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We investigate the meson exchange current (MEC) contribution to K+-nucleus elastic scattering.
Starting with a model of the off-shell K~ scattering amplitude and a calculation of the excess pion distri-

bution in finite nuclei, we proceed to derive both real and imaginary forward scattering amplitudes for
the MEC contribution. The resulting amplitudes interfere constructively with the optical model ampli-

tudes, and, therefore, lead to an increase in both calculated total and differential cross sections. This in-

crease brings about a better agreement with the data, in particular with regard to the energy dependence

of the total cross section. This last feature follows from the fact that the calculated imaginary MEC am-

plitude has a threshold at incident momentum p-400 MeV/c, which distinguishes our MEC model

from recently proposed nucleon "swelling" models. We also examine the sources of uncertainties for our

results.

PACS number(s): 25.80.Nv, 24.10.—i, 13.75.Lb

I. INTRODUCTION

Recent experimental [1—5] and theoretical [6—12]
work on E+-nucleus scattering has raised some puzzling
questions. Since the E+-nucleon system exhibits the
weakest of the hadron-nucleon interactions at lower ener-
gies, with no resonances or bound states, it is expected
that microscopic optical potentials should be calculable
and reliable. With weaker interactions than the ~, nu-

cleon, or antinucleon, multiple-scattering corrections
(with their uncertainties) should be considerably less im-

portant for the I( +. In addition, there are no true ab-
sorption processes to interfere with multiple scattering.
Therefore, one expects the theoretical description of elas-
tic and total E+-nucleus cross sections by microscopic
optical models to be reasonably accurate.

However, apparent discrepancies between experimen-
tal data and optical model calculations have persisted,
and are not yet resolved. The original problem was for
the elastic differential cross section for K+-' C, measured
at a laboratory momentum ofp =800 MeV/c [2], and an-
alyzed by Siegel, Kaufmann, and Gibbs [6,7). The calcu-
lated cross sections are systematically lower than the
data, although for this case there may be sufficient experi-
mental uncertainty to remove the apparent discrepancy.
Siegel et al. [7] showed that the total cross section o.„
and in particular the ratio R =o, (K + A ) /
( A /2)o. , (K+d), would be a more sensitive test. A num-

ber of measurements of R now exist for 450
MeV/c &p & 1 GeV/c for K+-' C [1,3—4], and for
several other targets [5]. Again, the values of R [or
o, (K+ A)] calculated from optical theory are smaller
than the data, with larger deviations at the higher mo-
menta. Here the experimental uncertainties are small
enough to make it probable that the discrepancies are
real.

There are unresolved issues in the optical potential cal-
culations. Siegel et al. [7] give a range of theoretical un-

certainties which still excludes the data for R. Chen and

Ernst [11] also calculate values of R 10—20% smaller
than experiment —but not completely in agreement with
Ref. [7]. On the other hand, Berdnikov and Makhov [10]
do obtain a good fit to the R data with an optical poten-
tial, but only at the cost of introducing rather different
proton and neutron density distributions, which would
seem to require a large violation of isospin symmetry for
12(

As possible explanations of the discrepancies, several
novel corrections have been proposed. Siegel et al. [7]
suggest that the nuclear medium may modify the S» E+
scattering amplitude by altering the effective nucleon size
in the nucleus. They find that an increase of 10—20% in
the S» phase shift would increase the theoretically calcu-
lated ratio and lead to an improvement over the deficit.
A similar proposal by Brown et al. [8] ascribes the
modification to the nuclear medium effect on the mass of
the vector meson in a boson exchange model for the
K+N scattering. They find that a density-dependent de-
crease in the vector meson masses leads to an increase in
the repulsion of the kaon and, hence, an increase in the
cross section. Both these proposals are related to the so-
called nucleon smelling concept in the nuclear environ-
ment, and the resulting improvements over the discrepan-
cy are very similar, giving more or less a constant in-

crease of R over the whole momentum range considered
(see also Ref. [9)).

In this paper we propose a meson exchange current
(MEC) model to account for the contribution to K+-
nucleus cross sections of K+ scattering by virtual mesons
exchanged within the nuclear target [see Fig. 1(a)]. We
expect the dominant exchange to be that of ~ mesons,
which have the lightest mass and longest range in the XX
interaction. The important interaction for this process is
Km. scattering, which is not small at the relevant energies,
and even has a low energy resonance, K*(892), which

may play a role. Since the pion is virtual, it is important
to take into account properly the off-shell behavior of the
E~ amplitude. The model we propose is a natural exten-
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sion of our previous work on the MEC contributions to
pion double charge exchange (DCX) scattering from nu-
clei [13,14].

We calculate the MEC amplitude for forward scatter-
ing, F, for K+ momenta 400 MeV/c (p ( 1.2
GeV/c, covering the range of recent experiments. We
find Im(F ) (which gives the K+ total cross section) is
determined with more certainty than Re(F ), since the
former is more constrained by unitarity and less depen-
dent on the method of off-shell extrapolations. The mod-
el imposes a strong energy dependence (from unitarity)
on Im(F ), such that it must vanish below p-400
MeV/c. Well above this threshold (for rr production),
Im(F ) reaches a magnitude of about 6% of the pre-
dictions of multiple scattering theory. This gives a sub-
stantial improvement of the agreement of the total cross
section given by scattering theory with the experimental
results. We also predict an increase in the differential
cross section at forward angles, of 10% or more (with
considerable uncertainties).

Akulinichev [12] has given an estimate of Im(F ),
using an argument based on on-shell quantities only, and
finding an effect on o., of —10%. Although the order of
magnitude so obtained is not bad at the higher momenta,
we find a number of differences between a fully off-shell
theory and his method, such that the numerical similari-
ties must be considered fortuitous. This is discussed in
detail in Sec. V.

The paper is organized as follows. First is a presenta-
tion of the general theoretical framework for our MEC
model in Sec. II. This is followed by calculations of for-
ward amplitudes with numerical results in Sec. III. Sec-
tion IV is devoted to a careful examination of the sources
of uncertainties induced within our work. In Sec. V the

importance of the main features of our model is dis-
cussed, including crossing symmetry and construction of
the off-shell amplitude. An investigation of corrections
for chiral symmetry follows. Comparisons of our results
with experiment are given in Sec. VI, and conclusions are
summarized in Sec. VII.

A. Meson exchange current model

for K+-nucleus scattering

For a nuclear target with total isospin I =0, the for-
ward scattering amplitude for the interaction process
represented by Fig. 1(a) can be written as

F (0)= — f dqJRo (p, q) W„(q)
1

where JRo (p, q) stands for the isoscalar invariant ampli-
tude for K~ scattering and depends on p and q, the
three-momenta of the kaon and pion, respectively. Here,
W„(q) is a tnomentum distribution function for the ex-

changed pions which can be derived by applying the rules
of covariant perturbative theory (see also Refs. [13,14]).
As we will show later, it is closely related to the distribu-
tion of excess pions defined by other authors (Refs.
[15—19])

5n„(q) = ( n (q) ) „—A (n (q) )~, (2)

where n (q) counts pions of momentum q, and ( ) „,( )z
refer to expectation values for the nuclear target, and a
single nucleon. Then the average excess pion number
(5n ) „ is given by the (dimensionless) integral

&5n)„ =—fdq5n„(q) . (3)(5n)„=

(o)
N
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scattering data, both of which satisfy the crossing sym-
metry and elastic unitarity. Parameters in the Km. model
are fixed by using on-shell Km scattering data.

