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Nan-Wei Cao, C. M. Shakin, and Wei-Dong Sun
Department ofPhysics and Center for Nuclear Theory, Brooklyn College of the City University ofNew York,

Brooklyn, New York 11210
(Received 20 July 1992)

In spite of the apparent limitations of the model, in recent years there have been many applications of
the Nambu —Jona-Lasinio (NJL) model in the study of hadron structure and in the study of the behavior
of nuclear matter at finite temperature and density. A number of researchers have studied a generalized

SU(3) version of the NJL model. For example, Vogl, Lutz, Klimt, and Weise [Nucl. Phys. AS16 469
(1990)] have performed extensive calculations that include a calculation of a scalar form factor of a con-

stituent quark, F,(q ), and a calculation of a quark sigma term crq. (In their work, the latter quantity is

related to the nucleon sigma term cr& as in a constituent quark model: o.
N =3o.q. ) These calculations

are made in what may be termed a sigma-dominance approximation. In the work reported here, we re-

view the important role played by the nucleon sigma term in understanding the behavior of the quark
condensate in the presence of matter. We make use of the original SU(2) version of the NJL model to
study how various quark properties are modified when we take into account the dressing of the constitu-
ent quarks by the pion, the Goldstone boson of the model. We calculate the quark self-energy arising

from emission and absorption of a pion and also show how the calculation of the scalar form factor of
the quark and o.

q
are modified due to the coupling of the quark to the pion. The correction terms con-

sidered here serve to reduce the value of o.
q by a small amount relative to the value obtained in the sim-

plest version of the sigma dominance model. For example, for a Euclidean momentum cutoff, A=1050
MeV, the uncorrected result is cr&=54.6 MeV. That value is then reduced to cr&=51.5 MeV, if the
corrections due to the pion "dressing" are included. It is also found that the residue at the quasiparticle

pole of the quark propagator Z is about 0.86 when the coupling to the pion field is taken into account.

PACS number(s): 24.85.+p

I. INTRODUCTION

In this work we calculate corrections to the properties
of quarks of the Nambu —Jona-Lasinio (NJL) model that
arise when the dressing of quarks by the pion is taken
into account. Part of our motivation is to understand
how the scalar form factor of a nucleon is to be calculat-
ed, since that form factor (at zero-momentum transfer)
serves to fix the value of the nucleon sigma term, 0.&.
That quantity governs the behavior of the quark conden-
sate in nuclear matter and therefore appears as a funda-
mental ingredient in our understanding of field-theoretic
models of nuclear structure. In a recent study of the be-
havior of quark condensates in matter [1] it was found
useful to define a condensate order parameter cr such that

Here f* is the value of the pion decay constant in matter.
Making use of the Gell-Mann-Oakes-Renner relation in
nuclear matter [2,3], we had, to first order in the baryon
density,

m f o = —m (NM~qq~NM) (1.2)

= —m,'(&01qqI0&+ &NIqq IN &p~) .

Here, (0(qq(0) =(0(uu+dd)0) is the vacuum value of
the condensate, m is the average current quark mass of

or

0 ~N

f m'f' (1.5)

Thus, we see that the rate of change of the condensate or-
der parameter with density is governed by the nucleon
sigma term o.iv=m (N~qq ~N). A recent analysis gives
o ~ =45+8 MeV [6], although somewhat larger error esti-
mates have also been given. [We note that Eq. (1.5) is a
model-independent result valid at low density [3—5].
The work of Ref. [4] supports the use of this relation at
nuclear matter densities. ]

One may make contact with relativistic models of nu-
clear matter by identifying the field o of Eq. (1.4) with
the sigma field of the relativistic models [7—9]

~= —(G.~~&m'. )pi- (1.6)

[In Eq. (1.6) we have neglected the small difference be-
tween the nucleon baryon and scalar densities, pz and p&.
Further discussion of the relation between Eqs. (1.5) and
(1.6) may be found in Refs. [1] and [3].] If one accepts
that identification, it is clear that knowledge of the value

the up and down quarks, and p~ is the baryon density.
Further, (N

~ qq ~
N ) is the value of the scalar form factor

of the nucleon at zero-momentum transfer. With the
definition o =f +o, Eq. (1.3) yields [3—5]

(1.4)
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u( 'p, s)Q( ,p)sF, (( p—p') ) . (1.7)

Here s and ~ are spin and isospin indices, respectively,
and the u (p, s) are Dirac spinors, with u(p, s)u (p, s)=1.
The normalization is such that F,(0)=1, if only the first
diagram in Fig. 1(a) is considered. Diagrams of the type

+ ~ ~ ~

(() (g)

FIG. 1. Calculations of the scalar form factor of a constitu-
ent quark. (a) Here the solid dot represents the operator
u (0)u (0)+d(0)d (0). This series of terms defines a sigma-
dominance approximation in which the scalar form factor is
given by Fs(0)=1+Ji =[1 Gsjss(01) '. (See text). Single
lines denote a quark propagator. (b) The sigma dominance
model for the form factor as in (a). (c) A vertex correction
where the wavy line denotes a pion. This term has the value
( 1+J, )J, in the notation of this work. (d) and (e) Wave-
function-renormalization corrections equal to ( 1+J1 )(J3 +J4 ).
(f) Correction to the scalar form factor equal to (1+J&)(J&).
The wavy line denotes a pion. (g) Correction to the scalar form
factor of value (1+J, )(J6). This appears as a self-energy
correction to the sigma propagator in the sigma-dominance
model.

