
PHYSICAL REVIEW C VOLUME 46, NUMBER 6 DECEMBER 1992

Ward-Takahashi identities for the radiative axial-vector vertex and low-energy theorem
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Using the assumption of a partially conserved axial-vector current and the conservation law for the
electromagnetic current, we rederive a low-energy theorem for the pion electroproduction. In contrast
to the traditional approach, we include all effects of off-shell nucleons and pions. We parametrize the
axial-vector current in its most general form and apply the minimal substitution prescription to obtain
the radiative axial-vector vertex that is required for gauge invariance. We split the full radiative axial-
vector vertex into the isolated-pole contribution, the minimal-coupling interaction, and the remainder.
The Ward-Takahashi identities are translated into the constraints on the pion electroproduction ampli-
tude. The rigorous low-energy theorem is obtained for the zero four-momentum pion electroproduction.
It is found that the off-shell matrix elements of the axial-vector current affect the isolated-pole term and
the gauge term so that the low-energy theorem is at variance with the standard one given in the litera-
ture.

PACS number(s): 25.30.Rw, 11.40.Ha, 13.40.—f

I. INTRODUCTION

The assumption of a partially conserved axial-vector
current (PCAC} [1] was intensively investigated in the
1960s, and low-energy theorems were derived from
PCAC supplemented by current commutation relations
[2—6] (for a recent reference, see Ref. [7]). The PCAC
hypothesis relates any hadronic process in which a zero
four-momentum pion is emitted to the process in the ab-
sence of the pion. Among others, the low-energy
theorem for pion photoproduction and electroproduction
was derived following the first attempt of Nambu and
Schrauner [8]. In these studies, effects of off-shell nu-
cleons and pions are not considered. However, even if we
are interested in processes of physical particles, it is una-
voidable to consider off-shell processes. This can be illus-
trated by the simplest example, the Born diagram: The
internal particles inevitably go off their mass shells, while
all external particles are on shell. In investigating the in-
teractions of off-shell particles, the Ward- Takahashi
(WT) equation [9] plays an essential role. The impor-
tance of the WT identity for the electromagnetic current
was recognized by Berends and West [10) concerning the
Born approximation in pion electroproduction. The ad-
ditional extra term that was introduced by Fubini, Nam-
bu, and Wataghin [11] to restore gauge invariance was
explained by the nonvanishing contribution from the off-
shell current matrix elements. Naus, Koch, and Friar
[12] studied the effect of electromagnetic and strong form
factors including the PCAC constraint. However, the
effect of the off-shell matrix elements of the axial-vector
current has never been investigated.

Since the nuclear constituents are composite particles
which possess finite space-time extension, we have to
treat particles which have form factors at vertices where
interactions take place and particles go off shell. The WT

equations are valid not only for elementary particles, but
also for composite particles. The presence of hadronic
and electromagnetic form factors of interacting hadrons
should not violate the WT equation, which is a direct
manifestation of gauge invariance. The electromagnetic
current operator associated with the hadronic form fac-
tors should arise in such a way that the WT equation is
satisfied. This holds true for nonconserved currents. The
axial-vector current form factors should not violate the
WT equation, which results from the PCAC relation. It
is customary to utilize the axial-vector current with two
form factors, the axial-vector form factor and the in-
duced pseudoscalar form factor, for processes involving
off-shell nucleons. But this immediately violates the WT
identity for the axial-vector current. Since low-energy
theorems given in the literature are based on this assump-
tion, it is necessary to reexamine its validity. The pri-
mary purpose of this paper is to rederive a low-energy
theorem for zero four-momentum pion electroproduction
in the most rigorous way. The present work is motivated
by recent experiments of vr photoproduction close to the
threshold [13],but derivation of the low-energy theorem
at the threshold will be published in a separate paper.

In Sec. II we derive WT equations for the radiative
axial-vector vertex using the PCAC assumption for the
axial-vector current and the gauge invariance for the
electromagnetic current. Since two currents are acting,
two WT equations are obtained. Consistency of the two
equations is examined. It is shown that for on-shell nu-
cleons our results coincide with the ones given in the
literature. The generalized Born term (the isolated-pole
term} is calculated for the radiative axial-vector vertex
and subtracted from the WT equations. In Sec. III we
write down the most general form of the axial-vector
current and extract the electromagnetic current operator
on the basis of the minimal-substitution prescription.
The isolated-pole term and minimal-coupling interaction
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are subtracted from the total radiative axial-vector vertex
to obtain the constraints on the pion electroproduction
amplitude. In Sec. IV we take the limit of a zero four-
momentum pion and obtain a rigorous low-energy

theorem for the pion electroproduction amplitude. Com-
parison with the conventional result is made in detail.
The relationship to the Kroll-Ruderman theorem [14] is
discussed. Finally, in Sec. V, we give a brief summary.

II. WARK- TAKAHASHI IDENTITIES

A. Basic equations

We consider the four-point Green's function

(T[g(x')g(x)j"'(y)j (z)])=J d~Pd gS~(x' g')—M' (g'g:yz)SF(g —x), (2.1)

where |t) and g are the nucleon field operators, j"' is the isovector axial-vector current operator with i being the isospin
index, j„is the electromagnetic current operator, and

SF(x' —x ) = ( T[g(x')P(x) ] ) (2.2)

is the nucleon propagator. The four-point vertex operator M „describes radiative weak interactions (e.g. , radiative )M

capture of the nucleon). Since two currents are involved, we can derive two WT identities. One of them follows from
taking a derivative with respect to the position of the axial-vector current operator,

((3I(3y )(T[f(x')g(x)j "'(y)j„(z)])
= —5(xo —yo)( T[[1t(x'),jo'(y)]g(x)j„(x)]) —5(xo —yo)( T[g(x')[g(x),jo '(y)]j„(x)])

—5(zo —yo)( T[g(x')1'(x) [j„(z),jo '(y)]] }+( T[g(x')g(x)(l~ "'(y)j„(z)] ) . (2.3)

The four-divergence of the axial-vector current is proportional to the pion field P, as given by the PCAC hypothesis,

(}J"'(y) =f m „P'„(y), (2.4)

where f is the pion decay constant and m„ is the pion mass. Inserting into (2.3) the PCAC relation (2.4), the equal-
time commutation relations with respect to the axial-charge density j0,

[f(x'),jo '(y) ]5(xo —yo) =v'y~p(x')5(x' —y),
[g(x ),j() '(y) ]5(xo —yo) =)hatt(x ')y~r'5(x —y ),

and that of the chiral SU(2) X SU(2) algebra,

[j„(z),jo"'(y) ]5(yo —zo ) =ice 'Jj„"J(y)5(y —z),
we find the WT equation in the form

(2.5)

(2.6)

(2.7)

The first two terms in (2.8) can be expressed in terms of
the three-point vertex function for the electromagnetic
interaction of the nucleon, SF(x' —x)= — d p e'~'" ")S~(p) .

