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Gamma emission in precompound reactions. I. Statistical model and collective gamma decay
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We extend the theory of particle-induced precompound reactions by including gamma decay. We use

the Brink-Axel hypothesis and consider the gamma emission of giant-dipole resonances built on the

ground state and on the excited states of the composite system. The latter are modeled as multiparticle

multihole excitations. In this way, we combine the statistical ansatz and the chaining hypothesis typical

for precompound reaction theories, with the collective aspects of gamma decay. Formulas for average S
matrix and average cross section are derived in this framework.

PACS number(s): 24.10.—i, 24.60.GV

I. INTRODUCTION

The theory of preequilibrium nucleon-induced nuclear
reactions has been widely discussed and well established,
both within classical models and in quantum-statistical
formulations. On the other hand, the emission ofphotons
in a preequilibrium nuclear reaction has found attention
only in the last decade. Models for preequilibrium nu-

clear reactions are statistical in nature, while gamma
emission mainly originates from the decay of the electric
dipole giant resonance, i.e., from a highly collective and
nonstatistical mode of nuclear excitation. The theoretical
modeling of gamma emission in precompound reactions
thus requires a suitable combination of statistical and col-
lective aspects of excited nuclear states. This is the prob-
lem which we address in this paper.

We focus attention on the gamma decay of the E1 gi-
ant resonance(s) and neglect all other sources of gamma
radiation. We make use of the Brink-Axel hypothesis [l]:
Each nuclear state (ground or excited state) serves as the
ground state of an E1 giant resonance excitation. The
gamma emission in a precompound reaction is due to the
combined action of all these giant resonance states. Fur-
thermore, we carefully distinguish in the very ansatz of
our theory between the purely statistical n-particle n-hole
states and the collective states carrying the dipole transi-
tion strength. This allows us for the first time to account
for the interdependence between deexcitation amplitudes
involving different giant resonance states as we11 as for
the interdependence between these GDR states and non-
collective states. In this way, we arrive at a formulation
which encompasses the model of the direct-semidirect
capture process, the exciton model, etc. , as special cases.
We believe that this contributes to a better conceptual
understanding of both the reaction itself, and of various
ways of modeling it.

The aim of the present investigation, however, goes
beyond establishing a formal framework which contains
several models as special cases. The expressions for
energy-averaged cross sections for gamma emission de-
rived below can be used for a direct numerical calcula-
tion. It turns out that once the multistep compound

nucleon-induced reaction (without gamma emission) is
properly accounted for in terms of the purely statistical
part of the precompound theory, and the E1 absorption
cross section is taken from experiment, the present for-
mulation allows for a parameter-free calculation of gam-
ma emission in precompound reactions. This is shown in
a paper by one of the present authors (A. H. ), Herman,
and Reffo which forms a sequel to the present publica-
tion, and in which a comparison with experimental re-
sults is made.

In our statistical modeling, we follow the theory of
multistep-compound processes as formulated by Nishio-
ka, Verbaarschot, Weidenmiiller, and Yoshida (NVWY)
[2]. We refer to this work as the NVWY model. We also
use the techniques applied in this paper for the calcula-
tion of the average S matrix and the average cross sec-
tion.

We limit ourselves to nucleon-induced reactions. We
could apply our model also to other light-ion-induced re-
actions. However, both deuterons and alpha particles are
isoscalar and are thus not suited for the excitation of di-
pole states. Moreover, we focus attention on the energy
region between 10 and 20 MeV incident energy where
preequilibrium decay is dominant.

We discuss our ansatz in Sec. II, introduce the generat-
ing functional in Sec. III, present the expressions for
average S-matrix elements and average cross sections in
Sec. IV, give a physical discussion of our results in Sec.
V, compare with other models in Sec. VI, and close with
a brief summary in Sec. VII. In writing this paper, we
have faced the diSculty that the formal manipulations
which lead from the ansatz to the expressions for average
S matrix and average cross section are rather complex.
We wanted to present our work in such a way that the in-
terested readers should be able, from the information
supplied, to check our calculations, and that other
readers not interested in the formalism should nonethe-
less be able to understand both our ansatz and our re-
sults. We have attempted to meet this dual requirement
by relegating all technical details to a series of appen-
dixes. Readers not interested in the formalism are ad-
vised to go from See. II straight to Sec. IV.
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II. ANSATZ

The starting point for any theory of precompound re-
actions is a division of the Hilbert space into classes of
states of different complexity. To take into account the
pairing interaction we use a quasiparticle basis, so that a
particle-hole pair corresponds to a two-quasiparticle
state. States in a given class then have the same number
of quasiparticles (excitons}; neighboring classes differ in
their exciton number by two. The classes are labeled by
capital letters M, N, where M, N stand for the numbers of
exciton pairs; the states within a class are labeled by
small letters p, v.

In the NVWY approach, it is assumed that the sub-
block H~„~„of the Hamiltonian matrix referring to a
fixed class M can be modeled as a member of the Gauss-
ian orthogonal ensemble (GOE). This is the essential sta-
tistical input for the theory. In order to account for the
existence of giant dipole resonances built on the ground
and on the excited states of the composite nucleus, we
have to modify this assumption. We do this by dividing
the states in each class M into those which are dipole ex-
citations on lower-lying states, and into others which are
not.

For this purpose, two assumptions are used. (i) Brink-
Axel hypothesis [1]: Each nuclear state (ground state or
excited state) serves as the basis of a giant-dipole reso-
nance (GDR) excitation with identical properties (excita-
tion energy, spreading width). (ii) Tamm-Dancoff ap-
proximation (TDA) (cf., e.g., [3]): The giant resonance
built upon a state with 2(N —1) excitons is a linear super-
position of 2N exciton states.

The first assumption is good if the GDR is built on rel-
atively low-lying states for which the mean field is essen-
tially the same as for the ground state. In heavy-ion reac-
tions, the composite nucleus may be excited in such a
way that the mean field is changed. The GDR built on
such excited states may have properties which differ from
those of the GDR built on the ground state, and the
Brink-Axel hypothesis is not applicable. For nucleon-
induced reactions and in the energy region of interest, the
Brink-Axel hypothesis is a good assumption.

The TDA is not as good a description of giant reso-
nances as the random-phase approximation (RPA). In al-
lowing for particle-hole pairs in the nuclear ground state,
the RPA includes ground-state correlations and divides
the E1 strength among several excited states, thereby
yielding a realistic description. Unfortunately, we cannot
accommodate ground-state correlations in the exciton
picture and therefore make the simple second assumption
listed above. We make up for this deficiency by allowing
the GDR in exciton class M to couple with the statistical
states in class (M + 1). This mechanism provides a
spreading width for the GDR. In this way, a reasonably
realistic description is obtained in spite of the
simplifications inherent in assumption (ii).