of o.~ is important for field-theoretic models of nuclear
structure. In this work we report the results of a calcula-
tion of cr making use of the NJL model [10]. We then
follow the work of Ref. [11]and set o 1v

=3o. .
It is of interest to note that in lattice simulations of

QCD it is found that the sea and valence quarks make
comparable contributions to o 1v [12]. A somewhat analo-
gous situation emerges when one studies the"dressing" of
bare quarks by mesonic excitations in quark models of
nucleon structure. In such models there is a two-step
process to be considered. For example, we may use the
NJL model and start with current quarks that have small
masses (of the order of several MeV). One then solves the
gap equation to determine a constituent quark mass.
This massive quark can now be "dressed" by coupling to
low-lying excitations such as the pion (the Goldstone bo-
son) or the sigma meson of the NJL model. Other au-
thors [4,11] have concentrated on the quark's coupling to
the sigma field when calculating the scalar form factor,
for example. [See Fig. 1(a)]. The approximation used
may be said to define a "sigma-dominance" model for the
evaluation of o. . Our calculation will be seen to contain
additional elements. (See Fig. 1.)

We may use the matrix element of the quark scalar
density taken between quarks states to define a form fac-
tor [10],

(p's'r= —,
' ~u(0)u(0)+d(0)d(0)~p, s, r= —,')

+ ~ ~ ~

+ ~ ~ ~

+ ~ ~ ~

FIG. 2. The evaluation of the process shown in Fig. 1(Q is
represented in term of quark propagators. The representation
in terms of a pion propagator is an approximation to the sum of
diagrams on the right-hand side.

shown in Fig. 1(a) were considered in Ref. [11]and may
be said to stress the sigma-dominance aspect of the calcu-
lation of the quark scalar form factor, F, (q ). Our main
concern here is to go beyond the sigma-dominance calcu-
lation and to consider the role of the diagrams Figs.
1(c)—1(g). Here, Fig. 1(b) represents the diagrams
summed in Fig. 1(a). Figure 1(c) represents a vertex
correction which may be seen to be largely canceled by
the wave-function renormalization diagrams, Figs. 1(d)
and 1(e). Figures 1(f) and 1(g) are further corrections to
the sigma-domina. nce result due to the presence of the
pion "cloud. " Note that Fig. 1(g) appears as a self-energy
correction to the sigma propagator in the sigma-
dominance model. The approximation used in Figs. 1(f),
for example, can be somewhat better understood by refer-
ence to Fig. 2, where we show the process of Fig. 1(f)
written out in terms of quark propagators. The wavy line
(a pion propagator) denotes an approximation to the
chain of quark-antiquark bubbles in the channel with the
quantum numbers of the pion, etc. We remark at this
point that the diagrams that we could draw in which the
pion propagator is replaced by a sigma propagator are
significantly smaller than the corresponding diagrams
that contain the pion propagator (because of the small
mass of the pion) and we drop such diagrams from fur-
ther consideration.

The organization of our work is as follows. In Sec. II,
we review the generation of mass via the gap equation of
the NJL model. We go on to calculate corrections to the
quark self-energy due to emission and absorption of
pions. We also review the calculation of f in the NJL
model and discuss the quark-quark interaction in terms
of meson exchange. In Sec. III, we describe the calcula-
tion of the sigma term o. of a constituent quark. Finally,
Sec. IV contains some further discussion and conclusions.

II. PROPERTIES OF "DRESSED"QUARKS
OF THE NAMBU- JONA-LASINIO MODEL

A. The NJL MODEL

For completeness, we review some well-known features
of the Nambu —Jona-Lasinio model. The Lagrangian is
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TABLE I. Results of calculations for the Nambu —Jona-Lasinio model. Here A, mq, and Gs
are parameters of the model adjusted so that f =93 Me V and m = 138 MeV. Here
+s(0)= [1 Gs~ss(0) ]

A (MeV)

mq (MCV)
mcon+m0

q

G, (GeV-')
m (MeV)

1 —GsJss(0
1 GsJap(0

gaqq

g mqqf (MeV)
—2m~(0~uu~0) (MeV )

F (0)

8.0
390
16.5
787
0.67
0.021
3.91
3.79
93.0

1.84 X 10
1.49

850

7.3
325
12.7
632
0.51
0.021
3.17
3.39
93.0

1.82X10'
1.96

6.6
295
10.6
592
0.42
0.021
2.97
3.10
93.0

1.79X10'
2.38

5.5
260
7.91
520
0.32
0.021
2.58
2.68
93.0

1.76X10'
3.12

1050

5.1

245
6.97
490
0.28
0.021
2.44
2.51
93.0

1.76X 10'
3.57

cr
q (MeV)

