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Gamma emission in precompound reactions. II. Numerical application
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The analytically obtained previous results on capture gamma ray reactions are used for a direct nu-

merical calculation. It turns out that this formulation allows for a parameter-free description of gamma
emission in precompound reactions. As an example we choose reactions induced by 14.1 MeV neutrons
incident on '-Co, 'Nb, and ' 'Ta. The individual contributions of different terms to the total cross sec-
tion are discussed in detail and a comparison to experimental data is pursued.

PACS number(s): 24.10.—i, 24.60.Gv

I. INTRODUCTION II. INPUT DATA FOR
NUMERICAL CALCULATIONS

In the preceding paper [1] the gamma decay within
preequilibrium nuclear reactions was formulated and cal-
culated analytically by one of the present authors (A. H. )

and by Weidenmiiller. It is the goal of this sequel paper
to numerically evaluate the analytically obtained expres-
sions for the average S matrix and the average cross sec-
tion. This enables us to compare our calculation to ex-
perimental data and other theoretical predictions. In the
case of particle emission, such a program has recently
been pursued by Herman, Reffo, and Weidenmuller [2].
Including the giant dipole resonance (GDR) into the
description of preequilibrium nuclear reactions allows to
account for the interdependence between GDR states and
noncollective states in different exciton classes. This calls
for a careful distinction of the different physical processes
also in the numerical treatment. Thus, special care has to
be taken in relating the analytically obtained expressions
to numerically known quantities.

Throughout our numerical investigation the following
assumptions are used: (i) The residual interaction is ap-
proximated by a two-body interaction. (ii) The GDR is
treated as a doorway state with respect to the gamma
channel only. Hence, the coupling to all other channels
does not distinguish among GDR states and noncollec-
tive states in the same exciton class. (iii} Being a process
of higher order the external coupling, i.e., the coupling
among two exciton classes via a channel is neglected.

This paper is organized as follows. In Sec. II the input
data for our numerical calculations, such as level densi-
ties, transmission coefficients, and average transition ma-
trix elements between two exciton classes, are discussed.
The semidirect (SD) and the multistep-compound (MSC}
contributions to the cross section are investigated in Secs.
III and IV, respectively. In Sec. V the precompound con-
tribution, i.e., the MSC contribution modified by the SD
contribution, is worked out. Our results are discussed in
Sec. VI, and a brief summary is given in Sec. VII ~

A. Average level density

The average level density for levels of exciton class N,
ptv(E, J,n ), is given by the inverse average level spacing
of the quasibound states with (2N+1) excitons, energy
E, spin J, and parity m. We assume that the spin and par-
ity dependent part can be split off [4]:

(2J +1) —(J+I'}'
PN(E, J, tr) Ptt(E)——, exp

2 2+2m (T 2)v+) 2o (2N+))

(2.1)

where 0.& is the spin-cutoff parameter. Using combina-
torics pic(E) can be derived [4], yielding

P)v(E) P(P" E)

(p+h) p h p1)k+I
p)h )(N —1)) „~,~ k 1

X8(E kB)(E —kB)—
(2.2)

where 8 is the difference of threshold energy of the one-
body potential and the Fermi energy, p is the number of
particles, and h the number of holes.

Since we restrict ourselves to a two-body residual in-
teraction, the accessible state density, ptv'J MJ, (E), is a
useful tool. This level density is given by the average in-
verse level spacing of states in exciton class M with ener-

gy E and spin J' that are actually accessible starting from
a state in exciton class N with spin J. This level density
can also be derived using combinatorics. Here the ex-
pressions of Eqs. (12), (17), and (18) of Ref. [3] with
corrections of Ref. [4] are used.
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B. Transmissions coef5cients A. MSC matrix elements of the matrix II

For the particle channels the transmission coefficients
are derived using the optical model. We make use of the
optical model parameters of Becchetti and Greenlees [5].

The transmission coefficients for the E1-gamma chan-
nel are defined like for the particle channel as the unitari-

ty deficit of the average S matrix:
2

T~ =1—
S~y (2.3)

E, 1 E,
2n ' ' ~ (Rc)~

(2.4)

The absorption cross section has a Lorentzian form and
is given by

(E,")'r„'„
o b.(E~' )=o„,

[(E ~ )~ —E2 ]~+(E ~ )~l 2
(2.&)

For the resonance energy E„„the resonance width I „„
and the cross section in the resonance o.„„experimental
data are used as input parameters.

