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a-d resonances and the low-lying states of ®Li
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The low-lying states (below the 3He->H threshold) of the ®Li nucleus are generated using three-
body models with two-body nonlocal separable interactions between the constituent particles. The
positions and widths of the states are determined by searching for the eigenvalues of the kernel of
the Faddeev equations in the complex energy plane. When appropriate (for T' = 0 states only),
the results are compared with a separate determination of these quantities from the a-d scattering
process. All experimentally observed levels are found. Given that the Coulomb interaction is not
included in our calculations, agreement with experiment is favorable for both the positions and the

widths of the resonances.

PACS number(s): 21.60.Gx, 24.30.Gd, 27.20.+n

I. INTRODUCTION

It is by now a well-established fact that at low excita-

tion energies (515 MeV) many properties of the A = 6
nuclei can be satisfactorily explained within the frame-
work of three-body models. In these models the three
constituents that make up the nucleus are an alpha par-
ticle and two nucleons. In the past two decades many
successful calculations with three-body models based on
nonlocal separable interactions between the constituent
particles have been performed, e.g., elastic and inelastic
a-d scattering [1-5], °Li— o + d momentum distribu-
tion [6, 7], 6Li— « + d asymptotic normalization con-
stants [6, 8], the SLi— p + (na) spectral function [9),
and “He B decay [10]. These three-body models are
unambiguous in their dynamics and do not suffer from
the center-of-mass problem which is associated with the
harmonic-oscillator shell-model states. Moreover, no free
parameters exist at the three-body level once the param-
eters of the underlying two-body interactions are deter-
mined.

In the context of three-body models and nonlocal sep-
arable interactions, Shanley’s work on the elastic a-d
scattering was the first of its kind in which the SLi lev-
els were produced from the behavior of the phase shifts
obtained from the amplitudes [1]. Shanley included dif-
ferent D-state probabilities in the NN interaction in or-
der to assess the effect of the tensor force on his results.
He also used a purely repulsive Na interaction in the
S1i/2 channel. Given that the Coulomb interaction was
not included, the binding energy was under bound by
~0.3 MeV. This shortcoming was attributed to the un-
certainties in the Na interaction [1]. The widths of the
levels were not calculated in Shanley’s paper. On the
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other hand, Koike’s calculation [3], which utilized a bet-
ter parametrization of the Na interaction, also repro-
duced the low-lying levels of 8Li from the behavior of the
phase shifts, with remarkable improvement on Shanley’s
results. Here again, the focus of the work was not on the
characteristics of the energy levels, thus the widths for
those levels were not calculated. A specific calculation of
the three-body resonances in 8Li was provided by Matsui
who, for the bound states, solved the eigenvalue problem
using the Schrédinger equation, and for the resonances,
solved the complex eigenvalue problem for the Faddeev-
type equations [11]. Unfortunately, Matsui’s determina-
tion of the widths was only valid for resonances that lie
close to the real energy axis. None of the above authors
included the Coulomb interaction in their calculations.
The bound-state solutions of the Schrédinger equation
for the 6Li and ®He nuclei, in the context of three-body
models and nonlocal separable interactions, have been
extensively studied by Lehman, Rai, and Ghovanlou [12]
and by Ghovanlou and Lehman [13]. Their papers con-
tain a comprehensive study of the role that different two-
body interactions play for the bound state case. For ex-
ample, the role of the tensor force in the NN, and the
repulsive S/, interaction in the Na subsystems were
thoroughly delineated. Furthermore, in a separate pa-
per, Lehman studied the effect of different representa-
tions of the Na interaction in the S/, channel on the
three-body binding energies of 6Li and ®He [14]. The
No interaction in the Sy, channel can be represented
by either a repulsive potential or an attractive potential
that will support a spurious bound state in the Na sys-
tem. It is possible to exclude this spurious bound state
from the attractive Si/; part of the Na interaction by
a projection method [14, 15]. The behavior of the N
phase shifts at higher energies seems to indicate that it
is preferable to represent the S/, part of the Na inter-
action by an attractive potential. If one allows for an
approximate correction due to the Coulomb interaction
that was neglected in their calculations, in the models
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that faithfully take into account the physics of the un-
derlying two-body interactions, the results obtained by
Lehman and collaborators [12-14] are in very good agree-
ment with experiment.