~ (MeV)
11.9
35.8

14.3
42.9

15.7
47.1

17.2
51.5

18.2
54.6

X(x)=q(i' m)q—+(G&/2)[(qq) +(qiysrq) ] . (2.1)

In the limit of zero current quark mass (m~ =0), the con-
stituent mass m"" is given by

G
4H

S A2 ( m con)2in
n, nf

A +(m"")
q

( m con )2
q

(2.5a)

m,-"=—G, &o~qq~o),

while the vacuum condensate is

(O~qq~0) =(O~uu+dd~O)

d4k=( —1)n,nf Tr
(2m. ) k —m ""+ie

(2.2)

(2.3)
4 2 m con

Gs= q

ng nf mq
A —m ln

In the case that m~%0, we have

A+m
2

mq

(2.5b)

(2.4)

Here, the number of colors is n, =3 and the number of
flavors is nf =2. Integrals such as that in Eq. (2.4) are re-
gulated by passing to a Euclidean momentum space
where the maximum value of the momentum is A. We
can solve for G& in terms of A and mq'",

where m —=m""+m . (See Table I.) In Figs. 3 and Owe

show G& and (0~uu 0) as functions of m"" for m~ =0.
Note that a typical value of the condensate obtained from
QCD sum-rule studies is

(O~uu ~0) = (O~dd ~0) =( —240+25 MeV)

Now we follow the authors of Refs. [4] and [11] and
define a quark sigma term for an up quark, for example,

5

4-
CU)

Q) 3
LA

C) 2

0
0

I

0.2 0.4 0.6 0.8
mq'"(GeV)

I

1.0

0

C)
I

O

-2
O
'V

-3

mq '(GeV)
0.2 0.4 0.6 0.8

~ \~ ~ ~ ~

1.0

FIG. 3. The value of the coupling constant Gs is shown as a
function of the constituent quark mass for the case mq =0. (a)
A=0. 8 GeV, (b) A=0.9 GeV, (c) A=1.0 GeV.

FIG. 4. The value of the quark condensate (0~ M (0)u (0)~0) is
given as a function of the constituent quark mass for the case
m =0. (a) A=0. 8 GeV, (b) A=0.9 GeV, (c) A=1.0GeV.
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-jy = k
In the NJL model, the quark propagator is

iS()(p) =
gf (—m""+m )+iE

(2.8)

-j5x, = pk We now consider a more general form of the self-energy
so that

FIG. 5. (a) Nonlinear equation for the quark self-energy.
The double line denotes the propagator iS(k) =i(k' —X+ie)
Here mq =0. Expressions for finite values of mq are given in the
text. (b) Self-energy correction for the quark propagator calcu-
lated with the value of mq"" determined in (a). Here the wavy
line denotes a pion. [See Eqs. (2.21) and (2.22).]

iS (p) =
gf

—[X(p)+m ]+i@
(2.9)

Here X(p) is to be obtained by considering both the
mean-field vacuum contribution and the emission and ab-
sorption of a pion. (See Fig. 5.) One might attempt to
solve an equation of the form

oq=m (0p, s, —,'~qq~p, s, —,') (2.6)

(2.7)

d k—i X(p) =( —1)iGznf n, Tr
(2~) it' —m, +i e

d k 1

(2~)' 'P k' —m,—+is

The authors of Refs. [4] and [11] set cr~=3t7, as is ap-
propriate in a constituent quark model of nucleon struc-
ture. We will use the same definition here, although
corrections to that relation may be considered.

B. The quark self-energy

In this subsection we discuss corrections to the quark
propagator due to the emission and absorption of a pion.
We will calculate these corrections using perturbation
theory, although much more complex calculations may
be envisioned.

1
Xys

k —m +i@
(2.10)

(Here the quantities with a tilde refer to the NJL model
extended to include the effects of the pion dressing of the
quark propagator. ) We have not used Eq. (2.10), since
there are a number of problems associated with such an
equation. For example, in the absence of the second term
on the right-hand side in Eq. (2.10) (that is, for the stan-
dard gap equation) there is a close relation between the

gap equation and the Bethe-Salpeter equation that yields
the pion mass. That relation is lost, if one tries to solve

TABLE II. Results obtained for the NJL model including effects of pion dressing of the quark. Here
quantities without a tilde are unchanged from Table I. In this calculation m is fixed to be 138 MeV.