(2m. )
(2.12)

(T[y( ')q( )j ( )])
=i f d g'd (SF'(x' —(')j„(g'g:z)SF'(x —g) . (2.9) In (2.10), e)v is the nucleon charge operator

((}/By )( T[g(x')P(x)j"'(y)j„(z)]}= —( T[r'y, 1P(x')g(x)j„(z)])5(x'—y) —( T[@(x')P(x)y,rj'„(z)] )5(x —y)

iee 'J(—T [g(x')P(x)j„"J(y)]}5(z y)+f m „(—T[g(x')g(x)P'(y)j„(z)]) . (2.8)

I

and

(p' pJ)„(p',p ) =—ex[SF '(p') SF' '(p)], —

where we have made the Fourier decomposition

j„(x'x:z)

(2.10)

p d p e P ( x z ) + !P ( z x )j (p p )
(2~)

(2.11)

We use the same notation j„ for the current and vertex
operators for simplicity. The electromagnetic vertex
operator satisfies the celebrated WT identity, which can
be written in the form

e&= —,'e{1+~3) . {2.13)

The third term in (2.3) can be expressed in terms of the
vertex operator for the axial-vector current,

The PCAC relation (2.4) and equal-time commutation re-
lations (2.5) and (2.6) lead to the WT identity for the
axial-vector current,

(T[y( ')q( )j"'(y)]}

=i Jd g'd gS'(x' —g)j"'(g'g:y)S'(x —g) . (2.14)
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(B/By )(T[P(x')P(x)j"'(y)])= —(T[r'y g(x')f(x)])5(x' —y) —(T[Q(x')P(x)y r'])5lx —y)

+f m (T[g(x')P(x)P'(y}]) . (2.15)

The three-point Green s function in this equation defines the vertex function for the interaction between nucleon and
pion,

( T[g(x')g(x)P'„(y)]) = —fd g'd gd riSF(x' g')—I'(g'g: ri)SF(g x)—bF(y —2}),

where the pion propagator is defined by

5"&' (y' —y)=(T[({}'(y')(t'(y)]) .

In momentum representation,

JAi (xx.y) — d4pd4pe iP'(x' v)+. iP.(—v —
x)JA i (pp)

(2n. )

I'(x'x. y)= — fd p'd p e' '" '+'P' "'I'(p' p)(2n. )

b,p(y' —y)= — f d q e"'y 'b, 'F(q),
(2n )

one obtains

(p —p')J"'(p', p)= r'[Sp —'{p )Xs+psSP '(p)] if m —bF(p —p')I'(p', p} .

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Using the momentum representation

The four-point Green's function, the last term in (2.3), defines the vertex operator for the pion electroproduction,

(T[g(x')f(x)P'(y)j„(x)])=i fd g'd gd riSF'(x' g')M„'(g—'g:2}z)SP(g—x)EF(y —2}) .

Mi (x~x .yz) d4P d4P d4k eip' (x' —y)+ip. (y —x)+ik (y —z)Mi
(2 )" ap

Mi (x x .yz) d4p d4P d4k eiP' (x' —V)+iP (y —x)+ik (v —z)Mi
)z

'

(2 )12 p

we get

q M' = SF' '(p )lsS—F(p+k)rj'(p+k, p) j(p', p' k—)r'SF(p' —k)y SsF'(p—)

iee 'Jj„"J(p—',p) if m bF—(q)M„'

(2.23)

(2.24)

(2.25)

where p and p' are the nucleon momenta before and after the interaction, respectively, k is the photon momentum, and
q =p +k —p' is the momentum carried by the axial-vector current. In M'„and M„', we suppress momenta p', p, and
k.

Next, consider the derivative of (2.1) with respect to the photon position z,

(BZB.„)(T[q(x )q(x)j (y)j„( )])

= —5(xo —zo)( T[[g(x'),jo(z)]g(x)j"'(y)])—5(xo —zo)( T[(({)(x')[g(x),jo(z)]j"'(y)])

—5(yo —zo)( T[g(x')f(x}[j"'(y},jo(z)]]) + ( T[1t)(x')f(x}j"'(y)BJ„(z}]), (2.26}

where jo is the charge-density operator. Using the current conservation Bp„(z)=0, the equal-time commutation rela-
tions

[1i)(x'},j()(z}]5(xo—zo) =eNli)(x')5(x' —z),

[tp(x )j 0(z) ]5(xo—zo ) = —g(x ')eN5(x —z),
and the chiral algebra

[j (y), jo(z)]5(yo —zo)= —iee Jj J(y)5(y —z),
we obtain another WT equation

(2.27)

(2.28)

(2.29)
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(8IBz„)(T[g(x')P(x)j "'(y)j„(z)])= —ez( T[g(x')g(x )j "'(y)])5(x'—z)+ ( T[g(x')g(x)j "'(y)])e&5(x —z)

+ice ' (T[g(x')P(x)j "J(y)])5(y —z), (2.30)

which becomes, in rnomenturn space,

k„M'& =e&SF '(p')SF(p' —k )j "'(p' kp—) j"—'(p', p +k)SF(p +k)SF '(p)ez ie—e 'Jj "J(p',p) . (2.31)

B. Consistency of the two WT identities

We are now provided with two divergences k„M „and q M „.Therefore we can calculate q k„M~„ in two distinct
ways: From k„M „,we get

q k M'„=e~S~ '(p')SF(p' k)q j—"'(p' k,p)—qj "—'(p', p+k)SF'(p+k)S~ '(p)e~ iee —'q,j "'(p', p) (2.32)

and, from q M „,
q kqM q= SF (p )ysSF(p+k)r'k j„(p+k,p) k„j„(—p', p' k)r'SF—(p' k)ysS—F '(p)

iee ''—k„j„"~(p',p) if„m—bF(q)k„M„' (2.33)

Equations (2.32) and (2.33) must coincide. We can check this in the following way. We make use of the WT equations

q j "'(p' k,p)= —r'[S~ '—(p' k)ys+y—sSF '(p)] if m—bF(q)l'(p' —k,p),
q j '(p' p+k)= &'[SF (p')ys+ysSF (p+k) if m &—F(q)I'(p', p+k),

in Eq. (2.32), and

k„j„(p +k,p) =e~ [SF' '(p + k) SF '(p) )—,

k„j„(p',p' k)=e~[S—F' '(p') SF '(p' —k)], —

in Eq. (2.33). Equating (2.32) and (2.33) and using

(q —k)~ "'(p', p ) = r'[SF' '(p'—)ys+ ysSF '(p) ]
—if m b F(q —k)I"(p',p),

we solve for k„M„' to obtain

k„M„'=e~S~ '(p')SF'(p' —k)I'(p' —k p) —I'(p', p+k)SF(p+k)SF' '(p)eN iee '~h—F '(q)A~(q —k)1'(p', p) .

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

This is nothing but the WT equation for the pion electroproduction amplitude [16,17]. This can be derived directly
from

(Blitz„)( T[g(x')P(x)P' (y)j„(z)] ) = e~( T—[g(x')g(x)P' (y)] )5(x' —z)+ ( T[g(x')f(x)P' (y) ] )e~5(x —z)

+ice '~( T [P(x')g(x)P' (y) ] ) 5(y —z), (2.40)

where the current conservation is applied and (2.27),
(2.28), and

[P'„(y),jo(z) ]5(yo —zo ) = ice '~P~ (—y )5(y —z) (2.41)

are inserted. We can conclude that once M' „satisfies the
requirement of PCAC and gauge invariance, M„' satisfies
the gauge invariance automatically.