II. THEORETICAL FRAMEWORK N

In this section, we introduce the theoretical framework
of our MEC model for the K+-nucleus elastic scattering.
As we show below, the model involves two important
physical inputs: one is the momentum distribution of the
pion exchange current in the nucleus and the other is the
isoscalar Km. scattering amplitude. To proceed, following
a general introduction of the model, we first discuss cal-
culations of the pion momentum distributions through
which the importance of including realistic nuclear corre-
lations in calculations is demonstrated. Using the results
in Refs. [15—19], we also show some important features
associated with the excess pion distribution. Then we
discuss the construction of the off-shell K+m. scattering
amplitude. For the energy region of interest, our K~
model contains two parts consisting of a linear amplitude
and a resonant amplitude. The former bears a strong
resemblance to Weinberg's low energy ~ scattering model
[20] while the latter is modeled on the resonant Err
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FIG. 1. (a) A general diagram of pion MEC contribution to
the K+-nucleus scattering; and (b) two time-ordered MEC dia-
grams [included in (a}j with a pair of pions created or annihilat-
ed in the Km. scattering.
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To agree with our definition given in Eq. (1), we shall find
that the distributions are related by

5n „(q)8'„(q)=
@ (q)

(4)

where 8 (q) denotes the pion energy Qm +q . [We
note that in the covariant formalism, the meson exchange
processes include the two time-ordered diagrams of Fig.
1(b), with a pair of pions created or annihilated in the
scattering. Without these contributions, the right-hand
side of Eq. (4) would be reduced by —,'; this counting effect
has also been noted in Ref. [16].]

As seen from the above, there are two basic ingredients
in the MEC model: 5n „(q) and A, o . Our knowledge
about them will directly affect our understanding of the
pion MEC contribution to the K+-nucleus scattering. In
the following two subsections, we discuss how to obtain
these two quantities from available theoretical and exper-
imental information.

B. Pion excess and momentum distributions

Assuming that the nuclear state is described in terms
of nucleon variables only, the pion momentum distribu-
tion required for Eq. (1) is then given by

g2 ~ F2(q) (CT 'q)(O J'q)~&(q)=, &, (P&l ',' (~; r, )exp( iq r;,—)lf& &

4M~; (1 (2m. ) 6'„(q)
(5)

where g and F are coupling constant (g =13.5) and form factor of the irN vertex, g„ is the nuclear target wave func-
tion in a static approximation, and r; is the relative coordinate for nucleons i,j [C.ompare Eq. (1) with Ref. [13],Eq.
(11) evaluated at forward angle: however, the isospin factor is different for DCX.]

The pion excess distribution of Eq. (2) has been defined in Ref. [15] [see their Eqs. (5) and (6)] by an expression
equivalent to Eqs. (4) and (5) for nucleonic wave functions. [The factor of 6„(q) in Eq. (4) may be thought of as aris-
ing from a frame transformation for the Knscatter. ing: see Eq. (36).] Additional terms may be included in Eq. (5) for
5 s in the nuclear wave function, as described below. We continue our discussion in terms of 5n(q) to make further
connection with the work of Refs. [15—19].

Calculations of 5n (q) using different assumptions about nuclear structure have shown that NN correlations induced
by the nuclear tensor interaction play an extremely important role, determining not only the magnitude, but the sign of
the excess pion number (5n ) „. To illustrate this, we first calculate for spinless nuclei, such as ' C and Ca in their
ground states, using shell model basis functions with no further correlations among nucleons. An explicit expression
can be derived:

9 2 [F(q )D&'IlL'(q)]
4~q 5n (q)=

2 2 g (2j+1)(2j'+1)(21+1)(21'+1)g ( —1)~q4
4M~ 8 (q)

where J' and j' under g represent single particle orbits (nl)j and (n'1')j'. The nuclear structure information carrier
D/(L (q) is given by the recoupling expression

1'

D~'$/&'(q) =g (
—1) ~ &2A, + 1 1 1' A, (1'0, IO, AO)(10, AO, LO)Hill (q) (7)

with the multipole nuclear form factor
Hi&I (q)= fdr r j z(qr)R„I(r)R„I.(r) [13]. Note that
5n (q) is isotropic because of the spinless target.

The numerical results are shown in Fig. 2 where the ra-
dial parameter a of the harmonic oscillator wave func-
tion is chosen using a=0.5(1/A)'~3fm . As shown in
Fig. 2, the calculation without correlations for ' C and

Ca gives a negative distribution for all momenta shown,
thus leading to a negative pion excess in nuclei. [The in-
tegrated average excess pion numbers (5n ) „are —0.032
(A=3 fm ') and —0.041 (A=6 fm ') for '~C; and
—0.032 and —0.040 for Ca accordingly. ] This feature
is the same as shown in nuclear matter also using the
lowest-order approximation (equivalent to the case
without correlations, see N =2 result of Table I of Ref.
[15]). However, the negative pion excess is physically not
correct, because of the neglect of tensor correlations, as

already indicated.
Calculations of 5n(q) with the inclusion of tensor

correlations have been done for nuclear matter and a
number of finite nuclei, using realistic models of nuclear
structure [15,19]. These authors include b, contributions
to the pion excess, to be consistent with the meson-
exchange NN interaction used for the nuclear structure.
In contrast to the calculation without correlations, their
complete result for the momentum distribution 5n (q)
possesses the following features: it is negative when q & 1

fm ' and becomes positive thereafter with a peak at
around 2 fm (see the solid curve of Fig. 2, which gives
the result for Fe from Fig. 5 of Ref. [19(a)]). Jung and
Miller [17], using a very different approach, have ob-
tained a very similar result, supporting the calculations of
Refs. [15,19]. Both calculations are based on convention-
al nuclear theory with correlations and 6 contributions
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I I Ca, as shown in Fig. 2. Sensitivity to changes in shape
will be discussed in Sec. IV.) Then, the momentum distri-
bution of pion excess in a finite nucleus ( A ) can be ex-
pressed as

8
0.050 5n~(q) =&5n & ~po(q) (8)
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0.000

-0.025

q [fzn 'j
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where we introduce a universal function po(q) which
represents a normalized momentum distribution of pion
excess with fdq pc(q) =1. With this approximation

& 5n ) „remains the only quantity which measures the A

dependence of the MEC contributions to the E+-nucleus
scattering. The numerical values of 5n and po are ob-
tained using the results of Ref. [19(a)] and are listed in
Table I.

Using Eq. (8), we can rewrite Eq. (1}as

FIG. 2. Momentum distributions 4~q 5n„(q)/A: The solid
curve is the result from Ref. [19(a)] for ' Fe with inclusion of
correlations and h. The dashed (dotted) curves are our results
for Ca(' C) without correlations. A is the cutoff parameter of
the n.N vertex function. f (0)= — fdq~o (p, q)~ (q) .

1
(10)

FMEc(0) —
& 5n ) fMEc(0)

where the 3-independent forward scattering amplitude is
given by

included. At present, no other results from models
beyond this conventional picture are available.