A (MeV)

mq (MeV)

mq (MeV)
Gs (GeV )

m (MeV)
1 —GsJss(0)

g'~rqq

g'n.
qqf (MeV)

—2m, (O~uu~0) (MeV )

m f (MeV )

8.0
470
16.5
969

0.825
0.021
4.33
3.79
95.0

1.94x10'
1.72x 10'

850

7.3
388
12.7
793
0.64
0.021
3.53
3.39
97.4

1.97 X 10
1.81x 10'

6.6
349
10.6
714
0.54
0.021
3.16
3.10
98.8

1.97x10'
1.86x10'

5.5
302
7.91
616
0.40
0.021
2.74
2.68
99.7

1.95 x 10'
1.90X 10

1050

5.1

281
6.97
547
0.33
0.021
2.51
2.51
99.2

1.94x10'
1 ~ 88x 10

1+Jl
J2

J3+J4
J~
J6

1.21 1.56 1.85
0.19

—0.18
—0.126

0.32

2.50
0.17

—0.16
—0.076

0.20

3.03
0.16

—0.15
—0.058

0.16

F,(0)
~, (MeV)
~„(MeV)

2.23
14.7
44. 1

2.84
15.6
46.8

3.37
17.2
51.5
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Eq. (2.10). Somehow Eq. (2.10) would have to be related
to an equation that determines the pion mass, such that
we would have m =0, if m =0. Since we have not be
able to reformulate the theory such that Eq. (2.10) could
be used, we chose a perturbative approach. In the per-
turbative approach, we first solve the standard gap equa-
tion, as well as the Bethe-Salpeter equation, with m %0.
In that way, we obtain a finite value for the pion mass.

I

Once the pion is made massive through explicit symme-
try braking (m«%0), we calculate various corrections
containing pion loops. This procedure has some
justification, a posteriori, in that the e8'ects we calculate
using perturbation theory are small. (See Tables I and
II.)

We now consider a perturbative correction to the
quark mass and write

d k—iX(p)=( —1)iGsnfn, i 4
Tr

(2«r)

l

k =(m""+mq )+i e

d4k 1 1

(2m. ) II —g (m"—"+mq )+i e k —m „+is
= —i [mq'"+5X(p) ],

(2.11)

(2.12)

where mq'" is the constituent mass obtained in the
mean-field approximation. Here, —i5X(p) is given by
the second term in Eq. (2.11). It is also useful to define
the functions A (p ) and B (p ) such that

Here, m =m + A(m ) and

A(m «)
—A(p )

X (p')=—
1 B(p }— (2.18)

5X(p) = A (p')+B (p')P

=(P —m )B(p )+A(p ) .

(2.13)

(2.14)
(See Fig. 6). We then have, with Z (p )—:[1—B(p ) ]

Then, with m =m""+m, Z(p')
S(p) =

2
gf

—
mq Xf(p —}+is

(2.19)

is(p) =
[gf

—m —A(p )]—(gf
—mq)B(p )

l

(gf
—

mq ) [1 B(p ) ]——[ A (p ) —A (m ) ]

i[1 B(p )]-
mq

—Xf—(p )

(2.15)

(2.16)

(2.17)

Now, near the pole (P =m ), we have

Z(m )
s(p)i

since Xf(m q )=0. (See Fig. 6.}
We now turn to the evaluation of 5X(p). We have

(2.20)

d k P i~™q
i5X(p ) =3g i y, y,

(2«r) (p —k) mq+ie —k —m +ie
(2.21)

d4k (k —P+mq)
3g ~qq dx

(2n. ) [[(p—k) —m ]x+(1—x)(k —m )]
(2.22)

3g ~qq A +E
A(p )= m f dxx ln

16~2 E

and

A

A+E
(2.23)

B(p')= ", f dx(x —1) ln
16~2 p E

with

A

A+E
(2.24)

where we have used a Feynman parametrization of the
integral. We find

E =p x —(p —mq)+m„(1 —x) . (2.25)

In Figs. 7 and 8 we show A (p ) and B (p ) for various
values of A. Figure 9 exhibits Z (p ) = [1—B(p )] ' as a
function of p for A=1 GeV. For the results shown in
Figs. 7—9 we have put m =312 MeV, m =140 MeV,
and g„=3.0. The value of B(p } at the pole is
B(m )= —0. 16, which yields Z(m )=0.86. (The value
of B at the pole will be needed in Sec. III.) Values of m

are given in Table II, and by comparing Tables I and II,
we see that m is shifted upward from m =m""+m by
about 40 MeV for A-1 GeV. We see that the inclusion
of pion "dressing" leads to values of m that are similar
to those used in the constituent quark model, if 900
MeV & A & 1000 MeV. (See Table II.)
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10

0)
Q)

—-10
OJ

CL

-20

-30

0.5

quark-antiquark scattering amplitude M is proportional
to Gs/[1 —GsJss(q )], while in the case qq pairs with

pion quantum numbers are exchanged, the amplitude is
proportional to Gs/[1 —GsJp~(q )]. [We have used the
notation of Ref. [4] for the quantities Jss(q ) and

J~p(q ).] Inspection of Fig. 10 leads to the expression

d kJ (q )=(—1)inn f Tr S k++ S k—
(2~)4

(2.26)

FIG. 6. The quantity Xf(p ) is shown as a function of p .
Note that Xf(m )=0. Here A=1 GeV, m =0, m""=312
MeV, and g~qq 3.

where

=4in, nf f dx [K,(A )+2AK2( A)],
0

K, (A)= — A —A ln
l A +A

16m A

(2.27)

(2.28)

C. The quark-quark interaction E2(A)=
2

ln
16m.