C. Dn-shell nucleons

The WT equations (2.25) and (2.31) are generalizations
of the ones given by Adler and Dothan [4] for on-shell
nucleons. Indeed, Eqs. (2.25) and (2.31) are reduced to

q M'„= iee '~j„"~(p',p) —if„m EF(q)M„', (2.42)—

k„M'„= iee ''j "—J(p', p), (2.43)

dJ "'(y)=ee ' A (y)j "~(y)+f m P'(y) . (2.44)

Taking the matrix element between the one-nucleon state
~p') and one-nucleon —one-photon state ~pk ) and using
the pion source function defined by

( —8 +m„)P'„(y)=J'„(y),

we find

(2.45)

for nucleons on the mass shell since SF '(p)u (p) =0 and
u(p')SF '(p')=0 can be used when (2.25) and (2.31) are
sandwiched between Dirac spinors u(p') and u(p).

Equation (2.42) is usually derived from the PCAC rela-
tion in the presence of the electromagnetic field A
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& p'I~J."'Ipk &
=«'"&p'jI."'

Ip &E.(k)

+f.m'. . .&p I~'. Ipk &,
q +m

(2.46}
ILLI

where E (k) is the photon polarization vector. Since the
current matrix elements are related to M' „and M„',
apart from trivial normalization factors, as

u(p')M'„u(p)e„(k)=(p'jI"'Ipk &,

u (p')M„'u (p)s„(k)= (p'I J'„Ipk &,

(2.47}

(2.48)
LI

we get the e6'ective operator valid for on-shell nucleons,

1

q'+ m' (2.49)

D. Constraints on non-Born terms

The radiative weak vertex operator M'
& can be decom-

posed into the generalized Born term (the isolated-pole
term) and the remainder,

M' „=8'„+hM' „, (2.50)

where the Born term B'„consists of three diagrams, as
indicated in Fig. 1; the electromagnetic current interacts
with the nucleon before and after the axial-vector current
and with the virtual pion emitted by the nucleon. In
momentum space B'

& is explicitly given by

which differs from the rigorous one (2.42) in that, instead
of the full pion propagator b,z(q), the free one

(q +m )
' enters. They must coincide in the limit of

on-shell pions, q ~ —m .
FIG. 1. Born approximation diagrams for the radiative

axial-vector vertex. The axial-vector coupling is denoted by the
open circle, and the electromagnetic interaction is denoted by
the solid circle. The hatched circle is for the pion nucleon ver-
tex.

(T[p'(y')(t)'(y)j (z)]&

=i f d r)'d ritz(y' q')j„'J(—ri'ri:z)EF(y —ri),

(2.52)
with the Fourier decomposition

J„(y'y:z}

8' „=j"'(p',p +k)SF(p+ k)j„(p +k,p)

+j „(p' p' k)SF(p' kj)—."'(p' k—p)— q d q
eiq' (y' z)+ i@ (z —y)j nij—(q

(2n. )
P

(2.53)

+if q h~(q)j "(q,q k)bF(q k)I i(p—',p), —

(2.51)

where the electromagnetic vertex of the pion is defined by

First, we evaluate q B'„. Using the WT equations
(2.34) and (2.35) for the axial-vector vertex of the nucleon
and inserting the result into the WT equation (2.25} for
M'„, one finds a constraint on AM'„,

q hM'„= iee 'Jj „"~(p',p) —if m bz(q)bM—„'+r'y5J„(p+k,p)+j„(p',p' k)r'y5-
if„(q +m }6'F—(qj}„'J(q,q k)h'F(q —k)I J(p—',p) .

We have split the virtual pion electroproduction operator M„' into the Born term and the rest,

M„' =B„'+hM„' (2.55}

The Born term again consists of two nucleon-pole diagrams and a pionic pole diagram. In momentum space B is givenP
by

8' =1 '(p', p+k)SF'(p +k)j (p +k,p)+j (p', p' k)SF(p' —k)l '(p' —k,p)+j "' (q, q
—k)bz(q —k)I (p',—p) . (2.56)

The divergence of 8„' is calculated using the WT identities for the electromagnetic vertex of the nucleon [Eqs. (2.36) and
(2.37)] and that of the pion,

(q' q)p "(q', q) = iee—"[6' '—(q') b,
' '(q)] .—

The WT identity for the pion electroproduction (2.39) leads to [17]

(2.57)
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k„hM„' = i—ee "I '(p', p )+e~I '(p' k—,p) I—'(p', p + k)eN .

In a similar manner, we calculate the four-dimensional divergence of 8 „,
kpB'.„=j."'{p' p+k)(~F(p) ~F(p+k))~F '{p)e~+ew~F '(p')[~F(p' k—} ~F(p'})j '{p' k—p}

ie—e'"if q [EF{q—k) b, F—{q)]I'(p',p) .

From (2.23), one of the constraints on hM' „follows:

k„hM'„„= ice—'~j "~(p',p)+e~j "'(p' k,p—) j,"'—(p', p+k)ez ice—"if q [b'F(q) b~(—q —k)]I J(p', p) .

(2.58)

{2.59)

(2.60)

Equations (2.54) and (2.60) are our basic equations.

III. GAUGE INVARIANCE

A. Pion pole and nonpole contributions

Electrodynamics is made invariant by introducing the
gauge field such that a gradient of the nucleon field is al-
lowed to appear only in the form of the covariant deriva-
tive

I

ready appeared in the Born term 8' „[Eq. (2.51)]. They
differ from each other by the term which is gauge invari-
ant by itself. This can easily be seen since both have the
same divergence owing to the WT identity (2.57}. To
show this more explicitly, we note that the electromag-
netic vertex of pion has the structure

j „""(q',q)= ice "j—„(q',q) . (3.5}

The most general form of the electromagnetic vertex of
the pion is

a„q(x)-[a„—ie A„(x)]g(x) . (3.1) &2 2

j„(q',q) = (q'+ q )„— (q' —q)„A
Once a nonradiative interaction is given as a function ofp
and p' in momentum space, we can transform them into
differential operators acting on g(x ) and g(x ), respective-

ly, in position space. Then it is straightforward to derive
the corresponding current operator by demanding gauge
invariance [17].

The gauge invariance requirement does not determine
the whole radiative weak vertex operator M'„but some

part of it. To see this we split j "' into pion nonpole and

pole terms:

j."'{p' p) =i ."'{p' p)+ f.(p —p')A' {p —p')I'(p' p) .

+(q'+q)„8, (3.6)

(q' q)p„(q', q—) =(q' q)8 . —

The WT identity (2.57) fixes 8,

(3.7)

8 =
~ [b F '(q') hF '(q) ), —

q' —
q

(3.8)

where A and 8 are functions of q, q', and (q' —q) .
Evaluating its divergence, we find

(3 2) so that

From the momentum dependence of each term, we get
the contribution to M' „,

G',„=G '„+ice'"5 „if bF(q k)I'(p', p)— LI
+if q bF(q)G& (3.3)

The first term G '„ is obtained from j "'(p', p), as will be

shown in Sec. IIIC. The second term comes from the
minimal substitution of (p —p ) in (3.2) and describes
the radiative pion decay process. The last term is from
the pion-nucleon vertex I'(p', p) and describes virtual
pion electroproduction. G„ is also given in Sec. III C.
The three terms are graphically indicated in Fig. 2.
There exists the contribution coming from the minimal
substitution of b,F(p —p') in (3.2),

(2q —k)„
G „'=ice 'Jif q z

q
—(q —k)

X [b~(q) —EF(q —k)]I j(p', p), (3.4)

which also describes the radiative pion decay process.
We treat 6"„' separately because the pion-pole term al-

FIG. 2. Gauge terms for the radiative axial-vector vertex.