As remarked earlier, the sign of & 5n ) „ in these com-
plete calculations is positive. A qualitative argument for
the sign is based on the similarity in structure between
5n (q) and the one-pion exchange potential
V„(q)= 5n(q)b (q). —Since the average of this poten-
tial in the target, including correlations, is expected to be
negative & V ) (0, & 5n ) „must be positive [19(a)].

In this work we employ the momentum distribution
5n (q) for Fe given in Ref. [19] as input data. Because
the shape of the momentum distribution does not change
dramatically for all but the lightest nuclei [19], we shall
assume that except for a di6'erence in an overall normali-
zation, the momentum distributions for ' C, Ca, and

Fe have the same functional form. (This can also be
seen in our calculation without correlations for ' C and

its numerical values are also shown in Table I.

C. Isoscalar Km invariant scattering amplitude

Let us start with the isospin tensor decomposition for
the E~ invariant amplitude

JN, (Km}=Jkc(Km )+JII, (Kn ) I (12)

where I and r/2 are isospin operators for pion and
kaon, Jkf 0(Km)and Af, , (K. rr) are the isoscalar and isovec-

The new momentum distribution function x (q) is defined
as

pc(q)
uI (q) =

TABLE I. Momentum distributions defined in Eqs. (8) and (11),with their integrated values.

q
(fm ')

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

4~q 5n&(q)/A
(fm)

0.0
—0.008
—0.007

0.041
0.076
0.068
0.041
0.024
0.015
0.006
0.001
0.0001
0.0

&fin ) „=0.13

4mq p0(q)
(fm)

0.0
—0.063
—0.055

0.323
0.598
0.535
0.323
0.189
0.118
0.047
0.008
0.0008
0.0

fpo(q)dq= 1.0

4mq w(q)
(fm )

0.0
—0.073
—0.045

0.195
0.282
0.206
0.105
0.053
0.029
0.010
0.002
0.0001
0.0

f wiq}dq=0. 37
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tor invariant amplitudes, respectively, and can be ex-
pressed in terms of the isospin amplitudes Tz, with
I =

—,', —,
' for K~:

JRO =—[2T3/2 + T) /~ ]

A) =
—,'[T3/2 Tl /2] .

(13}

Tt (s)= —8m.&s, I. =0, 1,2L +1
Dt (s) —ik

(14)

Direct experimental results for Km. scattering are not
available. However, there are some indirect measure-
ments which make use of the analysis of the EN~EN~
reaction from which phenomenological Em. phase shifts
can be derived. We use data from the analysis of Esta-
brooks et al. [21],who found that for Qs)r (1 GeV the
dominant contributions are from s and p waves and all
other higher partial waves are negligible. As a result, the
on-shell invariant amplitude in the partial-wave represen-
tation can be written as

%II"=ao+Po(s + u)+iPO[k (s)+ k (u)], (19)

where ao pp po are real constants. We omit a term linear

in t, which will vanish for forward scattering. With the
last (po) term omitted, Eq. (19) corresponds to the Wein-

berg form for m.X isoscalar scattering at very low energy
[20]. The po term is required by minimal elastic unitari-

ty, and will be important for our present application. For
given x (x =s or u), k (x) in Eq. (19) is calculated using a
threshold (nonrelativistic) expansion form

Eq. (1) in terms of the Mandelstam variables s, t, u, and
the momenta k(s), k(u) corresponding to s, u. We first
introduce a term which represents the nonresonant s- and
p-wave Em scattering at low energy. For this domain we

consider an expansion only to linear order in these kine-
matic variables, which is in close analogy to the approach
used in low energy m.m scattering [20]. Crossing symme-

try requires that the isoscalar E~ amplitude be even un-

der the interchange s+ u. Therefore, the linear expan-
sion takes the form

with Dt (s) =k cot52t, where s and k are the total energy
squared and the momentum in the c.m. frame, satisfying
the following relativistic relation:

Qm m)
k (x)= Qx —(m„+m), )

m~+ pli
(20)

[s —(m +mt, ) ][s —(m —
m), ) ]

4s
(15)

In the above 51 is the phase shift. For L =0, it is

parametrized using effective range form

0 1 1
D (s)= + rk—I 2 2I

a2I
(16)

with parameters given in Ref. [21]: a 3
= —l.00,

a) =2.39, and r3 =r, = —1.76 [all in (GeV/c) ']. The p
wave is dominated by an I =

—,
' resonance, IC '(892), which

is therefore 6t by the resonant form:

which is consistent with the threshold feature of the
linear model. This expansion is employed to remove an
))nphysical region and pole in Eq. (15) when extrapolating
to off-shell values of x ((m —

m), ), as discussed later in

the context of unitarity.
The second part of our model consists of a resonant

scattering term:

Afo"(s, t, u)= T„,(s) 1+ 8(s —xo)
2k (s)

+ T„,(u) 1+ 8(u —xo }
2k (u)

M„I (k)k
D', (s) ik M—„—s iM„I'(k—)

(17)
with

(21}

where

I (k)=
I 1+(k„R)

r, 1+(kR )

(18)

with parameters [21] M„=895.7 MeV, I „=52.9 MeV,
R =4.3 (GeV/c) '. k„ is the resonant c.m. momentum

which can be obtained from M„, using Eq. (15). The
I = —,'p wave is negligible. (We do not include experimen-

tal uncertainties in our calculations. )

The above information about K~ scattering provides
us with an on-shell constraint on the K~ invariant ampli-

tude. However, because the virtual pion under considera-
tion is far off its mass shell, we also need guidelines for
carrying out an off-shell continuation of the Km. invariant

amplitude. In the following, we proceed to construct an
isoscalar amplitude which is consistent with unitarity and

crossing symmetry, using the on-shell data to help fix its
parameters.

We shall express the K~ invariant amplitude JMO in

M„l (k (x))
T ( )

877+x
k(x) M„—x iM 1-(k(x))— (22)

Ao(s, t, u) =Sf()"+Sf() ', (23)

which can be seen to be explicitly crossing symmetric.
Considerations of unitarity imply that the amplitude

should have an imaginary part only if s or u is above

and where x =s or u, and xo=(m +m&) is the

(squared) threshold energy for physical K~ scattering.
The t dependence of Eq. (21) gives the p-wave angular
dependence on-shell, and the step functions 8(x —xo) re-

strict the resonant amplitudes to s and u above threshold.
As a result, the resonant scattering amplitude has no un-

physical poles below threshold. (Note that Afo' has fully

relativistic kinematics, while in A,o, some nonrelativistic
approximations are used. )

Putting the above two terms [Eqs. (19) and (21)] togeth-
er, our model off-shell amplitude becomes
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threshold. This will obtain for Eq. (19},provided the mo-
menta k (x) are real for x )xo, and imaginary for x (xo.
This physical requirement is well observed by the expan-
sion form of k (x) in Eq. (20). [Note that the full relativ-
istic function of Eq. (15) has a more complicated square-
root structure. ] Similarly, for the resonant amplitude of
Eq. (21), the step functions also guarantee the unitarity
behavior, by cutting off the amplitudes below threshold
(at the expense of analyticity).