A+A
A

A

A +A
(2.29)

We note that the quarks of the NJL model may in-
teract by exchanging a number of qq pairs, as shown in
Fig. 10. In the scalar-isoscalar channel we see that the

I

and A =m~ —x(1—x)q . In the case of the pion, we

have

d k
J~~(q )=( —1)i n, nf f Tr y5S k++ y~S k— (2.30)

=4in, nf f dx[E, (A)+(2A —2m~)K2(A)],
0

(2.31)

with K, , I(:2, and A as defined as above. The quantities
[1—Gs Jss(q )] and [1—Gs J&~(q )] are shown in Figs.
11 and 12. Note that [1—GsJss(q )] has a zero at

q =m and the zero of [1—GsJ~~(q )] is at q =m
It is of interest to describe the interaction of a qq or a

qq pair as proceeding through the interchange of pion or
sigma fields. Therefore, we introduce momentum-
dependent coupling parameters, g (q ) and g (q ):

and

g'.qq(q')

q
—m

Gs

1 Gs JPI, (q

s
q' —m' 1 GsJss(q )

(2.32)

(2.33)

We further define the coupling constants at q =0:

100

80—)
Q)

60—
OJ

CL

40—

-0.1—

CU—-0.2—
CQ

-0.3

20
-1.5 -1.0 -0.5

p (GeV )

0.5 -1.5 -1.0 -0.5

p (GeV )

0.5

FIG. 7. The figure represents 2 (p ) for various values of P..
Here mq =0, m =312 MeV, and g qq=3. (a) A=0. 9 GeV, (b)
A = 1.0 GeV, (c) A = 1.1 GeV, (d) A = 1 ~ 2 GeV.

FIG. 8. The figure represents B(p ) for various values of A.
Here mq=0, mq=312 MeV, and g =3. (a) A=0. 9 GeV, (b)
A=1.0 GeV, (c) A=1. 1 GeV, (d) A=1.2 GeV.
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1.0 0.6

0.9—

0.8—

~ 0.4
(0
(D

(0

0.2

-1.5
0.7 I I I i I I I I I I I I I I ~ I I ~

-1.0 -0.5 0 0.5
p (GeV )

0
-0.4 -0.3 -0.2 -0.1 0

q (GeV )

0.1 0.2 0.3

FIG. 9. The quantity Z(p2)=[1 —B{p )] ' is shown as a
function of p . Here A=1 GeV, m =0, m""=312 MeV, and

gmqq
=3

FIG. 11. The quantity 1 —GsJsz(q ) is shown as a function
of q . Here A=1 GeV, m =m""+m =258 MeV, m =525
MeV, and m~~=5. 5 MeV. Note that [1—GzzJzz{m' )]=0.

Gs

1 —G,J„(o)

1/2

(2.34)

and

Gs

1 —G,J„(o)

' 1/2

(2.35)

+ ~ ~ ~

Values of the quantities defined in Eqs. (2.34) and (2.35)
are to be found in Table I. Inspection of Figs. 11 and 12
show that to a good approximation g (q ) may be re-
placed by g ~

=g (0). The situation is somewhat

different in the case of the scalar channel where g qz(q )

has some dependence on q . [It is worth noting that, if
we consider the T matrix for scalar exchange in the vicin-
ity of q =0, the corresponding force would be of some-
what shorter range than that obtained from (m ) '.]

Once we have calculated g, we can ask how one is
calculate the sigma field in nuclear matter. In Sec. I we
have presented two ways such a calculation may be per-
formed that are represented by Eqs. (1.4) and (1.6). For
example, with o~=50 MeV, Eq. (1.4) yields o.= —37
MeV, while with G &N=9.45 and m =550 MeV, Eq.
(1.6) yields o = —41 MeV. (The values used here for
G Nz and m are typical of values determined in applica-
tions of the one-boson-exchange model of nuclear forces. }

We now consider a third calculation that makes use of
g . In describing how g is to be used, it is important
to avoid double counting. By study of a diagrammatic
representation of the processes contributing to sigma ex-
change, one sees that the simplest calculation would have
three valence quarks in the nucleon as the source of the
sigma field. Thus, we would have

o = —(g Im )(Niqq~IN)„, ps (2.36)

with (NqqN)„I-—3. Then using g ~~
=2.75, which is

1.0

iGs

(c)

+ ~ ~ ~

2
+ iG& "ss (q ) iG& + ~ ~ ~

I

(d)

0.5
CU

D
LL
CL

0
CO

(3
I

-0.5

FIG. 10. (a) The equation determining the quark-antiquark
scattering matrix in the NJL model is shown. (b) Quark-
antiquark scattering amplitude approximated by an s-channel
pole (pion). (c) Quark-antiquark scattering amplitude approxi-
mated by a sigma s-channel pole. (d) Consideration of the first
two terms of the series in (a) allow us to identify the quantity
Jsq{q ). (We use the notation of Refs. [4] and [10].)

-1.0 I I I I I I I I I I I I

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
q (GeV )

FIG. 12. The quantity [1—Gz Jp~(q')] is shown as a function
of q . Here A=1 GeV, m~ =m,""+mq =258 MeV, and
m =138MeV. Note that [1—GzJPP(m2 )]=0.