C. Average coupling matrix element between
noncollective states of two exciton classes

This is directly proportional to the strength function

f (E), which itself can be written as a function of the ab-
sorption cross section, yielding

Since we use a two-body residual interaction, only
neighboring exciton classes couple, i.e., (11 )M ~„WO
only if ~M N—

~
1. We analyze the individual

matrix elements (II )~ ~„. We begin by investigat-
ing the nondiagonal block ( II ')~ ~M + & ~„

2=2mpM UM ~M+, ]„2mp|M+, ]„,i.e., the transition from a
state in exciton class M to a state in the next higher exci-
ton class (M+1). There are four different types of ma-
trix elements: one type that describes the decay of a
GDR, another type that describes its creation, still
another type responsible for the single particle transitions
leaving the GDR unchanged, and, finally, there are ma-
trix elements that describe transitions among noncollec-
tive states. The question is how these matrix elements
can be related to the numerically known quantities intro-
duced in Sec. II. For this purpose, each type of matrix
element is discussed individually. For illustration, the
four possible transitions are sketched in Figs. 1(a)—1(d).

(a)

Eg
00

The average matrix element coupling noncollective
states of two exciton classes can be determined from the
imaginary part of the optical model potential. The
spreading width of a particle is given by 2W(e), where
8'(e) is the imaginary part of the optical model. To
evaluate I ~ ~M+, ~, 8'(e) has to be averaged over the
probability distribution of particles and holes. To avoid
unnecessary duplication the interested reader is referred
to [2] for further details.

(b)

Eg

(c)

0
0

Eg
0 0

0

III. MSC CONTRIBUTION TO
THE CROSS SECTION

The pure MSC contribution to the cross section is ob-
tained, neglecting the GDR built on the ground state.
Thus all matrix elements including the GDR built on the
ground state vanish. In this limit the average S matrix is
diagonal, and the average cross section is given by

0 0

~ ~
Ey

0 0

MSC
a, y Ta, Mm +Mm, Nn TNn, y

where

(3.1)

0 0 0
0

0

+6 5 „2np (I " +I ~
) (3.2)

and T. =+M T,M are the optical model transmission
coefficients. As discussed in the introduction the external
mixing has been neglected.

FIG. 1. (a) Sketch of the matrix element (H ')~ (~+„4,
m = 1, 2, or 3. (b) Sketch of the matrix element
(H ')M (,&+I)„, m, n =1, 2, or 3. (c) Sketch of the matrix ele-

(& ')M4 (M+ &)4. (d) Sketch of the matrix element

(& ')~4 (~+I), m =1, 2, or 3.
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The matrix element (II ')M (M+, )4, m =1, 2, or 3,
describes the decay of a GDR via coupling to the next
higher exciton class [cf. Fig. 1(a)]. This process is re-
sponsible for the spreading width of the GDR. This ma-
trix element can be written as

2
2mP~m V~m, (~+1)42+P(M+1)4=2mP~m I GDR (3.3)

—1 2 acc
)Mm, (M+ ] )m 2]rPMm Un. c. ]rPMm ~(M+ ])m (3.4)

where pM (E}, m =1,2, 3, is the exciton level

density pM, "'(E EoD„) —with J' = (J—1 ),J,
(J+1). pM (M+, ) (E), m =1,2, 3, are the accessible
state densities p(M' ]) J M J (E EoDR ) with—

J'=(J —1),J,(J +1), respectively. U„, stands for the
average transition matrix element between two noncollec-
tive states of neighboring exciton classes. Only nonzero
matrix elements are averaged.

The matrix element (II ')M4(M+])4 describes transi-
tions between noncollective states only [cf. Fig. 1(c)].
The matrix element is given by

For the width of the GDR the experimental value is used.
Unfortunately, there is little literature on how this width
is separated into spreading and decay width. It is known
that for heavy nuclei the spreading width is dominant,
whereas for light nuclei the reverse is true. For Pb ap-
proximately 90%%uo of the width is due to the spreading
width. For ' 0, on the other hand, 90%%uo of the width is
due to the decay width [6]. To separate the total width of
the GDR into decay and spreading width, we assume a
linear decay with A ' for the decay width starting from
5 MeV in ' 0 up to 0.5 MeV in Pb [7]. As shown
below in Sec. VI, our result depends only weakly on this
assumption. For clarity, the angular momentum depen-
dence of the level densities was not included in Eq. (3.3).
Explicitly, the level densities pM" (E) for m =1,2, 3 are
given by the exciton level densities pM ]' (E EoDR),—

~oDR}
ly. These correspond to the level densities of the noncol-
lective states on which the GDR is built.