As we see from the above, the parameters of Ao" are
completely fixed by the on-shell constraint. [The T„,(u)
term vanishes for the on-shell En kinematics. ] There-
fore, the only undetermined parameters in our model are
those in A,o", and are determined by fitting the s-wave
on-shell data, as follows. All quantities in Eq. (14) are ex-
panded in power of k, using Eq. (16) with the effective
range parameters given, and the inverse of Eq. (20)

(m„+mk )
&x =(m„+mk)+ k (x)

2m mk

k (x)
=(m„+mk )+

2p
(24)

m +mk2 2

&o=VPo
8m ~k

2'
[a, +2a3]

3p

where p is the reduced mass of E~ system. Only terms
through k will be kept. Similarly, Jktoh" of Eq. (19) is also
expanded in powers of k =k (s): this requires that u and
k (u) be expanded in k, using on-shell kinematics. Then,
matching coefficients of A, op" and —,

' [2T3/3 + T, q~ ]
through order k, we obtain these equations

8n(m +mk)
ap+2pp(m +mk ) 2ppo=—— [a, +2a3 ]

TABLE II. Expansion parameters from different off-shell ex-
trapolations of the linear K~ amplitude, Eq. (19): (I), from Eq.
(26); (II) and (III), see Sec. IV B.

ao
Pp(fm')
Pp(fm)

18.7
—2.2
—8.1

11.4
—1.0
—8.1

—11.0
0.0

—8.1

2 2=2~ 2 ~ m +mk
Pp= (m &+mk )[(a ~ ) r& +2(a3) r3]——

m~mk

2~ m~+
X [(a, ) +2(a3) ]

— [a, +2a3],
m mk

(26)

8~(m +mz)
Po= — [(a, } +2(a3) ] .

Their numerical values are listed in Table II (I},calcu-
lated using the parameters given after Eq. (16).

Therefore, applying general considerations of unitarity
and crossing symmetry, we have constructed a model of
the off-shell isoscalar invariant amplitude for Em. scatter-
ing which has the correct behavior on-shell: for the s
wave, at low energies, and for the p wave, near the
K'(892) resonance. The forward amplitude, given by Eq.
(23) with t =0, is then to be used in Eqs. (1) or (10) for the
calculation of F

2m.(m +mk)+ [(a, ) r, +2(a3)] r3,
3

(25}
III. CALCULATION OF MEC AMPLITUDES

8m.(m„+mk )
Po= — [(a, ) +2(a3) ],

o= (m +mk)( + k }[(ai} ri+2(a3) 13]
r

(m +mk )+
m~mk

—8m mk [(a&) +2(a3) ]

4m. (m —m„)+ (m„+mk) [a&+2a3],
3 m„mk

which may be directly solved for the parameters
(a„P„Po'):

We combine Eqs. (9)—(11), Eq. (19), Eq. (21), and Eq.
(23) to obtain explicit expressions for the pion MEC con-
tribution to the E+-' C scattering. First we express the
kinematic variables s and u in terms of the momenta p, q
of the kaon and virtual pion [off shell: q„=(0,q) in the
static approximation]:

s =mk —
q

—2qp cos8,

u =mk —q +2qp cos8 .
(27)

Then k(s) and k(u) in Afp"[JRo"] are obtained from
Eq. (20) [Eq. (15)]. The forward amplitude per unit pion
[Eq. (10)] can be separated into real and imaginary parts:

Re[f (0)]=— [ap+2)6'(mk+m )]f dqw(q) 2Pp f dq—(q +m „)w(q)
1

—
Pp f dqw (q)[Im(k(s) }8(xp—s)+Im(k (u) }8(xp—u)]

+fdqw(q)[Re(T„, (s))0(s —xp)+Re(T„,(u))8(u —xo)] (28a)
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Im[f !0)]=— fdqw(q)[k(s)0(s —xo)+k(u)0(u —xo)]
po

1 fdqw(q)[lm(T„, (s))0(s —xo)+Im(T„„(u))0(u —xo)] .
4m

(28b)

From Eq. (28) one sees immediately that Im(f ) in-
volves only integrals for s or u above threshold, while
Re(f ) includes integrations over all pion momenta.
For a given distribution w(q), the actual amplitudes
Re(F ), Im(F ) are obtained from Eq. (28) by scal-
ing with (5n ) „,as in Eq. (9).

Numerical results for ' C are given in Table III. We
have used the pion density distribution w(q) given in
Table I, obtained as described from Ref. [19(a)]. The
values of Re(f ) and Im( f ) are obtained by in-
tegrating Eq. (28). These are then multiplied by a value
of & 5n & „appropriate for ' C to obtain F . We adopt
a value of (5n ) „/3 =0. 1 which interpolates between
the values given in Ref. [15]for He (0.09) and Al (0.11),
to obtain & 5n ) „=1.2 for ' C, which is used in Table III.
This value may be considered an average result: uncer-
tainties in & 5n & „are discussed in the next section.

The results for F listed in column (a) are for the
full model of the Km. amplitude of the previous section, as
given in Eq. (23). For comparison, column (b) gives the
results with the resonant (p-wave) A[0" contributions
omitted. It is clear that the resonance is quite important
at higher energy for Im(F ), although it has negligible
effects on Re(F ). At p =1.2 GeV, the contributions
[to Im(F )] of the resonant ("p-wave") terms are
about 1.5 times as large as those of the linear ("s-wave")
terms. In column (c) we show the effect of omitting the
contribution of the effective range terms, by setting
r, =r3 =0 in Eq. (26). We also omit the resonant terms
so that amplitudes in (c) are generated entirely by the En.
scattering lengths. The omission of the effective range
terms only affects Re(F ), as is clear from Eqs. (26)
and (28); the effect is moderate.

Two features of the model for Im(F ) are apparent
from Table III; and follow from the form given in Eq.
(28b): (1) There is a threshold at p -400 MeV/c, and (2)
Im(F c) increases monotonically with p. The first

comes from the E~ kinematics with the pion off-shell:
since s )xo and u )xo, one finds easily from Eq. (27) that
the threshold occurs at

p = /m +2mkm -400 MeV/c . (29)

IV. SOURCES OF UNCERTAINTIES

This section discusses the sources of uncertainty; they
included the excess pion distribution expressed in W(q),
which mostly affects the overall scale ofF; the treat-
ment of the off-shell extrapolation of the E~ amplitude;
and the integration over kinematics below threshold. As
we have just discussed, this latter does not affect

This is essentially the threshold for pion production on
the nuclear target K++' C~E+vr+' C (static
approximation —no target recoil), as we would expect,
since Im(F ) reflects (through unitarity) "knockout"
of virtual pions from the target. The increase of
Im(F ) with p is partly due to the increase in phase
space, partly due to the increase in k(s), k (u), and of the
resonant terms, all with p.

We can see directly from Eq. (28) that within our
theoretical approach, there is less uncertainty for the pre-
diction of Im(F ) than for Re(F ), given the on-
shell data for Em. scattering. This is due to the fact that
Im(F ) is uniquely determined by the minimal unitari-
ty condition and the on-shell data while Re(F ) de-
pends also on the off-shell continuation of the E~ ampli-
tude. Actually, in the present model, the main uncertain-
ty in Im(F ) comes from the (excess) pion distribution.
As we shall see in the next section, with some possible un-
certainty in scale to be fixed by (5n &„, our values for
Im(F ) are reasonably firm. On the contrary,
Re(F ) will bear many more uncertainties. We will
also learn that the inclusion of crossing symmetry is im-
portant to our result.