2542 NAN-WEI CAO, C. M. SHAKIN, AND WEI-DONG SUN 46

the value for A = 1 GeV given in Table II, we find
0.= —36 MeV. That is in general agreement with the
values of —37 and —47 MeV quoted above. (The use of
( N

~ qq ~
N )„„=3 is in correspondence with those applica-

tions made using the constituent quark model, where one

sets G zN =3g
qq ). Note that the values of o z calculat-

ed for 900 & A & 1050 MeV (see Table I) are in general ac-
cord with the parametrization of the sigma field in Dirac
phenomenology [9], relativistic Brueckner Hartree-Fock
[7] and the one-boson-exchange model of nuclear forces.

We calculate f using the relation

D. Calculation of f

d kf p"= iN—+n, /2f Tr y y"S k++ y S k —+
(2m) 2 2

(2.37)

where p" is the momentum of the pion, N is a normalization constant, and n, =3. (See Fig. 13.) This expression may be
evaluated in the point rest frame, where p"=(m, 0,0,0), to obtain

d4k 1f„= 4iNm—Qn, /2
(2m) [(k+p/2) —m ][(k —p/2) —m ]

(2.38)

with

mq A'+ A=N Qn, /2f dx ln
4~ '

o A

A(p )=mq —x(1—x)p

A (m„)=m —x (1—x)m

A

A +A
(2.39)

(2.40a)

(2.40b)

The normalization parameter N is obtained by evaluating a form factor (see Fig. 13). After evaluating the isospin fac-
tors, we have

d4k
7(q )(p'+p)"= N~ f Tr[S(k —p/2)y~S(k+p/2)y"S(k+q+p/2)y ] .

(2m. )

Setting V(0)=1, we obtain

1 . dk 1 2 2 p 2pk 2 2 3 z=i — 3m —3k + —p k + m —k +—p +p k
(2~)4 D 4 p2 ~ 4

L

where, with I =k +p /2, D = ( i —m ) [(p —I )
—m ]. Finally,

(2.41)

(2.42)

1

Q2
1 1

dx x m (2—x)+p x(1—x) — 2—A 3x
8~' o A (A'+ A)' 2

A +A
A

A + A (4—3x)
A

(2.43)

where A (m „)is given in Eq. (2 40b).

III. QUARK SCALAR FORM FACTOR
AT ZERO-MOMENTUM TRANSFER

In this section we describe the calculation of the scalar
form factor of a constituent quark at zero-momentum
transfer. We denote that quantity as Fs(0) and write

Fs(0)=(1+J, )(1+J2+J3+J4+J)+J6) . (3.1)

Here, (1+J&)=[1—GsJss(0}] '. The other terms in
Eq. (3.1}will be defined below.

A. A signa-dominance model

The quantity (1+J, ) represents the contribution to
Fs(0) of the sum of the diagrams shown in Fig. 1(a). We

may define a sigma-dominance model by relating
[1—GsJss(q )] to the propagator for a sigma meson.
Thus we have, using Eq. (2.32),

1 g~qq(q )

1 —GsJss(q') Gs g m +lE

x[—ig (q )] . (3.2)

from which we can infer how to obtain matnx elements
of the quark scalar density from Feynman diagrams con-
taining a sigma propagator. [See Fig. 1(a), for example. ]
Equation (3.2) is consistent with the observation that in a
bosonization of the NJL model we would introduce the
field
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k + p/2 with

A +AE,(A)= —
q

A —Aln
16m A

(3.10)

k - p/2
A +AEz(A)= ln

16m' A

A

A +A
(3.11)

k+p

k - p/2

- p/2

and A=mq —x(1—x)q.
If we neglect pion dressing, the results of the applica-

tion of the sigma-dominance model are to be found in
Table I, with m to be replaced by m in Eqs.
(3.8}—(3.11). If we include pion dressing m ~m
Values for m and (1+J&) may be found in Table III.
[The values of(1+J, ) of Table II may be compared with
the values given for Fs(0) in Table I.]

Gs
(uu+dd) .

g crqq

In vacuum, Eq. (3.3) would read

(3.3)

FIG. 13. (a) Calculation of the pion decay constant. Here the
double line denotes an on-mass-shell pion. (b) Calculation of a
pion form factor that serves to determine the normalization
constant in the pion vertex function for m ~q+q.

B. Pion dressing of a constituent quark

We now go beyond sigma-dominance model and con-
sider the diagrams in Figs. 1(c)—1(0. The contribution of
Fig. 1(c) is (1+J&)Jz, while that of Figs. 1(d) and 1(e) are
(1+J&)J3 and (1+J&)J4. Note that these three contribu-
tions to Fs(0) largely cancel. (See Table II.) The contri-
bution of Fig. 1(Q is equal to (1+J,)J5 and that of Fig.
1(g) is (1+J,)J6. We will consider the calculation of
these various contributions to Fs(0) in order

g.„f.= G&ol —+ddl». (3.4) 1. Calculation ofJt
The right-hand side of Eq. (3.4) was used to define the
constituent mass m"". With that in mind, we see that we
obtain the Goldberger-Treiman relation mq "=g

qq f
from Eq. (3.4). Recalling that cr =f +o, we obtain from
Eq. (3.3) the mean-field relation in nuclear matter

(Gslg qq)&Nluu—+dd lN&ps . (3.5)

If we recall Eq. (1.4), we see that we also have the relation

Gs
0 2mg m f (3.6}

among the parameters of the model if the Gell-Mann-
Oakes-Renner relation is valid.