The matrix element (II ')M (M+, )„, m, n =1,2, 3, de-
scribes the transition of a GDR state in class M to a
GDR state in class (M+1). This transition is sketched
in Fig. 1(b). In such a transition the GDR is not affected
and is just a "spectator. " This is again a consequence of
the two-body nature of the residual interaction. The
subclasses 1,2,3 differ only in the angular momenta of the
noncollective states the GDR is built on. Since a transi-
tion among these states must not change the angular
momentum this part is diagonal in the subclass indices,
i.e., (II ')M (M+, ) %0, only. Thus, these matrix ele-
ments are given by

creation of a GDR is possible only if a particle or a hole
has enough energy to create the GDR state. This is
another consequence of the two-body nature of the resid-
ual interaction. A particle with the excitation energy of
the GDR resonance energy generally is unbound. Thus,
only a hole has a nonvanishing probability. The proba-
bility for a hole to have the energy e with the total exci-
ton number (p +h) is given by

p()Np(p, h —1,E E)—
p(p, h, E)

(3.6)

where p(p, h —1,E e) —is the level density of the remain-
ing excitons —after removing a hole of the energy e.
p(p, h, E) is the total level density at energy E for (p +h)
excitons. N is the normalization constant,

1 E p(p, h —l, E—e}d
N o p(phE)

(3.7)

The integrals are evaluated using Eqs. (12) and (13) of
Ref. [4]. One obtains

1 p(p, h —l, E e)—
N p(p, h, E)(p+h —1) ()

p(p, h —1,E)
p(p, h, E)(p +h —1)

(3.&)

p(p, h —1,E EoDR)—
p(p, h, E)

Collecting everything yields

(3.9)

(3.10)

p(pyh 1~E EoDR )
(11 ')M4, (M 4. ]) =2~PM4(E)l'oDR

p p, h, E
(3.1 1)

Thus, all four types of matrix elements within the block
(M, M+1) have been determined. It remains to analyze
the matrix elements of the blocks (M + 1,M) and (M, M).

The matrix element ( II )(M + ] ) M„ is obtained using
the symmetry properties of the matrix H '. The diago-
nal elements of this matrix can then be obtained by sum-
mation:

n=1
4

+ X (II '}M,(M —]) +XTM,

Hence, the probability for a hole to have the energy
E &END~ is given by

J P(E)de= f p(p h —1,E e)d E-E (p +h —1) E

( & ) ( )
=27Tp (E)v 27rp ( )(E) (3.s) n=1

(3.12}

The matrix element (II ')M4(M+]), m =1,2, 3, de-
scribes the creation of a GDR in the next higher exciton
class [cf. Fig. 1(d)]. The Hamiltonian matrix elements
that describe the creation of a GDR are identical with
those that describe the decay of a GDR. However, the

IV. SD CONTRIBUTION TO
THE CROSS SECTION

Next, the contribution due to the average S-matrix ele-
ment, S, z, is investigated:
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2mB;() 1 2mB' o

(1+X,) (E E—o)2+-,'I o (1+X )
(4.1)

In terms of the expressions introduced in Sec. II, this first
part of the cross section is

where
27r8ao ) Ta

(1+X,) 4 pi
(4.4)

2m 8'0,
~o X 1+ + Xuo, M 2~pM

c c Mm

(4.2)

Again, we ask how this expression can be related to the
quantities introduced in Sec. II in a way that is consistent
with the precompound part of the cross section. The
cross section (4.1} factorizes in three parts:
2n. W, o/(1+X, ) describing the coupling of the entrance
channel a to the GDR built on the ground state, the
propagator 1/[(E Eo) + ——,'I o] and 2m. W o/(1+X )

describing the gamma decay of the GDR. We will ana-
lyze each term individually. Multiplying numerator and
denominator by X, =2~+M u, M pM we can rewrite
the first term as

For the propagator the resonance energy, decay, and
spreading width of the GDR are used. Again the decay
width is modified by X, which are determined from the
respective transmission coeScient.