TABLE III. The MEC K+-"C forward scattering amplitudes (in units of fm) for different model assumptions; f and F !a)
are the results of our full model in Eq. (28), (b) gives contribution of ALoh" only, (c) same, in scattering length approximation.

P
(MeV/c)

IMEc!0)
&sa &„=l.P

Re!f) Im(f)

FMEc(a)

&5n &„=t.Z
Re(F) Im(F)

FMEc(b)

&5n &„=1.2
Re(F) Im(F)

FMEC( )

&5n &„=l.Z
Re(F) Im(F)

400
500
600
700
800
900

1000
1100
1200

—1.24
—1.20
—1.16
—1.09
—1.02
—1.03
—1.09
—1.15
—1.22

0.0
0.02
0.05
0.09
0.21
0.34
0.44
0.50
0.53

—1.49
—1.44
—1.39
—1.31
—1.22
—1.24
—1.31
—1.38
—1.46

0.0
0.02
0.06
0.11
0.25
0.41
0.52
0.59
0.64

—1.49
—1.45
—1.43
—1.42
—1.42
—1.42
—1.43
—1.43
—1.44

0.0
0.02
0.06
0.09
0.13
0.16
0.19
0.22
0.25

—1.12
—1.09
—1.07
—1.06
—1.06
—1.06
—1.06
—1.07
—1.07

0.0
0.02
0.06
0.09
0.13
0.16
0.19
0.22
0.25
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Im(F ), although it can be quite important for
Re(FMEc)

A. Excess pion momentum distribution

The amplitude F depends on the momentum distri-
bution W„(q) [or equivalently, 5n (q)], through both the
functional form and the scale given by the pion excess
number (5n )„.The strongest characteristic of 5n(q) is
the change of sign from negative values for q ~ 1 fm ' to
positive values, peaking at q-2 fm '. This feature is
given by all models which incorporate tensor correlations
from the NN interaction into the nuclear wave function
[15—17,19]. Details of the shape change with different
models, as can be seen, e.g., in Fig. 2(a) of Ref. [17(b)],
which compares their values of 5n (q) with those of Ref.
[19(b)]. These two cases are very similar in shape,
presumably because they have similar dynamical input.
Even so, the small differences give a 10% difference in the
values of (5n ).

Differences in dynamical models tend to change the
relative weight of high- and low-momentum components,
which is amplified in the change of integrated value of
(5n ) „. Thus, two different models for including the b
component in nuclei [19] give a variation in (5n ) „by a
factor of 0.73 for the same nuclei. On the other hand,
models [17,19] which include the b, have larger higher-
momentum components than those based only on XN
correlations [16,19], and therefore larger values of
(5n) „.

To test for the sensitivity of the amplitude F to the
pion momentum distribution, we perform two kinds of
calculation. First, we vary the cutoff parameters A in the
pion vertex function

A —m2 2'2
F(q, A)=

A+q
Reference [19] uses the value AD=7. 0 fm '; varying

this value changes the shape of the momentum distribu-
tion by

(30}

5n „' (q) =5n „(q) F(q, A)
F q, AO

(31)

The largest changes are at the highest momenta. In
Fig. 3 we show the variation of F for three values of
A: 7.0 [=AD; same as Table III(a)], 6.0, and 4.5 fm
As shown in the figure, F decrease with smaller
(softer) values of A, but so do the values of the average
excess pion number, which are 0.10, 0.08, and 0.05 ac-
cordingly. We note that the variation of F approxi-
mately scales with (5n)„: in fact Im(F } changes
less than linearly with (5n ) „,presumably because it is
less weighted by the low-momentum values of 5n (q).

We also tested the sensitivity of F to change of the
momentum distribution by shifting the argument q in
q 5n (q) by a constant momentum: q ~q —hq; this shifts
the peak by hq without changing the value of (5n ) „.
For shifts (hq =0.25, 0.5 fm ') which correspond to in-
creases of 10% and 20% in the peak position, the
changes in Re(F c) are comparable. For Im(F )

1.0

8

0.5

8
0.0

I I I I

I

I I I I

I

I I I I

I

I I I I

A=7.0 fxn

—0.5
6

-1.0
}l

-1.5

I I I I I I I I I I I I I I I I I I I

400 600 800 1000 1200

there is very little change for p &900 MeV/c, and small
negative changes for higher values of p. (These reflect
changes in the balance between the resonant and non-
resonant Err amplitudes. )

We conclude that the largest uncertainty in our calcu-
lated amplitudes [particularly for Im(F )] from the
momentum distribution are connected to the uncertainty
in the scale, characterized by the pion excess number
(5n )„. As we have discussed, various models [15—19]
give values (per nucleon} of ( 5n ) „-0.07—0. 13, or
(5n ) „-0.8 —1.5 for ' C, which gives us an estimate of
the uncertainty in F

B. Off'-shell extrapolation of Km amplitude

Our calculations have been done in terms of a model
for the isoscalar Em invariant amplitude whose form is
given in Eq. (23). The form of the resonant amplitude is
fairly standard, and will not be discussed further. The
"linear" amplitude of Eq. (19) keeps the lowest orders in
the kinematics variables, the parameters of which are
fixed from the effective range parameters, as in Eqs. (25)
and (26). In this subsection we explore what freedoms ex-
ist to vary the form of Eq. (19), still constrained by on-
shell data.

The first point is that po is fixed by unitarity in the
form shown in Eq. (26), so there is no further freedom in
the imaginary amplitude Im( JRO), and therefore
Im(F c). However, Po also influences
Re(Jkfo)[Re(F )] for values of s or u (xo, for which
k(s) or k(u) are imaginary. This is shown in Fig. 4: (I)
stands for Re(F ) for the full model [Table II (I}]
while (IV) represents the contribution of the po term of
Eq. (28a); the latter is about 50% of the full Re(FMEC).

This contribution would be eliminated if we changed
Eq. (19) by requiring that the Po term contribute only
above threshold (s, u &xo), thus eliminating the po term
in Eq. (28a). However, this also changes the values of ao
and Po, since Eq. (25) must also be altered by removing Po

p [Mev/c]

FIG. 3. Sensitivity of the real and imaginary MEC ampli-
tudes to the cutoff parameter A in 5n (q). The excess pion
numbers per nucleon for A=7.0, 6.0, and 4.5 fm ' are 0.10,
0.08, and 0.05 accordingly.
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0.0

—0.5

—1.0

(rv)

I I

I

I Ref. [22]). For the present application, it appears to be
more sensible to use data with maximum available infor-
mation (e.g., s and p waves, the energy dependence, etc. )

from one experiment, for consistency in decomposing the
scattering amplitude.

V. DISCUSSION

A. Importance of crossing symmetry

—1.5

—2.0
400

I I I I I 1 I I I I I I I I I I I I

600 800 1000 1200

in the first two equations. The corresponding numerical
values for ao po and po are given in Table II (II); they
differ largely from those of the full model (I), though
there is no sign change. The result of these changes on
Re(F ) is shown in Fig. 4 (II). As expected, they are
quite different from those of (I), and are not given by the
difference (I)—(IV) either. The point here is that different
values for extrapolating terms in k(s), k(u) from the
physical region (real values) to the unphysical region
(imaginary values) make large differences for Re(F ),
but not for Im(F ).