We now consider the calculation of (1+J,). As noted
above

We here are concerned with the evaluation of the dia-
gram of Fig. 1(c). We have

J& ——
iIzg&qq d k u p, s

X [y5D(k)y'S(p+k)S(p+k)]

Xu(p, s), (3.12)

Iz =Tr

=3.
We have

1+w3

2
(3.13a)

(3.13b)

"here D(k) =(k —m +is) ' and Iz is an isospin fac-
tor,

1+J)= 1

1 —GsJss(0)

where we have (see Fig. 10)

(3.7)

with

+E'(L)}, (3.14)

Jz=Izg~ ( —i)2 f dxx[[L+(2—x) m q]E3(L)
0

GsJss(0) =I&n, n~( —1)i (iGs) f Tr[S(k)S(k)] .
d4k

and
3.8)

Here I, = 1 is the isospin factor.
We find

1

GsJss(0)=4n, n&Gsi f dx[E, (m )+2AEz(m )],

L=m x+(1—x)m

i 1 2A LE3(L)=—
32H L (A+L) (A+L)

(3.15)

(3.16)

(3.9) Values of g qq mq and Jz are to be found in Table II.
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2. Calculation ofJz+J~

Here we are concerned with the evaluation of Figs. 1(d)
and 1(e). These diagrams are usually called wave-
function-renormalization diagrams and their value may
be obtained from the knowledge of the quark self-energy.
We recall that we had written 5X(p}=B(p )Ii+ A(p ).
Then both J3 and J4 are equal to B(m )/2. Values ob-
tained for J3+J~ may be found in Table II. [Note that at
A= 1 GeV, we have Z =(1—B) '=0. 86 at the pole. ] As
noted earlier, J2+J3+J4-—0, as might be expected, if we
recall the calculation of vertex corrections and wave-
function-renormalization corrections in QED.

d lH (k ) = —2i g„ f Tr[y&S(l)S(l)y&S(l —k)],
(2qr )

(3.17)

where 2 is a symmetry factor. Then

J5 =Is( —
i)g„qqu (p, s)

d4k
X f [ysD(k)H(k )D(k)S(p+k)ys]u(p, s)

(2m. }

(3.18)

where I5 is the isospin factor,

3. Calculation ofJ5

Here we consider the calculation of the diagram of Fig.
1(f). As a first step we can evaluate the fermion loop, as-
suming the pion has momentum k. We define

Is =Tr(1 atb )Tl 1 bra

=6.
Now

1+w3

2
(3.19a}

(3.19b)

d4l Tr[(m —I)(m —E)(m +I it!)]-
(2m') (l —m q+iE) [(l k) —mq+—ie]

g ~~~ dx~ m +m 1 —+ k K3 ~ m~Ã2 ~ +~X
0

where E2( A ) and X3( A ) were defined previously. Note that A =m —x (1—x)k .
We find that we can approximate H (k ) by

n a;
H(k }=8g

qq g
, 1 —k /A;

(3.20)

(3.21)

(3.22)

For example, with n =2, we find a, =3.34, a2= 0.34 A&=707 MeV and A2=3162 MeV for the case A=1 GeV,
m =260MeV. Then

Js =iIsg qqu(p, s) u(p, s)
d k i!H(k )

(2qr) (k —m —ie) [(p+k} mq+ie—]

n

=8iI~g g m a; A;6f x dx f dy K&(B)(1—y),
0

(3.23)

(3.24)

with

and

B =y m q+xm +(1—x —y)A, (3.25)

~ (B) i 1 3A+B
96qr B (A +B)

(3.26)

Values obtained for J& are to be found in Table II.

4. Calculation of (I+J, )J6

The calculation of the diagram of Fig. 1(g) requires the
evaluation of a three-loop integral. Rather than proceed-
ing in that manner, we have calculated the discontinuity
across the two-pion cut and then have calculated the real
part of the diagram by means of a dispersion relation.
We neglect the quark-antiquark cut that starts at
q =(2mq) . The two-pion cut for q )(2m ) is treated
in an approximate manner. (Since we require the real

I

part of the diagram at q =0, the result is not particularly
sensitive to the treatment at large q . ) The details of this
calculation will be reported in another publication. The
results obtained here appear in Table II.