The term 2~8'0 is the gamma decay width of the
GDR. We stress, however, that it is not the total gamma
decay width but rather the width for the gamma decay
into a certain energy bin in order to obtain a spectrum.
This can be expressed in terms of the transmission
coeScients:

E p(E Er '—
,Jf, mf )

2n. WO dE '= T (E ')dE ' . (4.5)or r p(EJ ~) r r

20 X 2~8 ',
(1+X,)2 (1+X,) 2n gM u, M pM

(4.3) V. PRECOMPOUND PART
OF THE CROSS SECTION

We recall that the transmission coemcient for a fixed
channel a is given in microscopical terms by
T, =4X, /(1+X, ) [cf. Eq. (E5) in Appendix E of the
preceding paper]. Due to the two-body nature of the re-
sidual interaction the entrance channel can only couple
to the first exciton class. This removes the M summation.
We assume the average Hamiltonian matrix element cou-
pling channel a to the GDR build on the ground state to
be equal to the matrix element coupling this channel to a
noncollective state within the first exciton class. This is
synonymous to the assumption that the GDR forms a
doorway state with respect to the gamma channel only.

In Sec. III we discussed the MSC part of the cross sec-
tion. It is the goal of the present section to analyze the
precompound part including the GDR built on the
ground state. Neglecting external coupling, the latter
part is given by [cf. Eqs. (4.5)—(4.8) of the preceding pa-
per]

~fl —~ (T T }Mm Nn+(T &T )Mm Nn
a y ~ ay ya aa Mm, Nn

MmNn

(5.1)

where

2 1 2
(11 ')Mm N„= 2npMmuM—m Nn2mPNn 2nPMmuMm, o 2 i 2 O, Nn PNn

(E Eo) + —,'I o—

+oM, N5, . 2~PM IM +2&PM uM,o, , —, Io+2~X2 Oc

(E —Eo)'+ —,'Io, (&+X,)'

+ATM, 1—
lr 2m 8'0,

(E E)2+ & I 2 (1+—X, )
(5.2)

and

—,'r, 2m. 8' 2n. 8'
(E E) + —,'I (1+X,—) (1+X,} (E E}+ —,'I—

—,'r, 2~W2„
X T Nn 1rN(E , E }2+ 1.2 (1+X )

4

2~8'yo 1+
(1+X ) (E—Eo) +—,'I o

(5.3)
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(T T )Mm Nn
ay ya

2m 8',0 1 2m 8'yo

(1+X,)' [(E—Eo)'+ —,'I'o]' (1+Xr)'

~0 Xa, Mm Xy, Mm
PMm 0, Mm 2 1+X 1+X+ 2 ~0 Xa, Nn Xy, Nn

PNn o'Nn+ 2 1+X, 1+X

+(E Eo—)
a

Xy, Mm Xa, Nn

1+Xy 1+X,
Xy, Nn

1+X (5.4)

Again the question is how to determine the terms not yet
discussed using the expressions introduced in Sec. II.
First, the terms in the matrix II ' are analyzed.

The expression 2mpM vM 0 describes the coupling of
states in class Mm to the GDR built on the ground state.
Due to the two-body nature of the residual interaction,
these elements have a nonvanishing contribution only for
M =2. Depending on the subclass m, two types of these
matrix elements need to be distinguished: for m =4 the
coupling includes a noncollective state whereas for
m =1,2, 3 it is a transition including the GDR as a spec-
tator. The former include the same matrix elements as
for the GDR decay weighted with the probability for a
hole having enough energy to create a GDR (cf. Sec.
III). One obtains

doorway state.
The transmission coefficients are also modified due to

the presence of the doorway state; cf. Eqs. (5.3) and (5.4).
The individual terms can be rewritten using terms al-
ready discussed. This modification is again due to a
higher order process, i.e., the coupling of a channel to a
state in a specific exciton class via the doorway state. It
turns out that also these modifications can be neglected.