Another possible change of extrapolation is the elim-
ination of the (s+u) term of Eq. (19) by setting PO=O.
[This is equivalent to replacing (s + u ) by
2( m +mx ) t, which w—ill agree on-shell: however,
since t =0 for forward amplitudes, the altered term be-
comes a constant. ] Again, Eq. (25) must be modified: the
second equation is dropped, leaving the (last) equation for

pc unchanged, and the value of ac determined by the first
equation, with pc=0. (See Table II for the numerical
value for ac.) Re(F ) for this extrapolation is shown
in Fig. 4 (III). The results are surprisingly close to those
of (II), although the changes from the original model (I)
result from different terms in Eq. (28a).

To summarize, we have shown that the on-shell infor-
mation on the K~ amplitudes does not fully constrain the
real part of the off-shell amplitude, even for an expansion
similar to that introduced in Sec. II. Within the range of
possibilities just discussed, we find the magnitude and
sign: Re(F ) ——0.5 fm '. However, keeping to the
orders given in Eq. (19), there is no freedom in the imagi-
nary amplitudes.

We have not assessed the contribution to the uncer-
tainties of our results resulting from those in the input
Km data, since there does not seem to be a reliable way to
do this. One could simply test the sensitivity to the quot-
ed errors in Ref. [21] which are smaller than other uncer-
tainties in our work; however, there are also variations in
quoted values of parameters from other analyses (e.g. ,

p [Mev/c]

FIG. 4. Sensitivity of Re(F ) to different off-she11 extrapo-
lations: (I) full model, (II) no po contribution, (III) pa=0, (IV)

po contribution alone; see text.

In this subsection we demonstrate the importance of
the crossing symmetry of the En amplitude to the calcu-
lation of F . For comparison we introduce a simpler
model which ignores the constraint of crossing symme-
try, as follows. Take the Em invariant amplitude for for-
ward scattering to be a function of s alone, with an ex-
pansion in partial waves:

~0(s)=g [ 3 T3y2 (s)+ —,
' T,&2(s) ]

L
(32)

The Tt (s) are defined in Eq. (14) as functions of s [or
k (s)] determined by the on-shell data. Then s is given by
Eq. (27) for integration of the amplitude over q, as in Eq.
(10).

There are immediate problems with the treatment of
&s and k (s) extrapolated below threshold, due to
square-root singularities, as well as unphysical poles gen-
erated by the effective range expansion. As in the
method of Sec. II C, these difficulties can be avoided by
expanding Eq. (14) in powers of k and setting the factor
Vs =(m +mk), i.e., its threshold value in the linear
model; and by introducing a step function 0(s —xo) in
the resonant term. With these approximations, Eq. (32)
becomes

8n(m +m„)
Af (s)=—0

X [ a, +2a3 —
—,'k [(a ) r, +2(a3) r3]

+ik[(a, ) +2(a3) ]I
M I(k)8n&s.

k
9(s —xo) .

M„—s iM„I'(k)—

(33)

Direct comparison with Eqs. (19) and (21) shows that for
the forward imaginary amplitudes,

Im [Ato(s, u ) ]=1m [%0(s)+JM o( u ) ] . (34)

Then integration over q [using Eq. (27)] gives equal
contributions from 1m[A&(s)] and Im[W&(u)] to
Im(F c). The result is that neglect of crossing symme-
try omits one-half the contribution to Im(F ), even
though both models have been fit to the same on-shell
data. (The point is that Im[Aio(u)]=0 for on-shell Kn
scattering, but does contribute equally for virtual pions. }
The numerical results shown in Table IV are evidence of
the above expectation, where results of the full model are
the same as that in Table III(a) and those under o+shell
are from Eq. (33) without crossing symmetry.

The omission of crossing also reduces the values of
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TABLE IV. The MEC amplitudes (in units of fm) from the model without crossing symmetry, Eq.
(33) with off-shell and on-shell kinematics, compared with the full model. See Sec. V B.

(MeV/c)
Full model

Re(F) Im(F) Re(F) Im(F) Re(F) Im(F)

400
500
600
700
800
900

1000
1100
1200

—1.49
—1.44
—1.39
—1.31
—1.22
—1.24
—1.31
—1.38
—1.46

0.0
0.02
0.06
0.11
0.25
0.41
0.52
0.59
0.64

—0.39
—0.37
—0.34
—0.30
—0.26
—0.27
—0.30
—0.34
—0.37

0.0
0.01
0.03
0.06
0.13
0.20
0.26
0.30
0.32

0.03
—0.04
—0.07
—0.07
—0.05
—0.02

0.01
0.04
0.08

1.06
0.98
0.92
0.86
0.83
0.80
0.79
0.79
0.79

Re(F ), but not by a simple factor of 2 (see Table IV).
This can be understood by the discussion given in the
preceding section, resulting from a different oF-shell ex-
trapolation.

Ao(s) = 8m.&s'fo(—s') (35)

where f&(s') is the forward (on-shell) Err c.m. scattering
amplitude, evaluated with on-shell kinematics:
s'=[~„(q)+cok(p)] —(q+p) . This amplitude may be
transformed to the pion rest frame ("lab"—assuming

pilq) by

&s'
fi b(p q)=

@
fo(s') .

8„q
Then Eqs. (1) or (9)—(11)may be written

F =2(5n ) „f dqp (q)f„(p,q) .

(36)

(37)

If we further assume that the q dependence of f„b is

weak enough to allow its removal from the integral, then

F c2(5n ) „f„b(p,0), (38)

where fi,b is now evaluated in the target (true laboratory)
rest frame. With the optical theorem, we find

4m Im(F ) =2(6n )po z (p), (39)

which can be evaluated in terms of the experimental total
cross section oz .

This result is similar to that given recently by Akulini-
chev [12], with two differences: (1) A factor of 2 in our
result, Eq. (39), comes from including virtual pion pairs
[produced or annihilated by the Km. interaction; see Fig.
1(b)]. This doubling has also been pointed out [16] for
the MEC contribution to the Compton effect. (2) The
isoscalar weighting in Eq. (32) is not the simple average
given in [12] [Eq. (8)].

B. Qn-shell approximation

Suppose the dependence of JR& [Eq. (32)] on s were
suf5ciently weak that one could ignore the extrapolation
off-shell in the pion kinematics. (This could be valid for
high energy I( +, far above threshold and Em.
resonances —but not at low energies. ) Then we write

More important, the on-shell approximation, particu-
larly applied to Im(F ) at low energies, is quite inac-
curate, since the on-shell kinematics are quite different
from the proper off-shell evaluation of JN, O(s) using Eq.
(27). The last columns of Table IV show the results for
Eq. (33) calculated with on shell k-inematics [but integrat-
ed, as in Eqs. (1) or (10)]. This improper assumption will
lead to quite different energy dependence and no thresh-
old for Im(F ), as would be expected on general kine-
matic grounds. On the other hand, the on-shell approxi-
mation brings about a very small Re(F ) with an op-
posite sign for 600 &p & 900 MeV/c as compared to that
of the off-shell Em. amplitude. This very small Re(F )

is a consequence of cancellation between the linear and
resonant terms.