We remark that there is some cancellation seen be-
tween the values of J5 and J6 given in Table II. Note
that, if the pion momenta in diagrams of Figs. 1(f) and

1(g) took on only small values, there would be almost a
complete cancellation between the values of J5 and J6.
That observation may be understood by dividing the dia-

grams of Figs. 1(f) and 1(g) in two parts by drawing a hor-
izontal line, cutting the two pion lines. The upper parts
of the two diagrams are then identical. The lower parts
of the diagrams are related to the calculation of off-mass-
shell pion-quark scattering in a linear sigma model. Ex-
plicit evaluation of the lower parts of the two diagrams
does show an exact cancellation if the pion momentum
k"=0. Corrections of order k /m appear, however. In
our analysis this cancellation is only partial, since the
pion rnomenta are not particularly small. These pion mo-
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menta are limited by the single-quark loops in Figs. 1(f)
and 1(g), which serve as form factors for the amplitude
cr ~a+~. However, the resulting pion momenta are not
small enough so as to lead to a complete cancellation of

5 6.

5. Calculation of oe and o&

We recall the definition tr~ =trtsFs(0) and that we had
set o&=3o.q. Values for o.

q
and oz are given in Table I.

In that case,

Fs(0)=1+J, = [1—GsJss(0)]

In Table II we present the values of Fs(0), crt and o z for
the case that pion dressing of the quark is taken into ac-
count.

IV. DISCUSSION AND CONCLUSIONS

As stressed in Sec. I, the value of 0.& is important when
one studies the behavior of quark condensates in matter.
Here we have investigated corrections to the model of
Ref. [4] arising from pion dressing of the quark. In cal-
culations making use of the NJL model, a value of A=1
GeV is usually used. For definiteness, let us consider the
results for A=1050 MeV given in Tables I and II. We
see that m =m""+m increases by 36 MeV when pion
dressing is considered. We also note that the Gell-
Mann-Oakes-Renner relation is satisfied to about 6%
(Table I) or about 3% (Table II). The condensate value,
(0(uu ~0) = (O~dd (0), for A= 1050 MeV is (

—257 MeV)
(Table I) or ( —267 MeV) (Table II). It is worth noting
that, in a recent work [13],a value for the condensate of
( —260+1 MeV) was obtained by studying the mass
difference between the charged and neutral pions in the
NJL model. That value is in reasonable accord with the
values calculated in our work.

For the case A=1050 MeV, the value of 0.& is either
54.6 MeV (Table I) or o&=51.5 MeV (Table II). As dis-
cussed in Sec. I, a value of o z of about 50 MeV is in gen-
eral accord with the magnitude of the scalar fields of the
relativistic Brueckner-Hartree-Fock theory or Dirac phe-
nomenology. If the value of 0.& were about 38 Mev, only
about 75% of the scalar field of the models of relativistic
nuclear physics would be directly related to the scalar or-
der parameter that describes the behavior of the quark
condensate at finite baryon density. That last result
would not be particularly surprising, since it is believed
that virtual excitation of the delta resonance can account
for about 30% of the nucleon-nucleon attraction in the
scalar-isoscalar channel. (If it turns out that orat—-35

MeV, we might question the approximation cr&=3o.
used in Refs. [4,11] and in this work. ) Because of the
large uncertainty in the value of o.&, we suggest that fur-
ther study is required to obtain a more definitive interpre-
tation of the nature of the scalar fields of relativistic nu-
clear physics than that given in [1]and reviewed here.

We may remark that the approximation o.z =3o.
q

used
in Refs. [4,11] and in this work is suited to a nonrelativis-
tic constituent quark model. If the quarks were described
by Dirac wave functions, with upper and lower com-
ponents, we would have o + =3(1—2a )o, where a is the
fraction of the wave-function-normalization integral due
to the presence of the lower component in the wave func-
tion. Even small values of a, of about 0.1, serve to reduce
0.& significantly. Because of this uncertainty, we suggest
that our calculations tend to give a (theoretical) upper
bound for 0.&, while providing estimates of the relative
importance of the effects due to pion dressing.

We remark that a model for pion dressing of the nu-
cleon is also needed when discussing the Aavor asym-
metry in the light-quark sea of the nucleon [14] with the
aim of explaining the Gottfried sum rule deficit reported
by the New Muon Collaboration [15]. For example, the
authors of Ref. [14] calculate that the probability of a
quark to emit a pion is 3a/2, with a =0.083. The value
of 0.12 for that probability is reasonable accord with our
value for B = —0. 15, obtained for A=1.05 GeV, given
the different methods used in [14] and in this work.
[Note that the values for J3+J4 in Table II are equal to
B and that Z =(1 B) '=1+—B.]

In this work we have studied the modification of the
properties of a constituent quark of the NJL model, if
pion dressing of the quark is taken into account a pertur-
bative scheme. We have studied how the quark propaga-
tor is modified and have investigated corrections to the
model of Ref. [4] for the evaluation of tr~. The values

obtained at the largest A considered here are at the upper
end of the range determined from experimental data in
other theoretical work, o.~=45+8 MeV [6]. To the ex-
tent that the uncertainty in that quantity can be reduced,
we will be able to improve our understanding of the rela-
tion between the scalar fields of relativistic nuclear phys-
ics and the behavior of the quark condensate in matter.
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