to demonstrate that sign corre-
lations in the longitudinal asymmetry coefficient emerge
naturally from the doorway state picture. (One should
keep in mind, however, that the type of contribution we
consider here is only one among a few processes that
might contribute to the value of the asymmetry. ) In or-
der to see how the doorway contributes to the sign corre-
lations, we must first summarize some of the main points
of the doorway state approach applied to the problem of
parity mixing in compound nuclear states.

the Hamiltonian. The physical dipole excitations have a
distribution of strength characterized by a spreading
width of a few MeV. (4) The centroids of the isovector,
as well as isoscalar spin-dipole states, are removed from
the states

~
m &, and only the tails of the distributions

reach the energy position of the state ~m &. (5) In the
case of an odd-even nucleus, the spin-dipole operator,
when acting on a J=—,

' state ~m &, excites a p&/z single-

particle (s.p. ) neutron to an s, /2 orbit. We emphasize,
however, that in addition the spin-dipole operator pro-
duces many J=0 particle-hole configurations to which
the p, /2 neutron couples. The doorway state ~D & is
then a linear combination of these two types of
configurations. (6) The action of the g, (cr r), operator is

to produce a coherent ~D & state which carries much
more strength than just a s.p. spin-dipole transition.
Therefore the matrix element which couples the state
~m& to ~D

II. THE DOORWAY STATE APPROACH ~=&m~v, „~D.&, (3)

In the doorway approach introduced in Ref. [4], it is
assumed that parity mixing in compound nuclear states is
determined by a one-body potential. This assumption is
supported by a number of theoretical studies [6]. The
one-body parity-violating, but time-reversal preserving,
potential in its simplest form can be written as

V „=[go(r)+g, (r)r, ]o".p,
where go(r) and g, (r) are functions of the radius for the
isoscalar and isovector parts of the parity-violating po-
tential and cr and p are the spin and momentum of the
nucleon.

If we deal now with a compound nuclear state
~
m &, we

will define as its doorway a state that couples strongly via
the one-body potential in Eq. (1) to state ~m &. We will
denote such a doorway as ~D &. It was pointed out [4]
that the J =0 spin-dipole state (i.e., L =1,S =1,J =0 )

is the proper doorway in the case of parity mixing. This
doorway may be written in the form

A

~D &= g(cr r), ~m &,
o i=1

A

~D &
= g (cr r);r3(i)~m &,

& i=1

(2a)

(2b)

where the sum is over all nucleons and the constants
1/N; are normalization factors. The state ~D & is a
spin-dipole state built on the compound state ~m &. It
could be both an isoscalar [Eq. (2a)] or isovector [Eq.
(2b)] type of excitation. The points we should emphasize
are the following: (1) Spin-dipole excitations with respect
to the ground state have been observed in several types of
experiments, and concentration of isovector spin-dipole
strength was established [7]. (2) The recent studies of gi-
ant resonances in "hot" nuclei have shown [8] that a gi-
ant dipole built on an excited state is a meaningful con-
cept up to very high excitation energies of the nucleus.
This lends support to our assumption concerning a
dipole-doorway state built on a compound nuclear state.
(3) The doorways ~D & are of course not eigenstates of

is considerably larger than the s.p. matrix element

..p.
=

&p 1/2 I vp. I&1/2 & (4)

III. SIGN CORRELATIONS IN P IN THE DOORWAY
APPROACH

We will now proceed and show that in the present
doorway state model, one expects a nonzero average
value of the longitudinal asymmetry coefficient which is
defined as

0+ CTP=
0 + +CT

where o.+ and 0. denote the resonance cross sections for
neutrons with positive and negative helicity, respectively.

In an experiment [3] performed recently the parity-
violating asymmetries P were measured in the scatter-
ing of 1 —400 eV neutrons from Th. The asymmetries
were measured for a large number of compound p»2 res-
onances in Th and found to be predominantly of posi-
tive sign. (In Ref. [5] the tendency of the asymmetries to
have a fixed sign is shown to result from a nonzero aver-
age value of PkR. ) We will refer to this as sign correla-
tions.

Under the assumption of narrow resonances, in the
first-order perturbation theory [9], the parity-violating
asymmetry coefficient P for a given state

~
m & is

&n/V, „/m& )„P =2+ E —E„y (6)

where the sum is, in principle, over all state ~n & having
opposite parity to that of the state ~m &. The quantities
y and y„are the neutron decay amplitudes of states
~m & and ~n &, respectively, and E and E„refer to the
energies of these states. In order to derive an expression
for P in our doorway state approach, we note, in the ab-
sence of 2h co correlations, the relation

(n/V „/m &=(n/D &(D /V „/m &,
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where (niD ) is the overlap of states in ) and iD ).
This relation is the essence of the doorway state hy-
pothesis. The parity-violating coupling of the compound
state im ) to the compound state in ) is via the coupling
of the admixture of iD ) in

i
n ). This last admixture is

the result of the parity-conserving strong-interaction cou-
pling of iD ) and in ).