To incorporate these assumptions into our precom-
pound scheme, we label the states in class N with the
quantum numbers (N, J,n, p) where J indicat. e spin and
parity. We divide the class (N, J,~) into four subclasses
labeled N 1, . . . , N4. The states in subclasses Nn,

n = 1,2,3, are GDR excitations on states in class (N —1)
with spins J —1, J, and J+ 1, respectively, and opposite
parity. This is sketched in Fig. 1 where the possible di-
pole transitions are indicated by arrows, and Eo is the ex-
citation energy. The states in class N4 (not shown in Fig.
1) are statistical states with zero dipole transition
strength to states in class (N —1). Since we assume that
the GDR is an eigenstate of the nuclear Hamiltonian, the
matrix HN„N„becomes block diagonal in the labels Nn,
n=1,2,3 4:

HNN

H

HN2, N2

0

0

0

HN4, N4

(2.1)

OO ~ ~ OO ~ 0

(E —Ep} (N —1)

(J —i)-" (J + 1).—

FIG. 1. Construction of a basis.

The density of the states in subclass Nn (n= 1,2,3) at exci-
ton energy E is given by the density of states in class
(N —1) at energy (E—Eo) with the proper spin, while
the density of states in class N4 makes up the difference
to the actual level density at energy E. We observe that
the density of states in subclass N4 is very much larger
than that in any of the other three. It is obvious by con-
struction that only the states in subclasses N1, N2, N3
couple to the gamma channels; each eigenstate of HN„N„
with n =1,2,3 carries the full GDR transition strength.

It remains to specify the properties of the diagonal
blocks H~„~„ in Eq. (2.1). It goes without saying that we
model HN4N4 as a member of the GOE. This is consistent
with the entire NVWY approach. But what about the
states in subclasses Nn, n=1,2,3. Figure 1 shows that
these states must be modeled in the same fashion as the
states of spin J—1,J,J+ 1 at excitation energy (E —Eo)
It is not clear a priori that for these states a statistical
model is adequate.

In this paper, we assume that the GDR built on the
ground state (the state with N =0) does not have statisti-
cal properties, whereas the GDR built on all states with
N ~ 1 do have statistical properties and obey GOE statis-
tics, so that for these states the diagonal blocks HN„N„
with n= 1,2,3 are also members of a GOE. This division
into nonstatistical and statistical states is admittedly arbi-
trary. Given sufficient information on spectroscopic
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properties of low-lying N =1 states in the composite sys-
tem, one could single out some GDR states in classes Nn
(n=1,2,3) with N=2 and treat them individually and
nonstatistically, too. Our formalism allows for this possi-
bility. We doubt, however, whether this eff'ort would be
worthwhile because the remaining statistical features of
the system are probably so strong as to wash out all
traces of this individual treatment. The results in the fol-
lowing paper demonstrate this feature clearly for the

I

GDR built on the ground state. We have isolated this
state, and treated it separately, for two reasons: (i) to
demonstrate the feasibility of such a procedure within an
otherwise statistical approach and (ii) to separate in the
final expressions clearly the direct-semidirect process
from the precompound reaction.

With these approximations, the Hamiltonian H in the
space of exciton configurations attains the following ma-
trix structure:

0

V10,21

V10,22

V1o,23

V10,24

V1o

~14, 14

T
~14,21

T~ 14,22

T~ 14,23

TH 14,24

T0 14, 31

T
V10,21

~14,21

H21, 21

0

T
V1o,22

T
V10,23

~14,22 H14, 23

0 0

0

&23,23

T
V1o,24

T
V10,31

~14,24 ~14,31

0

0

~22, 31
' ' '

+24, 31

+31,31

+24, 24

T T T T021,31 ~22, 31 ~23, 31 H 24 31

(2.2)

The entries all stand for block matrices except for the first diagonal element which stems from the single GDR built on
the ground state. All other diagonal blocks stand for independent GOE s, with a variance determined from the ap-
propriate level density as discussed above. Matrix elements coupling classes with different exciton numbers N and M,
where NAM, are random Gaussian variables with zero mean and the same variance as used in applications of NVWY
theory,

HMmp, Nnv 5Miv5mn5pv Mm

~Mnp, Nnv 6MN5mn 5&vAMm +5HM~p ~„v

5HMmp, Nnv5HM'm'lJ, ', N'n'v' CMmNn(5MM'5NN'5mm'5nn'5piJ, '5vv'+5MN'5NM'5mn'5nm'5pv'5'')

(2.3)

(2.4)

(2.5)

Snb 5nb 2&a g Wn, Mi (D )br„,evP b
MpXv

(2.6)

where

Dorp JV v E5bI~5„v H~i„~—v+ i a g W—, Mi W, ~v . (2.7)

For our purpose, we identify the channels a and b with
the nucleon and the gamma channel, respectively. It
turns out not to be necessary to define the coupling ma-
trix elements W, M„connecting channels and exciton
states explicitly. Our results in Sec. III depend only on
certain functions of these matrix elements which are re-
lated to the transmission coefficients. For the nucleon
channels, the latter are determined as in Ref. [4] while for

For the matrix elements labeled V in Eq. (2.2), it suffices
to assume the orthogonality relations in Appendix B.
This analytical investigation is kept general in the sense
that we do not restrict ourselves to a two-body interac-
tion. This restriction will be used, however, in our nu-
merical application (cf. [8]).

With H defined in Eq. (2.2), we write the scattering ma-
trix S,b(E) in the form

the gamma channels, the transmission coefficients are
determined from the gamma-absorption cross section on
the ground state of the composite system. Our definition
of the model is therefore complete.

This model is peculiar in that it contains only the
multistep-compound (MSC) process, and not the
multistep-direct (MSD) one. Modeling the states of each
subclass Mm by a GOE automatically implies a restric-
tion on quasibound configurations and thus on the MSC
process. For this theory to be consistent with the MSC
process for particle emission it is inevitable to model the
states in subclass M4, i.e., the noncollective states in exci-
ton class M, as quasibound states. Our justification for
using a MSC description of the states in subclasses Mm,
m=1,2,3, for M~2 lies in their construction. These
states are GDR excitations on exciton states with excita-
tion energy (E Eo ); cf. Fig. 1. Fo—r excitation energies E
of 20 MeV and a giant-dipole resonance energy Fo of 15
MeV, these exciton states are quasibound configurations
and must be modeled in the framework of the MSC pro-
cess. However, the GDR state, built on these states, may
be a quasibound or a continuum state. Our formulation
allows for both possibilities. The only factor of impor-
tance is that the states which the GDR is built on and de-
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cays into in the case of a gamma decay are quasibound
configurations.