The pion pole term is subtracted from the axial-vector coupling

denoted by the open circle.
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(q' —q )p(q' —
q )„j „(q',q)=(F —1)(q'+q)p &pp-

(q' —q)

(q'+q }„
q' —

q
(3.9}

M'„=M'„+if q bz(q)M„' (3.13)

M„' =B„'+AM„' =B„'+G„'+R „' (3.14)

The full amplitude for the virtual pion electroproduction
is decomposed as

where the pion electromagnetic form factor F = A + 1 is
introduced. Thus one sees that the pionic interaction
term in 8' „is the sum of G „' and the remainder hG"„',

if q h~(q)j~' (q, q k)b~—(q —k)I J(p', p)

=G „'+b,G „', (3.10)

where AG „'is of the form

krak„EG,„'= 2iee—'Jif q ques(F„—1) tsiJ„
k

8'„=8 '„+if q b~(q)B& (3.15)

with Eq. (2.56) for 8„' and

8 '„=j "'(p',p +k)S&(p +k)j„(p +k p}

+j„(p',p' —k)S~(p' —k )j "'(p' —k,p), (3.16)

where G„', which entered (3.3), is obtained from I" using
the minimal-substitution method and R„ is all the rest.
Since the Born term for the radiative weak vertex (2.51) is
rewritten using the nonpole axial-vector current j ' as

Xbz(q)bz(q —k)I ~(p', p) . (3.11) M'„ turns out to be

Clearly, k„hG „'=0. For pointlike pions, F =1, and
hence b G „' =0; namely, the minimal substitution repro-
duces the pionic Born term. It is a matter of course that
since the total gauge invariance cannot determine form
factors, we got the pionic Born term with F =1. It is
now clear that G „' is already contained in the Born term
and that it should not be a new contribution to AM'„.
The non-Born contribution to M' „thus takes the form

M'„=8 '„+ice '~5 „if b~(q —k)I J(p', p)

+G'„+R '„.
It is found that R ' „is of the form

(3.17)

R ' „=R ' „+if q Az(q)R „' (3.18)

Everything except R ' „and R „' is known explicitly.

hM' =G' +R ' (3.12) B. Axial-vector vertex

where R '„collects all contributions other than the Born
and gauge terms.

%e now want to separate the radiative weak vertex
into pion nonpole and pole parts,

The axial-vector vertex function of the nucleon,

is parametrized in the most general form

(3.19)

j"(p',p }=iF&"y ys F2"ys(p p—').+iF& o &(p
—p')&ys

+(iy p'+m)[iF4" y y, F,"ys(p —p'—) +iF6 o ~(p p')isys]—

+[iF7"y ys Fs ys(p p')—+iF9 o &(p p')&ys](iy. p+—m)

+(iy p'+m}[iF,"oy ys F,",ys(p p—') +iF~q& is(p
——p'))sys](iy p+m), (3.20)

I"(p',p)= 'I (p', p)

is put in the form

(3.21)

I (p ',p ) =i ysg, +i y sg 2 (i y p +m ) + (i y p '+ m )i y sg&

with m being the nucleon mass. The 12 form factors are
functions of p, p2, and (p —p') . The pion pole part of
the axial-vector current contributes to F2, F5", Fs", and
F&"&, as is seen from (3.2). Since the fully off-shell pion-
nucleon vertex function

F2" =F 2" +f„b,s(p —p'}g(,

F5 F 5 +f7r~F(P P )g3

Fs" =F s"+f~b, r(p —p')g2,

F |"i =F i"i+f.~F(p p')g4 . —

(3.23}

(3.24)

(3.25)

(3.26)

with g, , g2, g3, and g4 being form factors, F2, F5", F8,
and F, &

can be separated into nonpole and pole parts:

+(iy p'+m)iysg4(iy p+m), (3.22)
From (2.21) one sees that the pion nonpole partj "'(p',p) =r'j "(p',p) satisfies
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(p —p')v."(p' P)= ~F' '(p'')ys —yPF '(p)+if [{P P—') +m„l~'F(p —p')l (p', p) .

Using the fully dressed nucleon propagator parametrized in the form

SF '(p)=iy pG(p )+mF(p ),

the WT identity (3.27) imposes the four constraints

F,"+(p —p') F s" —(p +m )Fio=6(p' ) f —[(p —p') +m„]b'F(p —p')gs,

F,"+(p p') —F s" —(p' +m )F,"0=G(p ) f [—(p —p') +m„]&'F(p —p')gp,

F~4+F74+2mF,"0+(p —p') F,",= f [(p—' —p) +m ]&F(p —p')g4,

2mFi~ —(p p')2F—~~+(p'2+m')F~" +(p +m )F~"

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

=m [G(p') —G(p') —F(p')+F(p2)]+ f„[(p p')'+m—' ]bF(p —p')g, . (3.32)

One can eliminate F 2, F 5, F 8, and F „to express j "in the form

(
— ') (

— ')
, , [~F '(p')ys+ysSF' '(p)]-if — [(p —p') +m ]6,'(p —p')1(p', p)

(p p')
I

p p a+iF, y~—,
2 y'(P P ) ys+iF& oa&(P P )pys

I

~ A+(iy p'+m) iF4 y —
y (p —p') ys+iF6 o' &(p

—p')&ys
(p p)

I

+ iF7 y — y (p —p') ys+iF9 o &(p
—p')& (iy p+m)

(p p')

+(iy"p'+m ) iFio y
—

2 y (p —p ) ys+iF12o p(p P )pys «y p+m).
(p p') (3.33)

The pole at (p —p') =0 arises from the WT constraint
on the axial-vector form factors.

We shall retain the most general forms for the axial-
vector current and the strong vertex in the development
that follows in the subsequent subsections. To conclude
the present subsection, we want to compare the rigorous
expressions (3.27) and (3.33) with the standard ones. To
this end, we replace the nucleon and pion propagators
with the free ones. For on-shell nucleons (3.32) is re-
duced to

1 —FlFA FA
(p p')

(3.36)

(p —p').
, ;y (p —p') ys

(p —p')'

which never vanish (to avoid this pole, we must abandon
the assumption of g2 =g~ =0). Therefore the axial-vector
current becomes

2mF i" —(p —p
'

) F z" =f g i, (3.34)
(p —p')+,, iy (p —p')ys
(p p')

where all form factors become functions of (p —p') . In
the limit (p —p') =0, we get the Goldberger-Treiman re-
lation [15]

2mF, (0)=f„g,(0). (3.35)

It should be noted that (3.35) is valid independently of
parametrization of the axial-vector current and pion-
nucleon vertex. If we choose the pseudoscalar coupling
for the pion-nucleon vertex, g2=gz =g4=0. No infor-
mation is available concerning the axial-vector current
form factors except for F

&
and F2 . However, as a result

of the WT constraints, we cannot put all other form fac-
tors equal to zero. To be consistent with (3.31), we can
choose F4 =F7 =F,o =F„=0. On the other hand,
(3.29) and (3.30) give

F
F z" —2m (p —p') ys . (3.37)

(p p')

When we sandwich (3.37) between u(p') and u (p), we get
the standard result

u(p')j "(p —p')u(p)

=u(p')[iF i"y.ys F2"(p —p').y—s]u(p) .