As in the case of the El operator, 2hco configurations
in the wave function of the compound state

i
m ) are ex-

pected to lead to destructive interference in the resonance
region for the operator u r. The relative sign between
the (0 to 1)he and (2 to 1)hen single-particle matrix ele-
ments is opposite for o r and cr p. Thus, in the case of
the operator o. p, the 2h~ correlations generally lead to
constructive interference in the resonance and destructive
interference for low-lying states, and result in a somewhat
different distribution of strength than for the operator
o -r. Without a microscopic description of the compound
nucleus, it is difficult to calculate accurately the effects of
these 2h~ configurations on the PNC analyzing powers.
However, such an extension of the doorway model is un-

likely to change significantly the present estimate of the
expected sign correlations.

We will also make use of the relations

2r.F =
y (o p„,im)

&&qxg E —E„

V „=go"p . (13)

Using the definition of the doorway, we may write

(12)

The matrix elements involving iq ) have random phases
with respect to the matrix elements involving im ) and
in ), and therefore the various contributions in F have
fluctuating signs and F averages to zero. We will drop
this term in Eq. (11). The roles of the isoscalar and iso-
vector states in Eqs. (2a) and (2b) in determining the sign
correlations are exactly analogous, and so for the sake of
simplicity we will restrict our discussion to a single reso-
nance which includes both strengths No and N &. The en-

ergy of the "unified" doorway will be taken at an average
of both. Accordingly, in Eq. (1) we will approximate the
expression in the brackets by an isospin-independent con-
stant G, so that

y„=y, (O+s„, in &,

r.=r, &0'pl/2im»

(Sa)

(8b)

(0+s, /2iD ) =—(0+s, /2ig(o"r);im ),1
m (14)

where N represents the combined strength of No and N, .
Equation (14) can be expressed as

P
2r.

y '& 0 p l /2 I
m )

&0+s„,in & &niD &&D i V,„im )xT
(E E„)—(9)

We now decompose Eq. (9) by writing

&&D I+glq (10)

where g i q ) ( q i
is the projection operator for the

&m

part of the Hilbert space complementary to iD ).
Inserting Eq. (10) into (9) we find

where rp and r, are the single-particle decay amplitudes
for a p, &z and s»2 neutron, respectively. The symbols
(0 s, /2in ) and (0+p, /2im ) denote the overlaps of a
continuum s, /2 (p, /2) neutron s.p. state and the target in

the ground state with the state in ) (im )).
Using Eq. (7) and the definitions above, we may write

Eq. (6) in the form

1&O+s„, lD &= ~(0+sl/2lo' rlO+pl/2&

X(0 pl/2im)+6f (15)

(D i V~„im ) = ™g(mi+(o" r), g(o.r), im ) . (17)
I

where Af is again a fluctuating part which averages to
zero. Inserting Eq. (15) into Eq. (11) and dropping F~
and 6f, we obtain

2y, (D
i
V „im )(0+s,/2ia rio+p, /2)

m
rp N

&D in &i'
Xg E —E„

(16)

Note that the matrix element (D iV „im), with V „
given by Eq. (13), is closely related to the normalization
N which is the square root of the total o r strength for
the state im ). For harmonic-oscillator wave functions,
in fact, matrix elements of the operator o. -p are equal to
matrix elements of il coo. -r. One can therefore write

2r.
P

r, & 0 pll/2m)

&O+s„,iD )(D in)'(D iV im) +F
(D i V „im ) =iMcogX,

and Eq. (16) becomes

(18)

The matrix element in Eq. (17) is the total spin-dipole
strength and therefore equal to N . We find that

where

2y, i(D in ) i'
sl/2i Vp io pl/2)X

rp m pl

(19)
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The distribution of strength I(D In ) I peaks around the

spin-dipole giant resonance, which is far removed from
the state Im ). Assuming a monotonically decreasing dis-

tribution in the tail, one finds that the sum in Eq. (19)
has a definite sign independent of

I
m ) . The other quanti-

ties appearing in Eq. (19) are single-particle quantities in-

dependent, of course, of Im ) and having a definite sign.
We find therefore that P has a axed sign for all Im )
states. Note that the asymmetry arising from the J =0
resonance is independent of X, i.e., independent of the to-
tal cr p strength in the resonance. This result reflects the
fact that the very large value of the collective PNC ma-
trix elements is compensated by the small s»2 neutron re-

duced width of the J =0 resonance. Consequently, the
final result only depends on the single-particle p»2 —s»z
matrix element. Secondly, P is independent of
(0+p, /zIm ) and of the detailed structure of the Im )
state. We note that the predictions of the doorway model
are completely analogous with those of the single-particle
model [4].

lower in energy is several orders of magnitude smaller
than to the dipole 1hco higher in energy. Therefore in the
framework of the collective doorway state approach it
may be neglected. However, as pointed out in [5], parity
mixing from low-lying s.p. bound states can produce a
contribution to the average analyzing power of equal
magnitude. This contribution, which involves the 4s or-
bit, adds constructively [5], giving an approximate factor
of 2 in Eq. (20).