EQ V

V H (3.3)

III. SMATRIX AND GENERATING FUNCTIONAL

Ob

S,b(E) =5,b 2i n( —W, p, W, )D (3 ' 1)

with

E 0 Wo
D=

0 E
—8+in g W (Wp„W ),

C
C

where

(3.2)

In this section, we write the S-matrix element S,& and a
pair of S-matrix elements S,b S,d as derivatives of a suit-
ably chosen generating functional. This is the first step in
a procedure which permits the calculation of the ensem-
ble average over these quantities. We do this in such a
way that we emphasize the additional complications of
the present problem compared with the NVWY ap-
proach. Our notation is largely the same as that used by
NVWY.

We start from the representation of the S matrix as in-
troduced in Eqs. (2.6) and (2.7) with the additional subdi-
vision into the subclasses just introduced:

W, =I W, M „j,
V =IVp~ „j,
H= jHMmq N„„j .

(3.4)

(3.5)

(3.6)

The "zeroth" state, describing the GDR built on the
ground state and forming the only nonstatistical state,
has been spht off. In the following, we will refer to this
state as the doorway state. Without this state the NVWY
calculations remain unchanged except for the additional
index labeling the four subclasses. Thus, the block on the
right bottom of Eq. (3.1) together with (3.2) describes the
MSC process which takes into account the GDR built on
excited states. The block on the left top of Eqs. (3.1) and
(3.2) describes the decay of the GDR built on the ground
state. The nondiagonal elements of this equation cause
the mixing and are hence responsible for the interference
of these two processes. This is possible by means of inter-
nal mixing via the Vo ~ „and by external mixing via
in.g, Wp, W, M „.

The forrnal problem is due to the doorway state and its
coupling to the statistical states. To handle this problem,
the doorway state is split off. Equation (3.2) can be
rewritten with the help of (F2)

1
S~b(E) 5~b — 2l ar W~pGp Wpb + u~ r r ubE H+im+—, W, W, vGpv—

(3.7)

where

1
Go =

E Ep+i lr+, W—p,

vr= —Vr+in g Wp, W,

(3.8)

(3 9)

W G "—W (3.10)

The generating functional for the second term of Eq. (3.7) is

Z,b(Ej l ) = fd [p]exp —p D,b( j& )p

D,b(j, )=14 E H+in g W—, W, —vGpv +jlI48(ubu, +u, ub ),
C

where

= ( I Sbfm p j, I SMm ~ j, I +Mm p j & I +Mm p j ) .

This yields

(3.11)

(3.12)

u, D ub —— Z,b(Ej l ) =— Z,b,d(E,J l,J2)
a

4 BJ( J. =0 4 ~J)
(3.13)

where

D =E H+i~g W,—W, +vGpv (3.14)

Zgb, d(E,J, ,J2):=Z,b(E,J l )Zqd(E, JP ) . (3.15)
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Using the definitions (A9) the two-point function is given by

2

(u, D uz)(u, D ud ) = Z,b«(Ej, ,j2)T —1 T —1

16 Bj,Bj2
(3.16)

It is our goal to evaluate the average S matrix and the average cross section. For this purpose, the generating function-
al is averaged over the ensemble of Hamiltonians. This averaging is performed in Appendix A. As a result one obtains

~MmNn
2

A.

lim Z,&«= Jd [pro]exp — g 2 z trgIoo o'o"}——trgtln(E —XG+iW vG—pv +j,&«)}
NMm MN M & N ~Mm~Nn

m, n m , n

(3.17)

where the index G stands for Goldstone modes and

~Q ~MN~mn ~pv+ G (3.18)

IV. AVERAGE S MATRIX AND AVERAGE CROSS SECTION

The next step is to evaluate the average S matrix and average cross section. These quantities are essentially obtained
by partial differentiation of the average generating functional with respect to j„and j, and j2, respectively, and then
setting the source term equal to zero. The calculation is carried out in Appendixes C and D, respectively. As a result
one obtains for the average S matrix

W, o 1S,q(E) = —2in.
(1+X,) i(E —Ep ) +—g, [2n. Wp, /( 1+X, ) ] +gM 2nv p I pM

Wpb (1 X )

(1+Xb) ' (1+X,)
+6,b (4.1)

The first term describes the so-called "semidirect" process (SD): "direct" —since the average S matrix is no longer di-
agonal in the channel indices —and "semi"—because the decay goes via a resonance. The SD term factorizes in three
parts: t)/2nW, p /(1+. X, ) describing the coupling of channel a to the GDR built on the ground state, the propagator

2n WO2,
(E Ep)+ — g— + g 2mvp M~pM~

and +2m Wpb/(I+Xb) describing the decay of the GDR into channel b. 2ng~ vp M
.p~ is the internal spreading

width and 2ng, Wp, is the decay width of the GDR. +,2m. Wp, /(1+X, ) can be rewritten as a sum of decay and exter-
nal spreading width, yielding

(4.2)

Such a resonant form of the average S matrix is characteristic for the existence of a doorway state, e.g. , the isobaric
analogue state. Neglecting the division into subclasses, Eq. (4.1) is equivalent to Eq. (3.1) in Ref. [5].

As will be discussed in greater detail in Sec. VI C, this term differs formally from the term usually appearing in DSD
calculations by the X, [cf. Eq. (C7)]. These terms stem from the fact that the channels may also couple to statistical
states. Thus, the flux that couples to the GDR built on the ground state is reduced. The correction factors X, play a
role similar to that of the optical model in a DWBA calculation. They are directly related to the transmission
coefficients T, for channel c; see Eq. (E5).

For the cross section, the average generating functional is partially differentiated with respect to j, and j2 setting j
equal to zero after that. It is then expanded to first order in (g, T, ) . In the energy region of interest the average lev-
el spacing, d, is much smaller than the average width of the resonances, I . With the help of the Weisskopf equation

(4.3)

the width is given as the product of the recurrence frequency of a wave packet, d /2m. , and the probability for the system
to decay into a channel, g, T, . Thus for I »d the relation Q, T, » 1 holds and (g, T, ) is a good expansion param-
eter.