If the axial-vector current appears in a diagram with one
of the nucleon legs off the mass shell, the term that disap-
peared in (3.38) makes difference. This point is essential-
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which follows directly from (3.27) with the approxima-
tions of the free nucleon and pion propagators and the
pseudoscalar coupling. This is to be contrasted with the
standard assumption

(p p'—).[iFi"y.y s
F—2"(p —p').ys ]

=Fi"[iy (p p'—}ys 2m—y s]+f.g hays . (3.40)

The WT equation tells us that the divergence of the
axial-vector current does not depend on the axial-vector
current form factors. Of course, the term proportional to
Fi" in (3.40) vanishes when sandwiched between the
Dirac wave functions, but it gives a contribution different
from (3.39) for off-shell nucleons.

ly important for our discussion since in Born diagrams
the intermediate nucleon goes inevitably off the mass
shell so that the term usually ignored affects R '„even for
on-shell nucleons. To see this, consider the divergence of
(3.37),

(p —p')~."(p p—')=iy (p p—')ys 2—mys+f. guys

(3.39)

C. Minimal replacement

The result of the minimal substitution applied to the
pion pole term is given in Sec. III A. In that expression
[Eq. (3.4)], one notes that the current contains b,~(q) as
well as EF(q —k)=bi;(p —p'), while the nonradiative
vertex contains only b, i;(p —p'). This holds true for any
gauge terms. G '„ is written in terms of j "(p',p),
j (p' —k,p), and j ~ (p', p +k). In j "(p',p) the form fac-
tors depend on p', p, and (p —p'} =(q —k), while in
j~(p' —k,p) they depend on (p' —k), p, and

(p —p'+k) =q, and in j "(p',p +k) they depend on p',
(p+k), and q . In addition to these current operators,
there appears j "(p',p), in which the form factors are
evaluated at p', p, and q . We distinguish this current
by writing it as j " (p', p).

The minimal substitution (3.1) produces currents given
by differences of nonradiative vertex functions evaluated
at momenta q and q

—k, p' and p' —k, and p+k and p.
The axial-vector vertex has momentum dependence
through the form factors iy p, iy p', (p —p'), and
cr &(p

—p')&. Since we are interested in the lowest-order
electromagnetic current in e, we can carry out the
minimal substitution of each factor independently. The
result of the minimal replacement for j "' is

(2q —k)„(2p'—k)„„,(2p +k)„
G '.p=ie '"r', ",

~qJ ."(P' P) eivr', —
, ",~p J."(P' P} ' ~, ",

tspJ ."(P' P)
q

—(q —k) p —(p' —k) (p +k) —p

+ice'"v'% „(p',p) ieger'y„&—, (p' k,p) i ~—'e~&,—~(p', p +k)y„. (3.41)

The 6rst three terms are brought about by the momentum dependence of the form factors and the last three terms by
the additional momentum dependence in j . In (3.41), 5 j (p,p) means the difference of the axial-vector currents in
which all the form factors are evaluated at q and (q

—k} while p' and p are fixed. Namely, it is of the same form as
(3.20), in which F," is replaced by F,"(q,p', p ) F,"((q —k)—,p', p ), etc. Similarly, 5 .j "(p',p) stands for the
difference of the axial-vector currents with the form factors at p' and (p' —k), and 5 j "(p',p) for that between p' and

~ A
p

(p' —k) . We can express these differences in terms of j in the forms

fi,J ."(p' p }=j ."'(p' p} j."(p' p } ~—.is(p' p}kg (3.42)

&,j "(p',p)=j "'(p',p) —j "(p' k,p} —iy k%—, (p' —k p} (3.43)

5~j "(p',p)=j "(p',p+k) j"(p', p) %, (p', p—+k)iy k,—
where

(3.44)

ia(p'. P }=~(. , + )

4 'Y 'Ys F s ys(p P )a+'F6 oasis(P P )pys

+[iF,"Oy ys F iiys(p —p') —+iFi2o~p(p p')hays]('y p ™),— (3.45)

~J ."(P',P}
~2m(p ~p)= fi(. + )

=iF&"y ys Fs ys(p p') +iF—9 o &(p
—p')&ys

+(iy p'+m)[iF&zy ys
—-F,"&y (p s—p') +iF&zo &(p

—p')&ys], (3.46)
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5J'."(p' p}
~up(p '~p }=

p p p

F—z"5~&ys+iF&" o &ys+(iy p'+m)( Fs—5 pys+'F6 o g s}

+( Fs"—5 &ys+iF9" o &ys)(iy.p +m)+(iy.p'+m)( F—
&&5 &ys+iF&zcr &ys)(iy p +m) . (3.47)

The derivatives are taken with respect to i y p'+ m, i y p+ m, or (p —p')&, while all the form factors are kept fixed. By
the use of Eqs. (3.42) —(3.44), it is easy to see that

i«'—"j~'(p', p)+e&j ~'(p' k,p—) j"'—(p', p +k)e& . (3.48)

j " (p,p) does not contribute to the divergence k„G „. Since j"and j " have identical structure, the minimal current
obtained from j"has the same form as (3.41) with F z", F s", F s", and F,", rePlaced by Fz", F»", Fs", and F,"„resPectively.
It is satisfying to see that the difference between the two currents coincides with the sum of the last two terms in (3.3)
and G „' given in the preceding subsection.

The pion electroproduction amplitude G„obtained from I using the minimal replacement is given in a previous pa-
per [17]. For later use we quote the result

(2q —k)„.(2p' —k )„
G„' =ice'"r', ",5, I (p',p) e„r'—, "

z 5~1 (p', p)
qz ( k)z q '

p
z

(p k)z

(2p +k}„—r'e~
z

"z 5~I (p', p)+ieger'y„Q, (p' k,p—) ir'e—zQz(p', p+k)y„,(p+k) —p
(3.49)

where

5, 1(p',p)=I (p', p) —1(p',p), (3.50)

I

In Eqs. (3.50)—(3.52), I (p', p) denotes the vertex func-
tion in which the form factors are evaluated at p', p,
and q instead of (q —k } . The four-divergence of G„' is
easily calculated as

5, , 1 (p', p) = I'(p', p) 1(p' —k,p) —i y k —Q, (p' k,p)—,
(3.51)

5 I'(p', p) = I (p', p +k) —I (p', p) —0 (p', p + k)iy k

(3.52)

k„G„' = iee"—I'(p', p)+e~I"(p' —k,p)
—I'(p', p +k)e~ .

From Eq. (2.60) it follows that

k„R„'=0 .

(3.55)

(3.56)

are de6ned in the same way as above, and

51 (p', p) =iysgs+iy@4(iy p+m»
5(iy p'+m)

(3.53)

This states the requirement of gauge invariance: The
pion electroproduction amplitude consists of the Born
term 8„', the gauge term G„', and the remainder R„',
which must be separately gauge invariant.

D. WT identities

Qz(p', p)= ' =iysgz+(iy p'+m)iysg~ .
51 (p', p)

5(iy p+m)
(3.54)

We now derive the WT constraints on R'„. First,
consider k„R ' „. To this end, we calculate the divergence
of (3.3). Using (3.48) and (3.55), we find

k G' = —iee'"j4'( 'pp) +e~j"'(p' k,p) j"'(p',p+—k)e~ —iee'"if q [&F(q)—bF(q k)]I'(p'—,p), —(3.57)

where j "' is eliminated in favor of j ' [Eq. (3.2)). Therefore the constraint (2.60) leads to

k„R'„=0
or, as a result of (3.18) and (3.56),

k„R '„=0 .