VI. RESULTS AND DISCUSSION

We have calculated the (n, y) cross section for neu-
trons with an incident energy of 14.1 MeV. As an exam-

MSC only

g Po
2~P24v2 0 =I 0

P24
(5.5)

10
: (a)

The latter type, i.e., m =1,2, 3, can be obtained as in Sec.
III using the noncollective transition matrix element and
the appropriate level densities. The propagator is the
same as in the SD contribution analyzed in the preceding
paragraph. The term voMN„2mpN„describes the transi-
tion of the GDR built on the ground state to a state in
class Nn. This term also vanishes for N&2, and again
there are two types of transitions depending on the sub-
class n. Both types are determined in the same way as
the respective transitions discussed in detail in Sec. III.

The term

II

10 II

0

10 :(

10 15
E (MeV)

~
/

I ~ ~

20

MSC only
I e ~ s s I I ~

25

is of the order A ', where A stands for the number of
channels. This becomes clear using the following argu-
ment. The largest contribution is obtained for E=Eo.
2n.+,Wo, is the decay width of the GDR and thus

g, m. &02, /(1+X, )~lot/2(IO. Thus, the total expres-
sion summed over all channels is of the order of 1, and a
single term is of the order A ' and thus small compared
to 1. This term was hence neglected.

Using (5.2) instead of (3.2) for the matrix II in Eq.
(3.1) changes the value for the cross section only slightly.
This change is six orders of magnitude smaller than the
actual value of the cross section. This is due to the fact
that all the terms of the matrix II discussed in this sec-
tion are, like the external coupling via a 'channel, process-
es of higher order —the coupling of two classes via the

0
~ ~

5 10 15 20 25
E (Mev)

FIG. 2. (a) MSC spectrum for the reaction Nb(n, y) Nb,
E„=14.1 MeV. The dashed lines give the contribution of the
decay of the exciton classes 2 through 6; the solid lines gives the
total contribution. (b) MSC spectrum for the reaction

Nb(n, y) Nb, E„=14.1 MeV. The dashed lines give the con-
tribution of the decay of the exciton classes 7 through 12; the
solid line gives the total contribution.
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pie, Nb, Co, and ' 'Ta have been chosen as target nu-
clei to cover a large part of the periodic table. There ex-
ist experimental data for these target nuclei as well as
theoretical predictions of other models allowing for a
comparison. The parameters for the gamma absorption
cross section have been taken from Ref. [8] for Ca and Ta
and [9] for Na, respectively.

Figures 2 —4 show the precompound gamma spectra
for these nuclei. Only primary gamma emission was tak-
en into account. The gamma emission from the individu-
al classes is shown explicitly. The first three exciton
classes' contributed to the GDR peak whereas the higher
classes make up the compound nucleus peak. The peak
energy moves to the left of the spectrum with growing ex-
citon number. This is due to the fact that the cross sec-
tion is weighted by the level density of the residual nu-

10
- (a)

0
10 =

-1
10

-2
10

10

10

0

MSC only
I s & i s I & &» I & s & i I s

' 'Ta(n, y)' Ta

s & ~
I

& & & s

5 10 15 20
E (MeV)

MSC only
~ a i i I I & i I I i s s

(b)

I g i i i I

'ra(n y)

MSC only
n0 I I I i I I I I i I I I I I I I I I I I I I I I

10 =

-(a) '~Co(n, y) "Co 10

10

10

10
0

~ F
I

~ ~ ~ I
I

I I I I~ ~ I ~
I

~ ~ I ~
I ~ I

5 10 15 20 25
E (MeV)

10
0

10

I/ / Ii
II / p
il /

II / /
~

I
I I ~ ~

I
I ~ I I

I
I ~ I I

10 15 20
E (MeV)

0
I i & i & I

- (b)

MSC only
I I I I I I I I

"Co(n,y)SOCo

25
FIG. 4. (a) MSC spectrum for the reaction siTa(n y)i Ta

E„=14.1 MeV. The dashed lines give the contribution of the
decay of the exciton classes 2 through 6; the solid line gives the
total contribution. (b) MSC spectrum for the reaction
"'Ta(n, y )

is Ta, E„=14. 1 MeV. The dashed lines give the con-
tribution for the decay of the exciton classes 7 through 12; the
solid line gives the total contribution.

—2
10

10

10
0

I

I/
/

//
/

/
/

/

/ /
s ~

I
& t & &

I
~

10 15
E (MeV)

20 25

10

10
1

10'

) Nb

FIG. 3. (a) MSC spectrum for the reaction Co(n, y) Co,
E„=14.1 MeV. The dashed lines give the contribution of the
decay of the exciton classes 2 through 6; the solid line gives the
total contribution. (b) MSC spectrum for the reaction
' Co(n, y) Co, E„=14.1 MeV. The dashed lines give the con-
tribution of the decay of the exciton classes 7 through 12; the
solid line gives the total contribution.