The evaluation is carried out in Appendix D. As in the NVWY model, the remaining integration can be reduced to
Gaussian integrals. It is shown in Appendix D that only two terms have a nonvanishing contribution. The term com-
ing from the disconnected part yields the term depending on the average S matrix,
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SD
2

~ab 5ab ~ab (4.4)

The connected part yields the precompound part of the cross section:

rrab X ( Taa Tbb +Tab Tba } MmNn
MmNn

where the matrix II is given by its inverse

~MmKk ro/2 2' Wo
(II ') „=4+ 6 „5 5 5 „+4+ (1+X,) 1 — 5 5 „

Kk Mm Kk, ( 1+x, )
' (E—Eo) + a I 0 1+x,

(4.5)

+4
(E—Eo)2+ ' ro 1+X 1+X '

AM AN„

~Mme~ 1+X,
r, /2 2~W,', X'„„,

(E—Eo)z+ 'rq~ 1+X, 1+X,
2 2

1 ~~Oc ~Nnc—4 T + 0Mm + 0Nn1+X, 1+X, (E—E }2+&r' 1+x, 1+X,
(4.6)

T,b =+M T,b are the matrix elements of the Satchler T matrix [6]. They are a generalization of the transmission
coefficients for the case the average S matrix is not diagonal in the channel indices. They are defined as the unitarity
deficit of the average S matrix:

Tab 5ab g Sac Scb
c

(4.7)

In the case where the average S matrix is diagonal, the T matrix also becomes diagonal with the transmission
coefficients as its elements. The matrix elements are given by

I /2 2nW2 2mW, 1 2~~Oc &Mme+ + OMm
(E Eo) + 'I —(1+x )— (1+X,) (E Eo} + 'r — (1+—x ) (1+x )

c

Nnb

ra/2 2nWob '2m Wob 2m Wo,+ + ON
(E—E,)'+-'I' (1+X } (1+X )' (E—E,)'+'r' (1+X ) (1+X )

TMmTNn=
ab ba

2m'',
O 2mWob TWO, I 0 +

(1+X )' [(E E)r+—'rr]2 —(1+X )' (1+X )
' ' 2 1+X 1+X

(4.8)

~Mmb

1+Xb
~Nab

1+Xb

X +

+(E Eo)—
1+X, 1+X,

V. DISCUSSIQN OF THE RKSUI.TS

Aside from kinematical and geometrical factors, the total average cross section is given by

o,b= ~5,b
—S,b~ + g (T„Tbb +T,b Tb,")IIM N„.

MmNn

Together with Eqs. (4.1), (4.6), and (4.8} this constitutes the central result of this paper.
In Sec. 7 of Ref. [7] compound nucleus reactions in the presence of a doorway state are discussed. We have checked

that neglecting the division into classes our result is consistent with the result there. We have also checked that our re-
sult fulfills the unitarity relation.

The first term on the right-hand side of Eq. (5.1) is the SD part of the average cross section. This part has been dis-
cussed in Sec. IV. The second term coming from the fluctuating part of the S matrix again consists of two terms. The
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first term can be written as in the case of the NVWY model as a product of three factors: the probability that the en-
trance channel couples to a state of class Mm, the probability that this class couples to class Nn, and the probability for
the latter to decay into channel b, summed over all exciton classes. The second term is less intuitive. It stems from the
fact that the average S matrix is no longer diagonal, and it is needed for flux conservation. As can be seen, T,b con-
sists only of terms that include the doorway state. Formally this is due to the fact that u, and ub are no longer orthogo-
nal. Physically this means that, due to the existence of the doorway state, not only probabilities but also amplitudes and
therefore quantum mechanics "survive. "

Next, the inverse probability transport matrix is investigated in detail. For a better understanding, it is first tran-
scribed into physical quantities using Appendix E. It is then discussed term by term:

)M N 2~PM UM, N 2~PN (1 5MN5 ) (a)

2 p, M2

-

ro/2 2 R 02 2~pN„, N2

1+X, ( g —E, )~ g ~ I", 1+X, 1+X,

2n. 8'o, 2rrpM UM, 1+2mpM~ vM~o1+X, 1+X, ' (E E)'+—f'
4 0

T

Oc pNn Nnc
PNn Nn 0

C C C

+2@PM~I M~5MN5~n (d)

+ g TM, (1+X,) 1— I o /2 277 $yo

(E E )2+ ] p2 1+X MN mn5 5 „ (e)

mR oc 2mPMmvM c
2 2

1+ 2~PMm UMmo 2 &

—2 ~05MN5mn (f)
c C (E—E, ) +-,'I, (5.2)

Aside from the quantities defined previously, we have in-
troduced the mean level densities pM in subclasses Mm,
the mean square matrix element vM ~„connecting sub-
classes Mm and Nn, and we have written the mean square
coupling elements connecting class Mm and channel c as

vM, . For illustration, the off-diagonal elements are
sketched in Fig. 2. Each term (a), (b), or (c) describes the
average coupling of a state in class Mm to a state in class
Nn. There are three possibilities: There is the possibility
of a direct coupling described by term (a). Term (b) de-
scribes the possibility of coupling these classes via a chan-
nel. A third possibility given by term (c) is the coupling
via the doorway state. This coupling can again take place
directly or via a channel state.

Figure 3 shows the diagonal terms of the matrix II
The diagonal elements describe the decay of class Mm.

There are again three possibilities: the system can decay
to a state of different complexity described by its spread-
ing width [cf. (d)], or it may decay into a channel [cf.
term (e)]. The third possibility is given by the coupling to
the doorway state which itself may decay into a channel
or a class of different complexity.

T„gives the probability for channel a to couple to a
state in class Mm; see Eq. (4.8). Again, this coupling
takes place directly or via the doorway state. The flux for
the direct coupling is reduced by the fact that channel a
can couple directly to the doorway state which again can
decay into a channel. This is described formally by S,b.

When we specialize this general result to the special
case of gamma emission, a crucial rule is played by the

Q , ----i Q

FIG. 2. Off-diagonal elements of the matrix II ' (5.2): 0
stands for the space of channels, o for the space of bound
states, 0 for the doorway state, and ———for the propagator.

0 ----- 0

FIO. 3. Diagonal elements of the matrix II ' (5.2): 0 stands

for the space of channels, 0 for the space of bound states, for

the doorway state, and ———for the propagator.
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division into subclasses. Only states of subclasses 1, 2,
and 3 are GDR states and only these may decay directly
into the gamma channel. This is due to the way our mod-
el is formulated giving the GDR 100% dipole strength.
The noncollective states in subclass 4 obtain dipole
strength only through coupling to these GDR states.
Thus, they take part in the gamma decay only indirectly.
This distinction between collective and noncollective
states is a major strength of our formulation. As will be-
come clearer in the next section, this is a major difference
to the other models. This distinction also has an effect on
the individual matrix elements of the matrix II as it al-
lows to carefully distinguish the different physical pro-
cesses, like creation or decay of a giant resonance or tran-
sitions to noncollective states. This point is discussed in
detail in the numerical application of our result [8].

VI. COMPARISON TO OTHER MODELS

To embed our calculations into a larger context, our
model is compared to other theories. There are mainly
two types of models to theoretically describe gamma
emission in preequilibrium nuclear reactions. One type is
like the NVWY model based on the exciton picture. In
this framework, the master equation formulation and the
MSC model as formulated by Feshbach, Kerman, and
Koonin (FKK) are discussed. The other type of model
that describes capture gamma-ray reactions is the DSD
model.