C. Correction due to consideration
of chiral symmetry

In earlier studies of the MEC contributions to pion
scattering from nuclei, we have shown that chiral syrnrne-

try provides an important constraint on the MEC contri-
butions at low energy [13,14]. This weakly broken sym-
metry for the pion is particularly useful in selecting dia-
grams to investigate certain types of meson exchange
contributions. For example, in a MEC theory with pion
exchange, where the basic interaction is m.-m scattering,
chiral symmetry requires the inclusion of a second pro-
cess: ~N scattering accompanied by a simultaneous ex-
change of a pion with a second nucleon. The diagrams
for these terms are called "pole" and "contact, " respec-
tively [see Figs. 1(a) and 1(b) of Ref. [13]]. However,
chiral symmetry also relates the contributions of the two
terms [14]. Therefore, the question may arise: What are
the consequences of assuming chiral symmetry in the case
of E +-nucleus scattering?

To investigate the constraint imposed by chiral syrnme-
try in the present context, two considerations are in or-
der. First, the soft kaon theorems (in analogy to the soft
pion theorems) appear to apply constraints only to the
real parts of the amplitudes. This is because at those
specific off-shell points where the soft kaon theorerns are
defined, the amplitude of Eq. (23) becomes purely real. In
fact, the form of the imaginary parts is not derived from
the consideration of chiral symmetry but from the uni-
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tary condition for Km. scattering. Secondly, we do not
know whether or how chiral symmetry applies con-
straints on the resonant terms which are very important
in the present work, in particular, to the imaginary part
when p ) 800 MeV/c. In view of these, we shall assume
that chiral symmetry only provides a constraint on the
real part of our linear MEC amplitude.

With these assumptions, the chiral-symmetry con-
straint seems to aFect only the first line of Eq. (28a). Us-
ing the on-shell constraints Eq. (25), the first term can be
shown to be proportional to the isoscalar K~ scattering
length because of the following:

12 i iaaf i ~q~r

)(

1.1

b
CO

b
II

1.0—

I

I

I I I I I I I I

]
I I I I

(
I I I I

l

x Bugg et al. (1968)
& Krauss et al. (1992)

cio+213o(m +mk)= — (rn„+rnk)(ai+2a3) .8m

3
(40) 0 9 I I I i l 1 I i I I I I i I I I I I I I I i I I I I I I i

400 500 600 ZOO 800 900 1000

(The Po term vanishes in the chiral limit mk~0. ) As
shown in Ref. [20), the isoscalar scattering length
(a, +2a3) vanishes in the chiral limit, and the first term
of Eq. (28a) will vanish accordingly. Therefore, following
the argument given in Ref. [14], the second term in Eq.
(28a) must be omitted, since in a chiral theory, it will be
cancelled by the contact term to have a correct chiral
limit. (Again we can show that the remaining terms in
linear model vanish in the chiral limit, i.e., mk~0,
without further constraint. )

Then, to calculate Re(F ) in our model with the
chiral constraint, we simply omit the term with the in-
tegral jdq(q +m ) in Eq. (28a). Such a calculation
takes into account the corrections due to chiral-
symmetry breaking through nonvanishing (a, +2a3) and
kaon mass. It is easily seen from the on-shell constraints
on the expansion parameters, that the numerical result is
exactly the same as that of model (III). The latter has al-
ready been discussed in Sec. IV B and the result is shown
in Fig. 4. Comparing (III) with (I) (full model), we find
that although the chiral-symmetry correction changes the
value of Re(F ) dramatically, it does not change the
sign. This tells us that the qualitative conclusion about
the MEC contribution to the differential cross section
will not be affected by the consideration of the chiral con-
straint, although its size will be changed (see next sec-
tion).

To conclude, we would emphasize that the above re-
sults should only be considered suggestive, since chiral
symmetry for low energy K's is not well tested. In fact,
chiral symmetry could be severely broken in low energy
kaon scattering since its mass is more than three times
larger than pion. Further studies are certainly needed in
this regard.

VI. COMPARISON WITH EXPERIMENTS

Recent experiments measure the ratio of total cross
section for K++' C to that of K++d as a function of p
for a range 480 (p (740 MeV/c [3,4). An earlier experi-
ment covered the higher-momentum range 700—1000
MeV/c [1]. Data are plotted in Fig. 5 as
R =o.,{

' C}/6o, (d },to emphasize the closeness of the ra-
tio to unity. This would be the value in the limiting ease
that the K+ scattering on these nuclear targets were
given completely by free K+N (isoscalar) single scatter-

p [MeV/c]

FIG. 5. Comparison of data and our MEC model for the ra-
tio R: data points from [3,4]; dotted line —optical calculations,
from [7]; solid line —this work: R,~„„,+DR [Eq. (41)]; "swel-
ling models": dashed line —[8], dot-dashed line —(10% in-
crease) [7]. (Calculations for p (500 MeV/c are quoted from
[3] )

ing, with no corrections for multiple scattering, including
optical potential scattering, meson exchange, or other
medium effects.

Microscopic optical model results have been calculated
by Siegel, Kaufmann, and Gibbs [7], and are shown by
the dotted line of Fig. 5, where values for p & 500 MeV/c
are quoted from Ref. [3]. This is actually the upper limit
of a range of corrections, and shows that the multiple-
scattering corrections tend to underpredict the experi-
mental ratio, by an order of less than or up to 10% for
this limit. The range of corrections considered by these
authors depresses the curve for the multiple scattering by
an almost uniform ratio over the momentum range, giv-
ing up to 10% additional reduction.

The general trend of the data is a slower decrease with

p than that of the multiple scattering (upper limit). With
the possible exception of the lowest momentum point, the
data are in agreement with multiple scattering in the
500-600 MeV/c range. The biggest disagreement is for
larger p where the "shadowing" correction brings the
multiple scattering ratio below unity.

The solid line in Fig. 5 shows the effect of adding our
MEC correction to the multiple scattering calculation of
Ref. [7] (dotted line). This correction is obtained directly
from the calculated values of Im[F (a)] of Table III,
using the optical theorem to give the ratio

b,o (' C) 4~ Im[F ] Im[F ]AR=
6pcr, (d) 121m[FoxN]

'

(41}

where, for simplicity, we define Im(Fo )=—,'pa', (d)/4~.
If the K+ multiple scattering in the deuteron is neglect-
ed, I'0 then becomes exactly the isoscalar K+X scatter-
ing amplitude. In Table V, we tabulate values of
Im(Fo ), Im(F ), and b,R for the momentum range
400 —1200 MeV/c, where Im(Fo ) are calculated using
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400
500
600
700
800
900

1000
1100
1200

0.20
0.24
0.32
0.39
0.47
0.56
0.68
0.81
0.92

0.0
0.02
0.06
0.11
0.25
0.41
0.52
0.59
0.64

0.0
0.007
0.016
0.024
0.044
0.061
0.064
0.061
0.058

the above definition and the experimental data of Refs.
[23,24]. We see that hR increases with p, from very
small values near 500 MeV/c (hR =0 at the threshold of
-400 MeV/c). The percentage correction is -6.4% at
1 GeV/c. The direction of the change to the multiple-
scattering curve brings the total in closer agreement to
the trend of the data. The overall scale of b,R is subject
to the uncertainties in the pion excess number (5n ) „,as
discussed in Sec. IVA; we estimated an uncertainty of
+50% for our values.