(3.58)

(3.59)

The residual amplitude for the radiative axial-vector vertex must be gauge invariant by itself, as was expected.
Next, we turn to the calculation of q R' . For that purpose it is important to note that j " (p', p) does not satisfy

the WT identity (3.27) because it is evaluated at qWp —p'. We calculate q j " (p', p) explicitly using (3.29)—(3.32),
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q j „0(p',p)= S—~' '(p')y~ y—5S~ '(p) if—(q ™l~z(q)P (p',p)+S
The extra term 2P is of the form

2) =iF,"y ky5+(iy. p'+m)iF4 y ky, +iF7"y ky~(iy p+m)+(iy p'+m)iF, "&&y ky, (iy p+m) .

(3.60)

(3.61)

We are using the convention that if the momentum dependence is not explicit for a quantity in momentum space, it de-

ends on three momenta p', p, and k. In 2) the form factors are functions ofp, p, and q =(p+k —p') . Note that
2) =0 at k =0. Forj "(p',p), (2.38) holds. Thus

q j " (p', p) qj—,"(p',p)= if —(q +m„)b ~(q)I (p', p)+if [(q k) —+m ]bF(q k)I—(p', p)+2) kj—,"(p',p) .

(3.62)
Because of the relations (3.42) and (3.50), we find

q 5 j "(p',p)= if (—q +m )bz(q)5 I (p', p)+if (q + m„)[bz(q —k) —b~(q)]I (p', p)

if [q— (q ——k) ]b~(q k)I (p—',p) 2) k—j "—(p', p) qk&%—&(p',p) .

In exactly the same way, we calculate the four-divergences:

q 5 j "(p',p)= [S~ '(—p') S~ '(p—' k)]y, —if„(q'—+m'}6~(q)5.P(p', p)+S' —iy kP, (p' —k,p},
q 5 j "(p',p)= —y, [S~ '(p+k) —S~ '(p)] —if (q'+m'„)6~(q)5, I (p', p) —2)' —P,(p+k, p)iy k,

where

P, (p' k,p)=q—%, (p' k,p)+if—(q +m )6~(q)Q, (p' —k,p),
Pp(p', p+k)=q %2 (p',p+k)+if (q +m )b~(q)92(p', p+k) .

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

The terms containing the nucleon propagators in Eqs. (3.64) and (3.65) can be written in terms of the four-divergence of
the electromagnetic current j„using the WT identities (2.36) and (2.37). The form factors F 5", F s", and F,", can be el-

iminated from P, and P2 using the WT constraints (3.29)—(3.31),

Pt(p' —k,p)=f&(p' —k,p)+q h, (p' —k,p),
&~(p',p+k)=f2(p', p+k)+q h&~(p', p+k),

with

f&(p' —k,p)=[F&" (p +m —)F,"0—G((p' —k) )]y&+(F4 +F7"+2mF&"z)yz(iy p+m),
f2(p', p+k)=[F&" (p' +m )F—

&z
—G{(p+k) }]y5+(iy p'+m).(F4" +F7"+2mF&z)yz,

h) (p' k,p)=iF4 y
—y5+iF)()y y5(iy p+m),

h,~(p', p+k)=iF,"y y, +(~y.p'+m )iF,"'pyj

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

It should be noted that the strong form factors are canceled out. This step of eliminating F 5", F 8", and F,", is of essen-
tial importance because V, and Pz are written in terms of the form factor F, , which does not vanish for on-shell nu-
cleons.

The calculation of q G „is tedious but straightforward. After some manipulation we are led to

q G '„= if (q +m —)hz(q)G„' iee 'Jj „"J(p',—p) iee 'Jif (2q—k)„b~(q k)I J—(p',p)—
(2q —k }„+ice'"if (q +m' ), ",[h~(q k) &p(q)]&—'(p'—,p)

q
—(q —k}

(2q —k)„(2p'—k)„+ice"Jr& J —, ",k.J +, ",k j(P'P' k)&.'y5-
q' —(q —k)' p' —(p' —k)'

(2p' —k}„(2p+k}„ie„r' y„, —",y—k V, (p' —k,p)+r'yg, ",k.j(p+k p}p' (p k)' — — (p+k)' p'—
(2p +k)„

lee~52(p, p +k) y 1(p+k)' —p'

(2q —k)„. (2p' —k)„,. (2p+ k )„P cga
q' —(q —k)' p' —(p' —k)' (p+k)' —p' (3.74)



2S30 KOICHI OHTA

where we introduced the notation

J„=iF&"yzys
—iF&"o„„k'ys+(iy p'+m )(iF4"y„ys —iF6"o„k ys)

+(iF7"y„ys —iF&"o„k ys)(iy p+m)+(iy p'+m)(iF&oy„ys iF—I2o„„k,ys)(iy p+m) .

The form factors are functions of p', p, and (q —k) . Since the form factors in J„and S are evaluated at different
momenta, k J&2), unless k =0. The induced pseudoscalar terms cancel out and do not appear in J„.

The divergence of the last two terms in (3.3),

iee '~if q„bF(q —k)I'i(p', p)+if q b'F(q)G„' (3.76)

is added to (3.74) to obtain q G'„. The WT constraint (2.54) is then translated into q R'„. Finally, with the help of
(3.18), one finds

k k„
q R '„= if (q—+m„)EF(q)R„'+2iee 'Jif (q +m„)b~(q)(F„1)q —5 „— "

AF(q —k)I J(p', p)
k

(2q —k)„(2p'—k)„(2p+k}„
q

—(q —k) " p' —(p' —k) (p +k) —p

where

(2q —k)„(2p'—k )„(2p+k)„

q
—(q —k) p' —(p' —k) (p +k) —p

(3.77)

J, =j (p', p' k)ys+&e—wyq&i(p' k p}

J2„=ysJ'„(p+k,p)+ie~9' (p2', p+k)y„.
(3.78)

(3.79)

The electromagnetic current can be parametrized in exactly the same way as the axial-vector current (3.20) (see Ref.
[17]). The WT constraint (2.10}eliminates four form factors Fs, F6, F9, and F,z out of 12. The result is

J'I (p', p}=ex [SF' (p') —SF (p)]+iFi y&
—

& y (p' p) iF2o—&,(p—' p)„—p pp, , p py.
P

(
s )2

T

+(iy p'+m) iF, y„—y (p' —p) iF,o (p—' —p)
p pp
p p

+ iF7 y„, —,y (P' P») iF8&„.—(p' P—}. (iy P+-p p p

p p

+ (i y p '+ m ) iFI y„2y—(p
' —p ) iF„o„,(p ' p—)„(iy p +m—) .

p p p (3.80)

The identities (3.59) and (3.77) are our main results. The residual quantities R '„and R„' are unknown, but the gauge
invariance tells us that they must be four-divergence free, and the assumption of PCAC relates the two quantities as
given by (3.77).

IV. LOW-ENERGY THEOREM

A. Pion electroproduction in the soft-pion limit

Without other information we cannot go further to determine R '„and R„'. In the limit of a zero four-momentum
pion, however, we can solve the constraint. Since R '„and R„' are free from singularity arising from the particle poles,
they behave smoothly in the limit 9~0. %'e can expand them in powers of q,

R '„=R '„(0)+O(q), (4.1)

BR„'
R„'=R„'(0)+q "+O(q ).