A. Exciton model in the framework of the master equation

One of the most commonly used theories to describe
preequilibrium nuclear reactions is the exciton model. It
has its origin in the work of Griffin [9] and was formulat-
ed in the framework of a master equation by Cline and
Blann [10]. Generally, a master equation describes the
time evolution of a Markovian process, i.e., a process in
which the transition probability does not depend on the
previous history of the system. The Pauli master equa-
tion for excitons is given by'

tion from channel a, r(N) is the average lifetime of a state
in exciton class N, and Wb(E, N) is the probability for the
nucleus to decay from class N into channel b:

r(N) =I PIv(t)dt, (6.3)
0

pf(E Eb—, N Nb—)
Wb(E, Eb, N) = Tb

p;(E,N)
(6.4)

The exciton model has been successfully applied in recent
years to different preequilibrium nuclear reactions. This
model has a few drawbacks [11]: Not being derived
directly from the Schrodinger equation it has to be
classified as phenomenological. Furthermore, it contains
one free parameter, i.e., the average transition probability
between two exciton classes. Thus, only relative cross
sections can be calculated. Often times, other simplify-
ing assumptions are used such as the calculation of aver-
age lifetimes as the exact calculation is numerically quite
complicated.

It can be shown (cf. [7]) that inversion of the tnatrix
II is equivalent to solving the master equation. Thus,
the NVWY model can be viewed as a quantum mechani-
cal justification of the exciton model. One major
difference, however, is that in the quantum mechanical
formulation, bound states and continuum states are treat-
ed separately as MSC and MCD processes, respectively.
In the next section the reason why the MSC contribution
is of major importance in the energy region of 10 to 20
MeV will be discussed. Also, within the NVWY model
the average transition matrix element is not a free param-
eter but is determined from the imaginary part of the op-
tical model potential [4].

The exciton model was generalized to account for gam-
ma decay mainly by Plyuyko and Prokopets [14], by
Betak and Dobes [15], and by Akkermans and Grup-
pelaar [16]. In [17] it was applied to a number of nuclei
throughout the periodic table.

To describe the gamma decay within the exciton mod-
el, the decay probability for particles is replaced by the
probability to emit a photon. The latter is obtained using
the Brink-Axel hypothesis and the principle of detailed
balance:

~M
PM(t) = — PM(t}+ g PN(t}WN M,

1V

(6.1) E2 p (E —E )
Wr(N, E )= +err(N +K,E )—

where p~(t) is the occupation probability of class M at

time t, 8'z ~ is the transition probability of class 1V to
M per unit time, and I M /A is the probability for class M
to decay. In this model, the average cross section is given

by

where

o~(K~N, Er)=or '(E )b(K~N, E ) .

(6.5)

(6.6)

o,b
=o', g Wb(E, N}r(N),

N

(6.2) The coefficients b(K~N, E ) describe the splitting of

where o', is the compound nucleus formation cross sec-

For simplicity and since it is commonly used in the literature,
we will refer to this model as the exciton model. We emphasize,
however, that there are other preequilibrium models that are
also based on the exciton picture.

This disadvantage inspired Blann [12,13] to formulate the hy-
brid model. This model forms a unification of the exciton mod-
el and the Harp-Miller-Berne model. Therein the transition
probability is calculated as a function of the mean free path of a
nucleon within nuclear matter. This model has been applied to
gamma decay, cf., e.g. , [33] and references therein.
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the absorption cross section for the decay into the three
possible exciton classes. The determination of these
coefficients is not without ambiguity [16]. The three
references [14—16] differ mainly in determining these
coefficients. Furthermore, to account for flux conserva-
tion the three coefficients have to fulfill certain normali-
zation conditions. As opposed to particle emission, the
average matrix element coupling two exciton classes is

not a free parameter but is taken from data on the parti-
cle emission [18].

In addition to the differences between the NVWY
model and the exciton model already discussed, there are
additional differences in the formulation of the gamma
decay. The exciton model not being derived microscopi-
cally cannot distinguish GDR states from noncollective
states. This causes a certain ambiguity: For transitions
between two exciton classes the exciton states are treated
as statistical states. However, in using the gamma ab-
sorption cross section, the exciton states are treated as
collective GDR states for the description of gamma de-
cay. In contradistinction, in our model the basis is
chosen such that the GDR states and the noncollective
states are distinguished. Only the former can decay
directly into the gamma channel. The GDR states decay
by gamma emission into the states they are built on.
Thus, the problem of splitting the absorption cross sec-
tion into the different possible exciton numbers of the
final state does not arise. This difference in the formula-
tion has an additional consequence. As it distinguishes
GDR states from noncollective states our model also al-
lows for a careful distinction between matrix elements
describing different physical processes, such as creation
of a GDR, decay of a GDR, statistical transitions, etc.
This also causes a major difference in its numerical appli-
cation [8].

B. FKK model

The model for preequilibrium nuclear reactions intro-
duced by Feshbach, Kerman, and Koonin [19] is also
based on the exciton picture. (For a recent review on all
its applications cf. [20].) They were the first authors to
distinguish MSC and MSD reactions. We will restrict
ourselves to a discussion of the former. As a two-body
interaction is used, only neighboring classes couple,
which is referred to as "chaining hypothesis" in their pa-
per. The state density in the next higher exciton class is
larger than in the preceding class. This causes the proba-
bility for a transition to the next higher class to be much
larger than the probability for a transition to the next
lower class. In the framework of FKK the latter cou-
pling is neglected —"never come back hypothesis. " As a
consequence the equilibrium limit is not contained au-
tomatically as in the NVWY model. It is added separate-
ly as the "r stage. " The "r stage" is defined as the last
class of which the level density is smaller than ten times
the density of the next higher class. Emission from this
stage is then added in the framework of a Hauser-
Feshbach calculation. For practical applications these
assumptions are very helpful and within the overall un-
certainty of such preequilibrium models. The cross sec-

tion within this model is given by

&r& p ) x —i &r& )
(6.7)

The cross section is again given as a product of three fac-
tors: the compound nucleus formation cross section from
channel a, o.„the sum of the emission probabilities of all
exciton classes, gz '&& rzbpf )/& rz), and the probabil-
ity that the system reaches this exciton class,
gM=', & r~ ) I& rz ). The probability of reaching the "r
stage" without emitting a nucleon is given in the frame-
work of this model by

(6.8)

The Hauser-Feshbach term is multiplied by this probabil-
ity.

This result is very similar to the exciton model. But it
is not derived from a time-dependent master equation.

The FKK model was recently generalized by
Oblozinsky and Chadwick to allow for gamma decay
[21]. For this purpose the term describing the probability
for particle emission was replaced by a term describing
the gamma emission. The latter is given by

&r'p)xqPf (6.9)
&r )

where

dI ~„' = y y & r„,', (E—E, j)p, ,(E—E, ) .
y M J'

(6.10)

As in the exciton model there is in addition to the sum
over the possible angular momenta of the final states J'
the summation over the possible exciton classes M of the
final states. Thus the problem arises how to split the
emission appropriately. The decay width of the gamma
channel is again given in terms of the absorption cross
section. Like the exciton model, this model is not derived
microscopically and the discussion at the end of Sec.
VI A is also applicable here.