10'e

10

0
~ ~ I I

I

5 10 15 20 25
E (MeV)

'They actually correspond to the exciton classes 2 through 4,
since the first exciton class makes a gamma decay via the SD
process only.

FIG. 5. Total gamma spectrum for the reaction

Nb(n, y) Nb, E„=14.1 MeV (solid line). The dashed lines

give the MSC and the SD contributions of the (n, y) reaction
and the contribution of the (n, n'y) reaction, respectively. The
experimental data were taken from [10].
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cleus. The latter grows with the excitation energy. The
growth increases with exciton number.

Comparison of such a spectrum with a typical spec-
trum for particle emission, e.g., for a (n, n') reaction,
shows that both spectra are similar in shape. In the case
of particle emission, too, the higher exciton classes tend
to be responsible for the compound nucleus peak,
whereas the first few exciton classes create a peak at a
higher energy in the spectrum. The latter is not as
strongly pronounced as it is in the case of gamma emis-
sion. The difference lies in the E dependence of the
transmission coefficient for the gamma channel. Also,
the absolute value of the two cross sections is very
different. In the case of particle emission, the second
peak is of the order of a few hundred mb. On the other
hand, in the case of gamma emission the latter is of the
order a few hundred pb.

Figures 5 —7 show the total gamma spectrum as a sum
of the SD contribution, the precompound contribution,
and the gamma emission after emission of a neutron, i.e.,
(n, n'y). The latter was treated by a Hauser-Feshbach
calculation. For a complete description of the gamma
spectrutn, the contribution of the (n, 2ny) and of the
(n,py) reactions should also be considered. This yields
an even steeper exponential falloff at small energies. For
a comparison, experimental data have also been plotted.
These data were taken from Refs. [10] and [11]. Compar-
ison of our predictions with these experimental data
shows nice agreement without the need of any free pa-
rameters. For Nb and Ta our calculations predict slight-
ly higher values than observed experimentally whereas
for Co we obtain slightly smaller results. It should be
mentioned that our result depends very sensitively on the
GDR parameter, i.e., the absorption cross section. If, for
example, the GDR parameters for Nb had also been used
for Co, the theoretical predictions in the Co case would
also have been slightly higher than the experimentally ob-
served data. Furthermore, different experiments yield
different results for the gamma absorption cross section.

10

10
j,

10

10

b~ 10

10
0

l

I
I \ I I

~

~ ~ ~ I

5 10 15 20 25
E (MeV)

FIG. 7. Total gamma spectrum for the reaction
"'Ta(n, y)' Ta, E„=14.1 MeV (solid line). The dashed lines

give the MSC and' the SD contributions of the (n, y) reaction
and the contribution of the (n, n'y) reaction, respectively. The
experimental data were taken from [11].

In all three cases, the SD part of the cross section is
small compared to its MSC part. A major reason is the
terms X, appearing in the SD part. These terms take
into account the possible coupling of the channels to the
noncollective states. This causes the Aux that couples the
channel to the GDR built on the ground state to be re-
duced. For illustration, Fig. 8 shows the SD cross section
for X, =0. Our numerical approach to the SD term is
very different to conventional DSD calculations, where
the individual matrix elements are calculated microscopi-
cally. This makes a comparison of the two theories doing
justice to both difficult. Our motivation has not been to
reproduce existing DSD calculations but merely to use a
consistent numerical treatment for all different physical
processes discussed earlier. We thereby limit ourselves to
only using the input data discussed in Sec. II to avoid us-

ing free parameters.
In Table I we examine the dependence of our results on

the relation I ot/I'o using Nb as an example. The form of
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FIG. 6. Total gamma spectrum for the reaction
Co(n, y) Co, E„=14.1 MeV (solid line). The dashed lines

give the MSC and the SD contributions of the (n, y) reaction
and the contribution of the (n, n'y) reaction, respectively. The
experimental data were taken from [10] (~ ) and [11] (6, ), re-
spectively.
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FIG. 8. SD gamma spectrum for the reaction Nb(n, y) Nb,
E„=14.1 MeV. The solid line gives again our result. The
dashed line shows this spectrum for X, =0 for a comparison.
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TABLE I. MSC- and SD-peak cross section in pb for the re-
action Nb(n, y) Nb as a function of the ratio I p /I p.