The encouraging work of the above authors shows that,
as mentioned before, the A = 6 nuclei can be satisfacto-
rily treated within the context of three-body models for
low excitation energies. Our aim in undertaking the fol-
lowing calculations is to complete the existing theoretical
understanding of the ®Li nucleus by providing an unam-
biguous level diagram for the low-lying states of ®Li in
which the widths as well as the positions of these lev-
els are calculated to the best of our present computa-
tional ability. Our calculation differs from the previous
attempts in that the widths of the resonances are ob-
tained simultaneously with the solution to the homoge-
neous Faddeev-type integral equations, and without any
approximations. We can then compare these results (for
the T' = 0 states only) with a calculation from the a-d
scattering amplitudes. The three-body resonances should
be the same in both calculations. The two-body thresh-
old effects, however, are present in the a-d scattering
problem to the extent that they can result in resonance-
type behavior in the observed amplitudes [16,17]. If a
three-body resonance is nearby, and depending on the
widths of the resonances involved, it can be washed out
by the effect of the two-body threshold. In this case, the
experimentally observed bump in the a-d elastic scat-
tering is really the effect of the two-body threshold. The
nearby three-body resonance then should be detected via
a different process. These points will be discussed in more
detail in the following sections.

In Sec. IT we show first how a resonance state may be
treated on equal footing with a bound state by examining
the eigenvalues of the kernel of the integral equation for
the T matrix. We then present a brief derivation of the
three-body equations for the a NN system including the
antisymmetrization. Finally, we present the two-body
amplitudes required for the solution of the three-body
equations. Section III is devoted to the presentation of
the results. Here we describe the method of contour ro-
tation as applied to the aNN system. In particular, we
discuss the analytic continuation of the three-body equa-
tions to the energy domain where the resonance poles
reside. To illustrate any difference between the extrac-
tion of resonance parameters from the experimental data
with the results of searches for the poles of the S matrix,
we compare the speed analysis on the a-d amplitude in
this model with the results of the search for the poles of
the scattering amplitude on the second Riemann sheet of
the energy plane. Finally, in Sec. IV we state our con-
clusions.

II. FORMALISM

To establish the relation between the experimental
scattering data and the theoretical definition of a reso-
nance, we commence this section by a general discussion
of what we mean by a resonance and how it manifests
itself in the experimental cross section. Since the system
we are considering is modeled in terms of three-particle
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equations, we present the corresponding eigenvalue prob-
lem we have to solve to get the bound and resonance
states for the a NN system, and for completeness we give
the corresponding equations that give us the scattering
amplitude for a-d scattering. To examine the sensitiv-
ity of our results to the input two-body amplitudes, we
present the two-body aN and NN separable potentials
used in our analysis.

A. Definition of resonances

Experimentally, we often observe structures in the en-
ergy dependence of cross sections, which we refer to as
resonances. With sufficient experimental data, we can
perform a phase shift analysis from which we can ex-
amine the energy dependence of the individual partial
waves amplitudes. Here the simplest analysis involves an
Argand plot which gives the plot of the imaginary part
of the scattering amplitude versus the real part as the
energy varies. A counterclockwise loop in the Argand di-
agram is often considered a signature for a resonance. A
more stringent test for the determination of the existence
of a resonance is a speed plot [18]. Here, we examine the
energy dependence of the magnitude of the energy deriva-
tive of the scattering amplitude, i.e., |%|. In this way
we eliminate the energy independent background ampli-
tude, and what is left is the contribution from the reso-
nant amplitude. If this resonance amplitude corresponds
to a simple pole on the fourth quadrant of the energy
sheet, then a speed plot would give us a Breit-Wigner
form, from which we can extract the position of the pole
of the scattering amplitude in the complex energy plane,
i.e., Eg. In other words, we can determine the position
of the resonance (Re[Eg]) and the width of the resonance
(Im[ERg]). This procedure for the analysis of the exper-
imental data basically assumes that the scattering am-
plitude in a given partial wave is the sum of an energy
independent background term plus an energy dependent
resonance term, with the latter represented by a simple
pole in the complex energy plane. In the above analysis
it is assumed that there is a one to one correspondence
between the poles of the scattering amplitude and the
energies of bound and scattering states.