One might be tempted to conclude that it is this model
which is closest to the precompound part of our ap-
proach since both approaches are based on the MSC pro-
cess. Again, due to our microscopic construction of the
GDR states and the distinction of the GDR states from
the noncollective states, this is, however, not the case. As
discussed in the last paragraph of Sec. II all the nonco1-
lective states in our approach are modeled as quasibound
configurations. However, the GDR state itself is not re-
stricted to be quasibound. In the approach of Oblozinsky
and Chadwick all states are quasibound configurations,
and the possibility of the GDR state to be a continuum
state is not accounted for. Thus, their total cross section
is smaller. Comparing the numerical results [8] it turns
out that their cross section is roughly one order of magni-
tude smaller than ours. This reflects the intuitive expec-
tation that in the energy region of interest it is very likely
for the GDR state to lie in the continuum.
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This model was also generalized to take into account
the angular distribution of emitted y radiation.

C. DSD model

Historically, the direct-semidirect model (DSD) was
the first description for capture gamma-ray processes. It
has its origin in the work of Brown [22] and of Clement,
Lane, and Rook [23]. It was then applied by Potokar
et al. [24,25] to neutron-induced reactions and by
Dietrich [26] and Snover [27] to proton-induced reac-
tions. It was improved and numerically applied in
numerous works, e.g., by Longo and Saporetti (cf., e.g.,
[28] and references therein}.

In the framework of this model two physical processes
are distinguished. The projectile can in the first step ex-
cite the GDR in the target nucleus. The latter can make
a gamma decay. This is described by the "semidirect" or
"resonant" term. The projectile can also be captured
directly by the nuclear potential in emitting a garnrna.
This process is referred to as "direct capture. " These two
processes are added coherently in the average S matrix,
allowing for interference effects between them. The cross
section is apart from constants given by the square of the
following transition matrix element:

F. 8„+—(i/2) I

(6.11)
Here P;„, denotes the intermediate GDR state, E„ is the
resonance energy, and I the resonance width of the
GDR. The matrix element describing the gamma decay
of the GDR is given in terms of its decay width. The
latter is determined with the help of the energy weighted
sum rule. The other matrix elements are determined ex-
plicitly by performing the respective integration and an-
gular momentum coupling. This causes the numerical
calculations to be involved.

Comparison of the SD contribution to the correspond-
ing term in our formulation shows great similarity. The
essential difference is that our formulation explicitly
takes into account the possible coupling to the statistical
states. As will be seen in the numerical applications [8],
this coupling diminishes the SD cross section
significantly. In Eq. (6.11) this coupling is implicitly tak-
en into account by introducing a form factor in the ma-
trix elements consisting of a real and an imaginary part.

A further difference resides in the direct capture which
is not taken into account in our model. Clearly, this pro-
cess cannot originate from our ansatz in which direct re-
actions are explicitly excluded. Such a term has to be
added to the average S-matrix element. However, one
can convince oneself that this term is small [29]: It is
given by the overlap integral of the wave functions in the
initial and final states. Since the energy of the projectile

is rather large the associated wave function is oscillating
rapidly and the matrix element is small.

VII. SUMMARY
We have extended the theory of the MSC process as

formulated in Ref. [2] by including gamma emission from
giant-dipole resonances. These were modeled in terms of
the TDA as two-quasiparticle excitations on the ground
state and —using the Brink-Axel hypothesis —on the ex-
cited states of the composite system. The latter were in
turn modeled as n-quasiparticle n-quasihole states. In
this way, our approach could be fitted into the general
framework of precompound reaction theory. Taking into
account the conservation of energy, angular momentum,
and parity caused each exciton class to be divided into
four subclasses. Three of these describe GDR's and cou-
ple directly to the gamma channels, whereas the fourth
describes noncollective states which can gamma decay
only indirectly via their coupling to a GDR. This cou-
pling produces the spreading widths of the GDR's. The
lowest excitation class contains only two subclasses, the
statistical one plus a single state, the GDR built on the
ground state of the composite system.

In the limit of strongly overlapping resonances (or of
many open channels), we calculated analytically the en-
semble averages of the S matrix and of the cross section.
Formally, the NVWY calculations had to be modified
mainly because of the presence of the doorway state, i.e.,
the GDR built on the ground state of the composite sys-
tem. Independently of our specific application, our calcu-
lation is thus of general theoretical interest: It shows
how to treat a doorway state in the framework of a sta-
tistical theory.

Our central result is embodied in Eqs. (5.1), (4.1), (4.6),
and (4.8}. The average cross section is a sum of two
terms. The term containing the average S-matrix ele-
ment describes the semidirect process. (We have not tak-
en into account the direct capture. ) The other term origi-
nates from the fluctuating part of the S matrix and gives
the precompound contribution. Both terms differ, how-
ever, from the form they would have if we were to consid-
er only SD, or only MSC reactions: Flux conservation
reduces the SD, and modifies the expression for the MSC
process.

The parameters in our expression for the average cross
section can be determined from properties of the
particle-induced precompound reaction without gamma
emission, on the one hand, and from the giant dipole res-
onance absorption cross section of the composite nucleus
in its ground state, on the other hand. In this sense, our
final result allows for a parameter-free calculation of
gamma emission in precompound reactions. This is
shown in the following paper.

We thank the Department of Energy for partial sup-
port during the completion of this work.

APPENDIX A: AVERAGE GENERATING FUNCTIONAL
The following definitions have been used for Eq. (3.16):

Z,b,z(&j „jz)=fd[Q]exp —QtL'i2D(J)L'i~/ (A 1)
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D(J)=E—H+iW —UGou +j,b,d,
0'=([~M, (1)] [~M, (1)] I~M, (2)] I~M „(2)] [XM „(1)] [XM,(1)] [XM „(2)] [XM,(2)]»
E=E18 1~—18 h,
h = diag(hM ),
8=180,
W=mLs g W, W,

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

Go=
60 0

0 G* @141x
0

J 1I4 ( Qb Qa +Qa 11b )

J2 I4 8 ( 11d 11a + 11a 11g )
(A9)

It is our goal to evaluate the average S matrix and the average cross section. We proceed along the same lines as in Ref.
[2]. The ensemble average over the ensemble of Hamiltonians, the Hubbard-Stratonovitch transformation, and the P
integration remain the same, the only difference being in the additional class indices and the additional term vGov . To
avoid unnecessary duplication, we refer to the original reference for more details and only stress the differences to that
work. One obtains

1 MZab, d(E,J)= d[17]exp. —g gMmN„ trg(o o ") —t—rglnN(J) . ,

(A10)

N(J)=E X+iW—+UGov +J+iri,
where

—
1

gMmNn ( MmNn

X=6MN6 „5„„(O ) .