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SD

19.4
19.2
19.0
18.8
18.6
18.5
18.3
18.0
17.9
17.7

MSC+SD

(I b)

276
273
265
257
248
241
233
226
220
214

the cross section is not changed but the variation of this
ratio affects only the absolute value of the spectrum.
Hence, it suffices to analyze the value of the SD and the
precompound cross section in the peak as a function of
this ratio. With increasing I o~ and thus decreasing I 0~, it
becomes more likely for the GDR to decay into a more
complex state than into a channel. This explains the
monotone decrease of the cross section as a function of
this ratio. It also turns out that our result depends only
weakly on this ratio, especially in the realistic regime that
lies for Nb between 60% and 80%%uo.

Since it is experimentally relatively easy to create 14.1

Me V neutrons most of the experimental data for
neutron-induced reactions are taken using 14.1 MeV neu-
trons. Our theoretical description, however, is not re-
stricted to this energy. Nonetheless, it is sensible to
choose the energy of the projectile in this regime since
there the preequilibrium contribution is largest. For a
much smaller incident energy it becomes unrealistic to
excite the GDR. On the other hand, if the incident ener-

gy is much larger the cross section is dominated by direct
reactions. For high incident energies it is very likely that
the residual nucleus after emitting a photon is left in a

continuum state which is not treated in this model.
Our calculations can be carried out for any nucleus for

which such a statistical treatment is justified provided the
gamma-absorption cross section is known. Thus, our
model can make predictions.

VII. SUMMARY

The results of the preceding paper [1] were applied to
numerically calculate the total (n, y) cross section for
14.1 MeV incident neutron energy. As an example Co,

Nb, and ' 'Ta were chosen as target nuclei. We formu-
lated the results derived in [1] in terms of numerically
known quantities such as the absorption cross section,
level densities, and optical model transmission
coefficients. This shows that practical calculations within
a fully quantum mechanical theory are feasible and allow
for a parameter-free description of such processes. It
turns out that this description is in good agreement with
the experimental data and is valid for all nuclei through
the periodic table where such a theoretical description is
justified (cf. [1]).

However, our numerical treatment can still be im-
proved. We are currently investigating the effect of using
more realistic level densities calculated in a large shell
model space. Especially for the smaller exciton classes
this could yield a major improvement. This would par-
ticularly improve our result for the SD contribution.

In this sense, we view this paper as a step towards a
physically sound approach being able to treat consistent-
ly all major mechanisms leading to gamma emission.

ACKNOWLEDGMENTS

We are grateful to F. S. Dietrich and H. A.
Weidenmuller for helpful discussions. We also thank H.
A. Weidenmuller for a careful reading of the manuscript.
One of us (A.H. ) wishes to thank M. Herman and G.
Reffo for their kind hospitality. We thank the Depart-
ment of Energy for partial support during the completion
of this work.

[1]A. Horing and H. A. Weidenmiiller, Phys. Rev. C 46, 2476
(1992), the preceding paper.

[2] M. Herman, G. Reffo, and H. A. Weidenmiiller, Nucl.
Phys. A536, 124 (1992).

[3] K. Stankiewicz, A. Marcinkowski, and M. Herman, Nucl.

Phys. A435, 67 (1985).
[4] P. Oblozinsky, Nucl. Phys. A453, 127 (1986).
[5] F. D. Becchetti and G. W. Greenlees, Phys. Rev. 182,

1190 (1969).
[6] G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, Rev.

Mod. Phys. 55, 287 (1983).
[7] G. F. Bertsch, private communication.

[8] S. S. Dietrich and B. L. Berman, At. Data Nucl. Data
Tables 38, 199 (1988).

[9] H. Gruppelaar and P. Nagel, NEA Data Bank—
Newsletter Nr. 32, Gif-sur-Yvette, France (1985).

[10]F. Rigaud, J. L. Irigaray, G. Y. Petit, G. Longo, and F.
Saporetti, Nucl. Phys. Aj.73, 551 (1971).

[11]M. Budnar et ttl. , International Atomic Energy Agency
Report INDC(YUG)-6/L, 1979.