It is well known that at energies above the threshold
for inelastic scattering we can get resonance effects due to
the rapid opening of an inelastic channel. In this case the
simple description of the energy dependence of the partial
wave amplitude just in terms of a pole in the complex en-
ergy plane is wrong, as the threshold for inelastic scatter-
ing introduces a branch point into the analytic structure
of the scattering amplitude [16, 17]. This branch point
can give rise to rapid energy variation in more than one
partial wave, and to that extent may not be considered as
aresonance. To take this branch point into consideration
in the analysis of the data requires that we employ a set
of coupled equations which build in the threshold. But
now the problem is that the analysis of the data is by no
means simple, and is often not unique as we do not know
the strength of the branch point [17]. In summary, the
ultimate aim of the experimental analysis is to take all
of the data and construct an analytic continuation of the
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scattering amplitude into the complex energy plane so as
to determine the position of the poles in the scattering
amplitude that give rise to rapid variation in the cross
section.

The main interest in determining these poles is that
they are eigenstates of the Hamiltonian, and to that ex-
tent any information we have about the resonance states
is as important as the information we have about the
bound states of the system. We should therefore try to
determine both the energy and wave function for the res-
onance. In the case of the A = 6 system, the energies
of the resonances will give us the low energy spectrum
of 8Li and ®He as well as the width of each state, while
the wave function can be used to calculate other proper-
ties of these states, such as electromagnetic moments. In
this section we will demonstrate first how the resonances
are eigenstates of the Hamiltonian, and how we propose
to solve the corresponding equations to determine these
eigenstates.

We first consider a simple two-body system described
by the Schrodinger equation, i.e.,

Hlp)=E|y) . (1)

Since the Hamiltonian H is in general Hermitian, the
eigenvalue problem in Eq. (1) has solutions only for real
values of E. This automatically excludes resonances as
eigenvalues of the Hamiltonian as predicted by Eq. (1).
In fact, this result suggests that if we define the above
equation in the complex energy plane, the only solutions
we have are on the real axis. Clearly, to get the resonance
solutions we need to analytically continue this equation
onto the second Riemann sheet of the complex energy
plane. This can be achieved in coordinate space by the
method of dilatation group transformation [19-21], which
renders a Hamiltonian that is complex, and admits com-
plex eigenvalues. On the other hand, in the momen-
tum representation we follow the procedure suggested by
Lovelace [22] of first converting the differential equation
in Eq. (1) into an integral equation of the form

1Y) = Go(E)V [9) , 2)

where V is the two-body interaction and the free Green’s
function Go(E) = (E — Hg)™! with Hy = H — V be-
ing the kinetic energy operator, and then by rotating
the contour of integration to expose that part of the
complex energy plane where the resonances reside. By
a simple analysis we can show that the two methods
are identical [23] and there is a one to one correspon-
dence between the angle of rotation in momentum space,
and the parameter of the dilatation group transforma-
tion. This procedure, in either coordinate or momentum
space, essentially extends the energy domain over which
the Schrédinger equation or Lippmann-Schwinger equa-
tion is defined. Furthermore, the eigenstates in this new
energy domain are normalizable [23].

To establish the fact that there is a one to one corre-
spondence between the solution of Eq. (2) and the poles
of the T matrix, we consider, for the two-body case, the
Lippmann-Schwinger equation for the T" matrix, which is
given by
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To(E) = Ve + Ve Go(E) T(E) , ()

where £ labels the partial wave under consideration. The
solution of this equation can be written in terms of the
solution of the corresponding homogeneous eigenvalue
equation, i.e.,