(A 1 1)

(A12)

Before evaluating the integral with the help of the method of steepest descent in the limit N~ „,where NM is the
number of states in class Mm, we need to discuss the NM dependence of the additional term vGov . Vo~ „are ma-

trix elements of the Hamiltonian H and therefore of the order 1/QNM, Co is of zeroth order in NM, such that the
term v Gov like W is of the order 1/NM

Hence, the saddle-point equation remains unchanged except for the additional indices:

O Mm (E hMm O Mm ) =A'Mm

The integration over the massive modes also remains unchanged. One obtains Eq. (3.17).

(A13)

APPENDIX B' ORTHOGONALITY RELATION OF THE VECTORS $V AND Vo

Due to the orthogonal invariance of HM, the result can only depend on the orthogonal-invariant terms g„WM
g„VM „o, and +„8'M „,VM „o. For those the following orthogonality relations

T 2X 1VM „,.1VM „,b=~M, .~M, b=NM UM, .&.b
P

TX Mm y, , a VMm p, 0 ~Mm, a VMm, 0
P

T 2X VMmpO MmpO VMmOVMmO NMm MmO
P

{B2)

{B3)

are used. The physical motivation for these assumptions is the following. As discussed previously, the background S
matrix, i.e., the S matrix excluding the doorway state, is a generalization of the MSC process taking into account the
GDR built on excited states. Requiring this averaged background S matrix to be diagonal is equivalent to the ortho-
gonality relation of the vectors 8, .

While the matrix elements W, M „couple the statistically distributed bound states Mmp to the nonstatistical chan-
nel state a, the matrix elements Vo ~ „couple the statistically distributed bound states to the collective GDR built on



46 GAMMA EMISSION IN PRECOMPOUND REACTIONS. I. 2487

the ground state, the doorway state. These two couplings are comparable in the sense that both couple a nonstatistical
state to the statistically distributed bound states. In this sense, the doorway state plays a similar role as a channel. This
explains the two other orthogonality relations (B2) and (B3).

APPENDIX C: AVERAGE ONE-POINT FUNCTION

The average one-point function is obtained by partial differentiation with respect to j& of the averaged generating
function and then setting j equal to zero:

a
Zo& (EA

BJ) jl =0

where

trgln A, (X ) '+in g W, W, u—Gou +j,(u, u&+u&u, )
a

J& C

Z,& (E,O),

j) =0

(C 1)

X = diag(o I ),
A, = diag(A, M ) .

(C2)

(C3)

Thus, only terms of first order in j contribute. Using the normalization Z,&(E,O)=1 and the cyclic invariance of the
trace one obtains

a - = 1
Z,&(Ej &)

= ——trg (W,OGov
—W, ) g ink—'X g, W, W, +A, 'X vGov

J1 J) =0
n C

x A, 'X (vGO Wo&
—

W& )+(a~b) (C4)

Next the geometrical series is expanded and the individual terms are rearranged.
As an illustration, we obtain for one of the four terms in Eq. (C4)

in g W—, W, —uGou "A, 'XOW&

=W 'X im. g W, W,™A,'X W&+ W, g —g 'X i~y W W g
—

~XouG „T
C n C

X g —
A, 'X'i~y W, W,

' "g 'X'W,

+W, g 'X in. g W, W, "A, 'XovGovTy —g 'Xoi~g W W

—& 'X'i~+ W, WT "g—'X'W, +

(1/in )X,

(C5)

The orthogonality relations of the 8"s have been taken into account. Additionally, the definitions
—1 2

XMm, a ~Mm &NMm UMm, a

Xa g XMm al&M m
Mm

were used. Equation (C5) can be rewritten yielding

W, g A, 'X in. g W, W', —uGou— "A, 'X W&

(C6)

(C7)

( 1 li n. )X, A, 'W, v

1+X, 1+X, T 'X v601+in.A, 'X g W W

~X0V Te
b

(C&)
b

The other terms can be evaluated with the same technique. The result is
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(1/im )X,
Zab(Ej ) ) = ——trg ~a'b —

WaOGO WOb
Bj1

'
J, =O 2 ' 1+X,

+ W, O—
a-'W'U

I+X,
I —v

DO

X 'rOV
1+ixX. ,'X g, W, W,

1XOUTWb
X WbO +(a~b)

1+Xb (C9)

Using the orthogonality relations of the vectors VO and W„one obtains

'X W, v =i m. W, o g cr M XM
Mm

v A. 'X v= g oM XM —
m Q WO, g OM XM

Mm C Mm

where
—1 2

+Mm, 0 ~Mm ~+Mm Mm, 0

Collecting everything yields the average S-matrix element, which takes the form

(C 10)

(C12)

W, 0 1+ b(E) 2i~ (1+X )

'(1+X )

Wob (1 X )
+5,b(1+Xb )

' (1+X,)

QMm VMm XMm

(C13)

APPENDIX D: AVERAGE TWO-POINT FUNCTION

1. Partial differentiation of the generating functional

Expanding the averaged generating functional to second order in J yields

Z, b d(Ej„j2, ) = lim C f d [o G ] [ —' trg[(r A, Xoj,b,d ) ]+—'[ trg(r AXo3 b d ), ] ]

2
1 ~MmNn

Xexp — g 2 trgIOG OG") —o, g trg(t, 2 t2, )
MN M & N ~Mm~Nn Mm
m, n m n

——trg 1 [1n+AXo(i W , vGov ) ]— (D 1)

where r=[1+g 'X (iW —vG vT)] '. partial ditferentiation of the averaged generating functional with resPect to J',
and j2 and afterwards setting j1 and j2 equal to zero yields

a2
Z, b d(Ej ),g~)J 1OJ2 Jl =~v=0

=»mC fd[a'G][ —,
' trg[rA, XoI(1)(ubu, +u, ub )rA, 2XoI(2)(udu, T+u, u T)]a~0

+ g["~ XoI(1)(ubu, +u, ub )] trg[r& ~XoI(2)(udu T+u, udT)] j

1 MmNn

2 "gI~G ~G"] —~X«g(t» t»-)
M, N M & N ~Mm~Nn Mm
m, n m n

1——trg 1 [1+nA2XG(i W vG, ov T)]— (D2)
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2. Asymytotic exyansion

After using the orthogonality relations of the vectors Vo and JY, we make an asymptotic expansion in A . This cor-
responds to expanding the generating functional to second order in the t matrices. Then the remaining integral is
solved.