An important advantage of our MEC model lies in its
evaluation of both the real and imaginary parts of the
scattering amplitude. As a result, the effect of the MEC
contribution on both total and differential cross sections
can be investigated. In the above, we have already
learned that Im(F ) has the same sign as that of the
optical model, leading to an improvement over the
discrepancy between experimental and optical results. In
fact, the real part of the MEC amplitude also has the
same sign as the optical model amplitude. This can be
seen by comparing the Re(F) listed in Table III(a) and
Table VI (Re[F0 ] are obtained from data of Ref. [24]).
As we mentioned earlier, there exist large uncertainties in
the real amplitude as compared with the imaginary part
in the present MEC model. Consequently, unlike its con-
tribution to the total cross section, the MEC contribution
to the differential cross section depends sensitively on the
off-shell extrapolation of the Km. amplitude. To show
this, we choose two extreme cases [I (full) and III (Pa=0)
of Fig. 4] of our MEC model to calculate the percent
change of the differential cross section when adding F
to the optical model amplitude. With the impulse ap-
proximation for the latter, this change 6 is calculable us-
ing

where

~do (MEC+KN) der(KN) ~—
do(KN). (42)

and

do(MEC+KN)=~F +F /Aj

The numerical results are shown in Table VI. As expect-

TABLE V. Imaginary forward isoscalar amplitudes (in units

of fm) for the KN scattering (Fo ), and the MEC model (Fo )

as well as the ratio hR de6ned in Eq. (41).

(FMEc )

ed, the actual changes bear large uncertainties. However,
because these uncertainties do not change the sign of the
real MEC amplitude, the addition of the MEC effect al-
ways gives an increase to the differential cross section, for
example, it is at least —10% around p =800 MeV/c.

The above observations on the real and imaginary am-
plitudes tell us that the MEC contribution to the %+-
nucleus scattering will bring a simultaneous increase of
both total and differential cross sections. As we noted
earlier, the experimental total and differential cross sec-
tions are underpredicted by the optical model. The con-
structive contribution to both cross sections may be a
strong indication that the MEC effect does play a role in
the K+-nucleus scattering. However, to determine com-
pletely and quantitatively such a contribution, better
models and further studies are needed in order to remove
the large uncertainties in the real amplitude.

VII. CONCLUSIONS

We have calculated the contribution to K+-' C ampli-
tudes of K+ scattering from virtual pions exchanged be-
tween nucleon pairs —the meson exchange current. The
momentum distribution of virtual pions was adopted
from calculations of the excess pions in nuclei by several
authors [15,19]. Since these results are sensitive to as-
sumptions in the nuclear structure theory from which
they were obtained, they should be (and are being) inves-
tigated further. This would also be of interest for other
experiments which may be sensitive to the pion content
of nuclear targets.

We have discussed uncertainties introduced by the as-
sumed form of the off-shell invariant amplitude given in
Eq. (23). The two terms were based on an expansion
about threshold for Ato", and the lowest Km. resonance
K*(892) for JRO'. An improvement of JKII" which would
allow extension of the calculation to higher energies
would be to include higher powers in s, u, k (s), and k (u).
In particular, this would introduce k terms in the imagi-
nary part of JKO", not given in Eq. (19), and include con-
tributions both from the expansion of &x, Eq. (24), and
from the effective range terms in Eq. (16). The former
tends to increase the values of Im(F ), the latter is less
important. Similarly, adding higher K * resonances
would be expected to increase Im(F ) at higher mo-
menta, p) 1 GeV. The effects on Re(F ) are more
complicated. It should be noted that extending Ato" to
higher orders does increase the possibilities for off-shell
extrapolation and introduce more freedom in the possible
values of the expansion parameters, therefore, even larger
uncertainties in the results as compared to the present
model. However, constraints due to unitarity limit the
form of Im(i@0"), making the calculation of Im(F )
more controlled than that of Re(F ), as we have seen
earlier.

The question of the importance of other meson ex-
change processes than those of Fig. 1 has been discussed
in Sec. V C. It would be interesting to investigate further
the role of (broken) chiral symmetry in such contribu-
tions, e.g. , along the line of Ref. [14].

We conclude that the MEC contribution to I( +-' C
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TABLE VI. The MEC contribution to the differential cross section [see Eq. (42)) showing possible
uncertainties because of the off-shell extrapolation: (I) full, (III) 130=0.

(MeV/c)

400
500
600
700
800
900

1000
1100
1200

R,(F'"]
(fm)

—0.31
—0.30
—0.28
—0.25
—0.22
—0.20
—0.20
—0.23
—0.31

Re[F c(I)]
(fm)

—1.49
—1.44
—1.39
—1.31
—1.22
—1.24
—1.31
—1.38
—1.46

6(I)
(%)

65
59
47
35
27
24
22
21
19

Re[F (III)]
(fm)

—0.35
—0.30
—0.25
—0.17
—0.08
—0.10
—0.17
—0.24
—0.32

14
13

8

6
9

11
12
13
12

scattering is a real effect, calculable with some uncertain-
ties. The effect adds to that of multiple scattering by a
fraction rising to -0.06 for Im(F) (or o, ) at p ~ 1 GeV/c
from a threshold at p -400 MeV/c (see Table V). This
energy dependence is a specific feature of a MEC theory,
since the threshold enters, through unitarity, from the
opening of the m.-production channel. We have noted
that the near-threshold behavior of the MEC calculation
is consistent with the energy dependence of the data (see
Fig. 5) in that, when added to the multiple scattering am-

plitude, the resulting ratio R has less downward slope, in
closer agreement with the trend of the data. By contrast,
most "swelling" mechanisms enhance the slope (see Fig.
5).

Our calculations also predict an increase in the
differential cross sections at forward angles, but with con-
siderable uncertainty entering with Re(F ) (see Table
VI). The fractional increase is larger than for o„e.g. ,

0.09—0.27 for p =800 MeV/c; data at that energy suggest
a need for such an increase, but with considerable experi-
mental uncertainty. There is no threshold predicted in

this case.
Newer experiments are under way investigating the

dependence of cr, (or R) on the target size [5]. Our pre-
diction for the MEC contribution (per nucleon) would

give a weak dependence on target A, essentially scaling
with the mean excess pion numbers ( 6n ) „/3, as shown

in Eq. (9). According to Ref. [19(a)], this quantity rises

from 0.119 to 0.142 for targets from Al to Pb.
Two remaining questions are not discussed in this pa-

per: How certain is the calculation of the "conuentional"
multiple-scattering amplitudes for E+-' C, and how
much room is left for "unconuentional" effects, such as
nucleon "smelling"? The questions are, of course, related.
We have mentioned that Siegel et al. [7] estimate a range
of uncertainty for their calculation of R of —10%%uo, de-
pending on NN correlations and KN form factors, etc.
However, Chen and Ernst [11]calculate values of the ra-
tio R to be even lower (by 5 —10%) than those of Ref. [7];
the origin of the difference is not clear. The status of
conventional multiple scattering must be clarified in or-
der to understand the size of the discrepancy between the
conventional scattering mechanism and the data, as well
as any attempt to explain that discrepancy.
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