The Th data show an average asymmetry of 8.0+6 o

for a 1-eV neutron [3]. If we treat the single-particle ma-

trix element of V „as a parameter, we find that the
J=0 doorway model requires a ( V „)=75+50 eV.
(The error bars are only due to the experimental uncer-
tainty of the above asymmetry coefficient. ) This value is
clearly quite large, and would have consequences in other
PNC observables. For example, in the framework of the
same doorway state approach, the PNC spreading width
of the observed resonance (1 ~ „) was estimated [4]. It is

given by

IV. AN ESTIAMTE OF THE PARITY-VIOLATING
MATRIX ELEMENT

&mIV,„ID )

E —Em D
m

(22)

We use now the measured value of P and the door-
way state contribution to evaluate the one-body parity-
violating matrix element in Eq. (19).

Noting that the total strength gI(D In ) I
=1 and as-

suming a smooth distribution, we may write Eq. (19) in
the form

2y, &0+s]/pl I'„I0+pf/2)
P

E —ED
(20)

where ED is an energy representing the average position

of the isoscalar and isovector L =1 spin-flip strength
built on the state

I
m ). The ratio y, /y~ for low energies

can be approximated by

Iy, I

(21)

where k is the neutron wave number. The value of
(kR )

' for the experiments discussed here is typically of
the order 10 . For heavy nuclei the spin-flip strength dis-
tribution can be approximated by a Lorentzian distribu-
tion. The spin-flip particle-hole interaction is repulsive,
so the centroids of both the isoscalar and isovector
J=O resonances are shifted above 1hco in energy.
However, to date there is no direct experimental inforrna-
tion on their expected excitation energies, although a
good guess can be made from the observed position of the
total isovector spin-dipole strength and from theoretical
considerations. As discussed in [4], a reasonable estimate
of the parity-mixing matrix elements is obtained by re-
placing the two doorway states by a single resonance of a
width of 3 MeV lying at about 1hco above the p-wave
state.

Thus far we have considered the —,
' spin-flip resonance

1hco higher in energy. The transition strength from a
given compound state Im ) to a spin-flip dipole state lb'

where I D~ is the spreading width of the 0 doorway.

Using 1hcu=6. 7 MeV for the denominator, a typical
number for the spreading width of a giant dipole of
I'D~ =3 MeV, and the value 5X10 eV for I ~ ~„(as de-

duced by Bowman et al. in Ref. [1]),one obtains for the
PNC matrix element in the numerator of Eq. (22) a value
of about 2 eV, in clear disagreement with the estimate
above. One could question the use of the value I D =3
MeV for the spin-dipole resonance and, in particular, of
its J=0 component. It cannot be ruled out that this
width for the 0 spin mode is considerably smaller, say,
in the range of few hundred keV. Then the estimate
based on Eq. (22) would lead to a larger PNC matrix ele-
ment of the order of 5 eV, still smaller than the estimate
deduced from Eq. (20).

Note also that the matrix element in Eq. (22), because
of the collectivity of the doorway, should be enhanced
with respect to the single-particle PNC matrix element
entering Eq. (20). The corresponding single-particle PNC
matrix element should be reduced by a factor 1/N',
where N' is the square root of the collectivity coefficient
of the doorway. For heavy nuclei, this factor is of the or-
der of 10. Therefore we should expect the PNC s.p. ma-
trix elements to be around 0.2 eV, two orders of rnagni-
tude smaller than the one obtained from Eq. (20). The
source of the discrepancy giving rise to a large effective
PNC matrix element resulting from Eq. (20) may come
from the reaction theory employed in the calculation of
the decay amplitude y entering the expression from P
It is well known from the study of decay amplitudes of
isobaric analog resonances [10,11] that the kind of contri-
bution considered here (and termed the "compound am-
plitude" in Ref. [10],p. 81) is only one of several process-
es entering the calculation of an escape (decay) ampli-
tude, and is actually not the dominant one [11]. Direct
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and channel coupling processes must also be considered.
On these lines we note that very recently a mechanism
proposed by Weidenmuller [12] suggests that an enhance-
ment arising from a direct channel coupling between the
p&&2 and s, &2 channels may contribute to the average
asymmetry.

V. SUMMARY

the single p-article f5J and the present model, to reproduce
the observed average asymmetry requires anomalously
large PNC single-particle matrix elements. These large
single-particle matrix elements are in contradiction with
the value of 2 eV deduced from the experimentally mea
sured parity-violating spreading width using the doorway
state approach.

We have shown that in the framework of a doorway
state model one obtains an average asymmetry P which
is fixed in sign and which is independent of the details of
the p-wave resonance.

As opposed to the calculation of the spreading width,
where the collectivity of the doorway plays a role, the
physics determining the average asymmetry in the door-
way model [4] and the single-particle model [5] is essen-
tially the same. In both cases the sum over all s-wave
states in Eq. (6) is dominated by the state consuming
most of the cr p or s, &2 neutron strength. In both models,
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