First the "trg ln" term in the exponent of Eq. (D2) is considered. In the case of the NVWY model, this term together
with the term quadratic in o G yields the inverse of the probability transport matrix 11. Using Eq. (F5) this term can be
rewritten in the following way yielding

exp trgln I+A, Xz in g W, W, L v—GouT
C

=exp ' trgln
Do

I+in.A, Xzg, W, W, L A. XGv

U
T 'exp trg ln( —Do)

=exp trgln I+inAXoL, g W, W, + trgln Do —vT g ~X v —trg]n(D )
I +i nA, Xo. L g, W, W,

(D3)

where DO=GO . As in the case of the one-point function the geometrical series can be expanded and rearranged. Us-
ing the orthogonality relations (cf. Appendix B) yields

u g i An,
—XGL g W, W, "A, XGv

n

g XO, Mm~Mm+G +™Lg WOc
& ~ lK g XM~ ckMm&G L (D4)

and

Do —v g i An,
—XzL g W, W, "A, X&v

n

=E Eo+inL g—Wo . ~ ~ X+o,M kM OG . (D5)'
I + i ~y~ xl, xM' 0 G I,

This term as well as the other terms in the exponent are expanded to second order in the t,z. As in Ref. [2] we first ex-

pand the saddle-point matrices to second order in t12,

Mmt Mm
12 21

~M ~D +2~~M ~M .tMit 21

~tM
12

t Mmt Mm
21 12

(D6)

A lengthy but straightforward calculation shows that the exponent can be written in the form

X (+ 4s,x trg[ru re(] (D7)

with the matrix (II ') given by Eq. (4.6) where X~,=X~,b~
The integration measure in second order in t transforms as in [2]:

d[o ] gd(t, ) .
Mm

(D8)

Hence, one obtains again Gaussian integrals.
As in [2] the preexponential term has a connected and a disconnected part. The former yields the average fluctuating

part of the cross section whereas the latter yields the part being a function of the average S matrix. Using the cyclic in-

variance of the trace, the preexponential terms are functions of the following term:
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u, rA, XGIub =
W QGQv W

X g —A. Xo

G+v+T —WT
ap QV a

imp, W, W, —vGov

i—mg. , W, W, —v *Go v
*

n

I(1) 0
X 1, Xo () I(2)

vGp Wpb Wb

v*GQ Wpb
—

Wb
(D9)

The terms within each block are similar to the ones of the one-point function. Using the orthogonality relations of the
Vs and 8 s and rearranging the geometric series yields

—1 Mm
T —2 XMm +Mm, a ~Mm +G

u, rAXGI(p. )ub =5,b ', I(p) W,—oGo WobI(p)1+tXMmXMm, a~MmGG

W, p

1 + t XMm XMm, a ~Mm ~ G

1

2
WQ,E Eo+'uLX . —

~ M XMm&oMmGG1+l XMm+Mm, c~Mm ~G

X
Wpb

(D10)+ XMm+Mm, b~MmGG

where p =1,2. Next, the preexponential terms are expanded to second order in t tz using Eq. (D6). Without performing

a detailed calculation it is seen that the disconnected term in second order in the t, 2 consists of terms of the form

trg[I(1) j trg[I(2) j, trg[t&z tzPI(1) j trg[I(2) j, and trg[(1) j trg[tz& t&zI(2)j. The Gaussian integration of the last

two terms vanishes (cf. Appendix A of Ref. [30]), such that only the zeroth-order term in t, z has a nonvanishing contri-
bution. Likewise, for the connected term one obtains in second order in the t, z terms of the form trg[I(l)I(2)j,
trg[I(1)t, z I(2) j, trg[tzPI(1)I(2) j, and trg[tPz I(2)tz~PI(1) j. Performing the Gaussian integration only the term
quadratic in t, 2 contributes. The expansion itself is lengthy but straightforward and only the result is given here.

The disconnected term yields

with

16 6,b 1+X,
W Q Wpb

W QGQ Wpb + gQ1+X, 1+Xb
5,b 1+X,

W Q Wpb
W QGQ Wpb + gp1+X, 1+Xb

(Dl 1)

gp= (D12)
(E —Eo)+—(g, [2m. Wo, /(1+X, )]+2Xo)

2
Our generating functional does not yield the total two-point function [cf. Eq. (3.16)]. Adding the additional terms and
using

f p [™)p ] p ——g (II ')M x„ trg(™iz tzP) .=11

M'm ' MmNn

(D13)

yields the SD contribution to the average cross section [cf. Eq. (4.4)]. Performing the asymptotic expansion for the
connected part and using

f p d[t» ]exp. ——g (H ')M ~„«g(t» tzp) . «g[I(1)t»I(2)t»]=16II«L,
M'm' MmNn

(D14)

yields the fluctuating part of the average cross section. This part can be written in the form of Eq. (4.5).

APPENDIX E: TRANSCRIPTION
OF THE MICROSCOPIC TERMS

IN PHYSICAL TERMS

For illustration, we have transcribed our results in
physical terms. The relevant relations are derived here.

In the framework of GOE's the average level density is
given by the Wigner semicircle law (cf., e.g., [31]):

1
PMm =NMm 2

2mNMm CMmMm

X+4' CM M (E hM )'. — —

(E2)

With CMmMm ~Mm /NMm one obtains

(E iM )'—
PMm

~~Mm 4~
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yielding

~~Mm
Im(o'sr )=AM =

N PM
Mm

(E3)

are valid. These equations are derived by solving

a P A B
y 5 C D =1. (F3)

Furthermore, we use

2
CMm, Nn MmNn (E4)

and

4X,
T

/1+x. /'
(E5)

for the average transition matrix element coupling states
of classes Mm and Nn where MmANn. The optical-
model-transmission coefficient is given in this theory by

A B
C D (F4)

can be rewritten adding a multiple of the lower or upper
row, respectively, yielding

The second relations for p and 5 are received by expand-
ing the geometric series and rearranging the individual
terms.

Let again A and D be block diagonal matrices. The
determinant of the matrix

4XM,
)1+x./'

(E6) A B
det C D

= det( A) det(D —CA 'B)

APPENDIX F: A FEW RELEVANT
MATHEMATICAL RELATIONS

Let A and D be block diagonal matrices. For the in-

verse of the matrix

= det(A BD —'C) det(D) . (F5)

The determinant of graded matrices is also invariant un-
der adding a multiple of a row or column as long as the
graded symmetry is not broken. Thus, these relations
also hold, if A, B, C, and D are graded matrices. Using

a p
y 5 C D (Fl) A B A B

det g C D =exp trg ln (F6)

the relations for its submatrices

a=( A BD 'C)—
P= —A 'B (D —CA 'B)

= —
( A BD 'C) 'B—D

y = D'C( A —BD 'C—)
(F2)

g=(D —CA 'B)=D '+D 'C(A BD 'C) —'BD

=trg ln( A BD 'C)+ —trg ln(D) . (F7)

These equations can also be derived directly in expanding
the logarithm (cf., e.g. , (7.16) in [32]).

respective relations for the "trg ln" terms can be derived:

A B
trg ln C D =trg ln( A)+ trg ln(D —CA 'B)
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