Bq

The WT identity (3.77}determines R „'(0) uniquely,

(4.2)
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R„'(0)= k„(p'+p)„—ice'~ J k J + J& k'J] 7'
~P ~2 2

+~' J — "k J +ice 'J~'
P ~2 2 k2 p

2 p2
(4.3)

ln J,„and Jz„, 9'& and 92 become f, and f2, respective-

ly. Note that k„R„'(0)=0 is satisfied.
To compare with the result given in the literature, we

put the external nucleons on the mass shell. Since we
have eliminated the nonpole form factors F2, F 5, F 8,A A A

and F,"&, Eq. (4.3) does not contain them explicitly. As is

seen from (3.61), (3.70), (3.71), and (3.75), only F&" and F3"
are left in (4.3). Owing to the symmetry under charge
conjugation, F3" =0 on the mass shell. If we put
F =G =1,we find

covariants Oj,
6

~ Z'+-"= ~ Z'*"O .P P ~ J Jj=1

In the limit q =0, only two terms survive,

0) = epcT~P~ys,

k„06=k c„y„—2 y k y5k2

(4. 10)

(4.11)

(4.12)

J„=iF,"(k )y„y5,

Ji„=j„(k}ys+iex[F ~" (0)—1]y„y5,

J2„=ysj„(k)+ieN [F,"(0)—1]y&y„.

(4.5)

(4.6)

RI'= „F(k )
eg, (0)

2mF,"(0)

(4.4) Our low-energy theorem is stated in the form

(4.13)

Furthermore,

2) =iF,"(0)y ky5 . (4.7)

j„(k)=iez "y.k+ie( ,'Ff+ ,'F, r—)y„—— z y k

We assume that the electromagnetic current has two
form factors F~ and F2. Each of them has isoscalar and
isovector parts. Equation (3.80) becomes of the form
[10,18]

R'+'= „F'(k')eg, (0)

2mF )"(0)

eg, (0)
[F&(k2) FA(0)+ 1 Fv(k2)]

2mF,"(0)
R6

(4.14)

(4.15)

where we have used the Goldberger-Treiman relation
(3.35). The corrections arising from the virtual nucleon
mass dependence of F&", G, and F are given below by
(4.44) and (4.45).

ie( ,'Fz+ ,'F—
2 r —}o„„k„—. (4.8)

B. Comparison with the conventional result

The isospin structure of the electroproduction matrix ele-
ment is given by

R' =$. R +'+ ' [7-' 7- ]R +7-'R
p i3 p 2 P P (4.9)

The matrix element is further expanded in terms of six

Equations (4.13)—(4.15) diFer from those given in the
literature. To find out the origin of the discrepancy, let
us follow the usual derivation of the low-energy theorem.
It starts with the calculation of the Born term for the ra-
diative axial-vector vertex,

'„=j "'(q) . j„(k)+j„(k), j "'(q)
iy p+k +m " " iy p' —k)+. m

+if q j 'J(q, q
—k} ig)((q k) )r'y5 . —

q +m„" (q —k) +m

This should be inserted between u (p') and u (p). The three current matrix elements take the simplest forms:

j„(k}=ie(,'F, + ,'F, r }y„i—e—(,'Fz+ ,—'F2 r'}o„„k-—.
j."'(q) =r'[iF i"(q')y. y5

—F2"(q')q. y51

(4.16)

(4.17)

(4.18)

j„'J(q,q
—k) = iee 'J(2q —k—)„.

The divergence of (4.18) is directly calculated as

(4.19)
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q j "'(q)=r'F,"(q )(iy.qy5
—2my5)+f g&(q )r'y5,

q +m
(4.20)

where the PCAC relation for the on-shell nucleons,

2

2mF,"(q ) q—F,"(q )=f g, (q ),
q2+m 2

was used to eliminate Fz (q ). The divergence of the Born term becomes

(4.21)

q 8'„= F,"(—q )[r'y5j„(k)+j„(k)r'y, ]

m+f. . . gi(q')r'y5. J„(k)+j„«). , gi(q')r'y5

2

+if zj „'J(q,q
—k) ig, ((q —k) )r~y5 .

q +m "
(q —k) +m

(4.22)

Here we have dropped terms containing iy p +m on the leftmost and iy p+m on the rightmost positions. The WT
constraint (2.42) leads to

m~
q bM'„= iee '—j~„"'(q k) if — — bM„'+F,"(q )[r'ysj'„(k)+j„(k)r'y~]q'+m'

if j„'J(—q, q
—k) ig, ((q —k) )rjy5,

(q —k) +m

where the Born approximation for the pion electroproduction amplitude,

(4.23)

8„'=ig, (q )r'y5 . j„(k)+j„(k) . , ig, (q )r~+j „'J(q,q k) — ig, ((q —k) )r'y~,

(4.24)

is subtracted from M„. Equation (4.23) is to be compared with the rigorous result (2.54). One immediately notices that
the axial-vector form factor F,"(q ) appears in front of the third term. This is brought about by the use of the axial-
vector current (4.18), which is valid only when it is sandwiched between the Dirac wave functions. The WT equation
(2.21) states that the four-divergence of the axial-vector current should not depend on the axial-vector current form fac-
tors. For the moment, we leave Eq. (4.23) as it is and see its consequence.

We now take the limit q =0 of (4.23). Substituting (4.21) into (4.18) and taking the limit q =0, one finds

j„"J(—k)= f„m " — g&(k )r'y&+iF&" (k ) y —
& y k

k 0+m (4.25)

where i y.ky5= —2m y5 is used because it is inserted between the Dirac spinors. If we follow the usual assumption that
bM' „has no singularity at q =0, we may take q bM'„=0 in the limit q =0. Equation (4.23) then determines the pion
electroproduction amplitude

b,M„'= iee 'JF,"(k—) y„"y k r'y—
5 iee ' f„&ig,—(k )r y~

+F&"(0)[iee ' r F& (k )y„yz —F&(k )r'o„k„y5—Fz (k )5;3(Tp k y5]
' . (4.26)

This does not satisfy the gauge-invariance requirement (2.58), however. Following Fubini, Nambu, and Wataghin [11],
it is a common practice to add to the Born approximation the term

. , k
iee"~ "[F,(k )

—1]ig, (0)r'y, . (4.27)

This term was originally introduced in an ad hoc way, but its origin is clarified by the additional off-shell term in (4.8),

ie~ "y.k —ie( —,'F, + ,'F, r ) "y.k, — (4.28)
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which is necessary for the electromagnetic current to satisfy the WT identity. The term (4.28), when inserted into the
Born approximation, generates exactly (4.27), as was shown by Berends and West [10]. The addition of this term to the
Born approximation entails a modification of 4M„,

b,M„' = 1 k„—iee 'J[F,"(k )
—F,"(0)F, (k )) y„—"y-k ~jys

, . k„
F&"—(0)[Fz(k )r'o„„k„ys+F2"(k )5;so„„k„ys] +ice '~

2 [g&(0)—g~(k )]ir/ys .
k

(4.29)

Here iy ky5= —2my5 is again used. One can easily
check that (4.29) satisfies the WT equation (2.58) or

substitution prescription has the four-divergence, in the
limit q ~0,

k„bM„'=ice ' [g, (0) g, (—k )]is ys . (4.30)
q G '„= iee '~—[F&"(0)—1]i y&

—
2 y k rjys .

. . k„G„'=ice '~
2 [g, (0)—g, (k )]i~'y s. (4.31)

From R„'=AM„' —G„', we get the well-known result
[8,2,3,5,6]

The last term in (4.29) is not considered by Fubini, Nam-
bu, and Wataghin [11] since the pion-nucleon vertex is
assumed to be constant in their paper [19]. This term is
necessary when the pion-nucleon vertex has the virtual
pion mass dependence. The additional term is just the
one arising from the minimal substitutions in the pion-
nucleon vertex [17]

(4.37)

G ' „does not tend to a constant, but has a singularity, so
that q G '„has a finite contribution at q =0. This singu-
larity is due to the off-shell form factors
F s"=Fs"=(1 F,")/q—, which are necessary for the WT
equation in the pseudoscalar-coupling model, although
(4.37) itself is independent of models. As seen from (3.37)
or

J' "'(q)=r'[iFi"(q }y ys F2 (q )q —ys]

Fs(k2)eg, (0)
1 2 2 (4.32) +r'[I F,"(q )] —(iy qys 2mys—), (4.38)

g'+'= F"(k )
eg, (0)

1 2 2

eg, (0) F)"(k )

2m F,"(0)
F(k )—

k2

(4.33)

(4.34)

the minimal substitution in the second term produces a
radiative axial-vector vertex proportional to q /q,
which has the nonvanishing divergence (4.37). As a re-
sult, we obtain an extra contribution to the pion elec-
troproduction amplitude,

which yields

R'= 1

P f
—iee'"[F,"(k )

—F, (k )] y„"y k rjys—

F2(k )r'o„k„ys F2—(k )5;3&@ k ys—

(4.36)

This is not yet of the form of our low-energy limit. The
discrepancy arises from the assumption q hM'„=0 in
the limit q =0. The gauge term that has been obtained
from the axial-vector current using the minimal-

It is now clear that (4.32)—(4.34} result from the use of
the axial-vector current (4.18) for the Born term. In
evaluating its four-divergence, we have to use, instead of
(4.20), the WT equation (2.21) or

2m~
q j "'(q)=~'(iy qy —2mys. )+f 2 z g, (q )w'ys,

q +m

(4.35)

iee ' [F,"(0)—1] y„2y k T—ys, (4.39)

eg, (0)EI-'= ' F'(k') .0+ 2 1 (4.40)

The amplitude (4. 15) predicted by our low-energy

which accounts for the second and third terms in Eq.
(4.15).

To summarize this section, we found the two factors
that were overlooked in the literature: (1) In calculating
the Born term for the radiative weak interaction, we have
to use the axial-vector current which contains off-shell
form factors. (2) The additional off-shell term gives rise
to a gauge term which has a non vanishing four-
divergence so that it affects the pion electroproduction
amplitude in the limit q =0.

It should be stressed that the modification of the low-
energy theorem does not violate the Kroll-Ruderman
theorem [14]. The pseudoscalar Born approximation for
the pion electroproduction gives, in the limit q =0, the
dominant multipole amplitude
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theorem is added to the Born approximation to give

eg, (0)
E( ) [F t(k 2)

2mF t" (0)

eg, (0) 1
AR6 '= [G( —m )

—1]
2mF, (0) k

which was neglected in deriving (4.15).

V. SUMMARY

(4.45)

+[Fi"(0)—1][FI(k )
—I]] . (4.41)

For the real photon with k =0, by virtue of F, (0)=1,
we recover the Kroll-Ruderman theorem

eg, (0)E( —j—
0+ (4.42)

It is noted that if it were not for the correction (4.39), the
Kroll-Ruderman theorem would have been violated.

To conclude this section, we comment on the virtual
nucleon mass dependence of the form factors. It is usual
to assume that current form factors are functions of the
momentum transfer squared, but, in principle, they de-
pend also on p and p . This inAuences the low-energy
theorem for on-shell nucleons. In the limit p =p, we
get the additional contribution

Namely, the extra term

eg, (0)
b,R I

= „(2Fi"—G +F)
2F,"(0)

p m

(4.44)

arises from the virtual nucleon mass dependence of the
axial-vector form factor and that of the nucleon propaga-
tor. The use of the full nucleon propagator also gives rise
to a correction

—i r'(p'+p)» (iF& y k+mG mF)— V5P g 2
p = —m

(4.43)

We have reexamined the consequences of the PCAC
hypothesis, gauge invariance, and current algebra on the
radiative weak interaction and pion electroproduction.
We did not use any approximation. All particles can be
off their mass shells. The axial-vector and electromagnet-
ic currents are parametrized in the most general forms
with form factors which depend on the virtual nucleon
masses and momentum transfer squared. The PCAC hy-
pothesis and gauge invariance are expressed in the forms
of the WT identities. We have split the radiative weak in-
teraction and the pion electroproduction amplitudes into
Bohn terms, gauge terms, and remainders. We wrote the
Born terms in their most general form, allowing all parti-
cipating particles to go off shell. We also wrote down ex-
plicitly the gauge terms using the minimal-substitution
method. The low-energy theorem was obtained for the
pion electroproduction amplitude. It is found that our
low-energy theorem is at variance with the result given in
the literature. The discrepancy arose from the off-shell
matrix elements of the axial-vector current. They affect
the radiative axial-vector vertex in two aspects: First,
they enter the Born term in such a way that the axial-
vector form factors do not appear in the divergence of
the Born term. Second, they generate the gauge term
which has a nonvanishing four-divergence in the low-

energy limit. It is also shown that the Kroll-Ruderman
theorem is exactly respected by our low-energy theorem.
It is desired that our approach is applied to the deriva-
tion of the low-energy theorem for the pion photoproduc-
tion at the threshold. The result will be published in a
separate paper.

[1]M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705
(1960);Y. Nambu, Phys. Rev. Lett. 4, 380 (1960).

[2] Riazuddin and B.W. Lee, Phys. Rev. 146, B1202 (1966).
[3] G. Furlan, R. Jengo, and E. Remiddi, Nuovo Cimento 44,

427 (1966).
[4] S. L. Adler and Y. Dothan, Phys. Rev. 151, B1267 (1966).
[5] S. L. Adler and F. J. Gilman, Phys. Rev. 152, B1460

(1966).
[6] N. Dombey and R. J. Read, Nucl. Phys. B60, 65 (1973).
[7] S. Scherer and J. H. Koch, Nucl. Phys. A534, 461 {1991).
[8] Y. Nambu and E. Shrauner, Phys. Rev. 128, 862 (1962).
[9] J. C. Ward, Phys. Rev. 78, 182 (1950); Y. Takahashi, Nuo-

vo Cimento 6, 371 (1957).
[10] F. A. Berends and G. B. West, Phys. Rev. 188, 2538

(1969).
[11]S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,

329 (1958).
[12] H. W. L. Naus, J. H. Koch, and J. L. Friar, Phys. Rev. C

41, 2852 (1990).
[13]E. Mazzucato et al. , Phys. Rev. Lett. 57, 3144 (1986); R.

Beck et al., Phys. Rev. Lett. 65, 1841 (1991).

[14] N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233
(1954).

[15] M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
(1958).

[16]E. Kazes, Nuovo Cimento 13, 1226 {1959).
[17]K. Ohta, Phys. Rev. C 40, 1335 (1989).
[18]F. Gross and D. O. Riska, Phys. Rev. C 36, 1928 (1987).
[19]Riazuddin and Lee [2] take into account the q depen-

dence of the pion-nucleon vertex and the k dependence of
the pion electromagnetic form factor. Their gauge term at

q =Ois

k„
iee "

[g, (0)F, (k )
—g, (k )F„(k ) ]i r'y, ,

which is the sum of (4.27), (4.31), and the correction
caused by the off-shell electromagnetic current interaction
of the pion [10],

iee'" ", [F—(k') —1]ig, {k) ' r,y.