M(E) [657) = Ve Go(E) |6™) 4)
as [23]
B = = 1BENEIV

where (¢£n)| is the eigenstate of the adjoint kernel. It
is clear from the result of Eq. (5) that for any energy
for which the eigenvalue )\, = 1, the T matrix has a
pole. Bound states will correspond to real negative en-
ergies on the first Riemann sheet where A, = 1, while
resonances correspond to energies in the fourth quad-
rant and near the real axis of the second Riemann sheet
where A\,(E) = 1. Thus to find the bound and res-
onance states of the system we have to find the en-
ergies at which one of the eigenvalues of the homoge-
neous Lippmann-Schwinger equation is one. Since the
homogeneous Lippmann-Schwinger equation is identical
to Eq. (2) with the substitution [¢) = Go(E) |¢), we have
established the fact that the solution of the Schrédinger
equation for a bound or resonance state is identical to
the determination of the energy for which the kernel
of the Lippmann-Schwinger equation has an eigenvalue
An(E) = 1. Although the above result was derived for the
two-body system, the extension to the three-body sys-
tem involves the replacement of the Lippmann-Schwinger
equation by either the Faddeev-Lovelace equation or the
Alt-Grassberger-Sandhas (AGS) equations [24], i.e., to
determine the bound and resonance states of a three-
body problem we need to find those energies at which the
kernel of the AGS equations has an eigenvalue of one. In
the next section we will consider the AGS equation for
the aNN system when the two-body interaction is sep-
arable, and define the kernel whose eigenvalues we need
to determine. In this case the method of rotation of con-
tour, to extend the energy domain to include resonance
energies, is more complicated than was the case for the
corresponding two-body system because of the singulari-
ties of the three-body kernel. We will be discussing these
singularities and the limitation they impose on the angle
of rotation in the section on numerical results.

B. Three-body equations

The AGS-type integral equations that properly de-
scribe the elastic a-d scattering and at the same time
yield the bound states and resonances of the aNN sys-
tem, have been derived many times in the literature [1,
3]. To be more definite, we briefly elaborate on the equa-
tions we have used and explain the nomenclature. In the
derivation of the three-body equations one usually starts
from the Alt, Grassberger, and Sandhas (AGS) equa-
tions [24] for the three-body scattering amplitude, Uyg,
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that describes the reaction a + (87) « 8 + (ya), i.e.,

Uat(E) = 8ag G5 (B) + . 8ary Ty (E) Go(B) Uys(E) .
vy

(6)

Here 5ag = 1 — bap, and the three-body free Green’s
function, Go(FE), is given by

Go(E) = (E - Ho)™', (7)

where Hy, the Hamiltonian for the three noninteracting
particles, is given by

Do 9

e + T (8)
In Eq. (8), k; are the momenta of the three particles in
the center of mass, and m; are the masses of the indi-
vidual constituent particles; p, is the conjugate Jacobi
coordinate (Jacobi momentum) designating the relative
momentum of the (87) pair of particles; q, is the Jacobi
]
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momentum designating the momentum of the particle la-
beled by « relative to the (4v) pair. The reduced masses
Vo and po and the Jacobi momenta p, and q, can be
expressed in terms of k; and m; as follows:

_ mykg — mgky
[ m‘y + mﬁ y
9)
_ ma(kg+ky) — (mg +m,)ke
“ my + mg +m,
and
Vg = _mﬂmfy , o = —-———-—ma(mﬁ + m’y) . (10)
mg + my Mq +mg + m,

We can write the AGS equations as a set of coupled one-
dimensional integral equations by introducing separable
two-body amplitudes, in the three-body Hilbert space,
for both the NN and N interactions. The derivation
is standard and after a few steps, and remembering that
the total angular momentum and isospin are conserved,
one gets a set of coupled equations for the partial-wave
amplitudes which are of the form [25]

{o o]
X¥.iko (90098 ET) = 2% "5y (4er 45 BT+ /0 day &3 Z 'k, (9o 893 BV )T, (BT —64(01)) X¥ 1, (04,05 ET) -
K'Y

In the above equation e, (gy) = -2%_7, and K, =
{tasJar Sas Say Lo} are the quantum numbers that label
the different three-body channels for a given total angu-
lar momentum J, parity =, and isospin T'. The following
angular momentum and isospin coupling scheme is used:

(11)

Here, sg and 7 refer to the spin and isospin of the parti-
cle labeled by 3, £, refers to the relative orbital angular
momentum of the (8v) pair, S, is the channel spin; and
L, is the orbital angular momentum of the spectator
particle a relative to the (8y) pair. With these specifi-
cations, n, in Eq. (11) refers to the quantum numbers
of the two-body subsystem for which particle v is the

Se = y, Ja=2¢ Sa , o= , . : ..
8481, Je=ltatSa, ta=Tp+Ty spectator, i.e., ny = {ty,j,Sy}. The Born term is given
(12) as the matrix element of the free three-particle Green'’s
Sa=jatsa, J=Ly+Ss, T=ty+T7,. function, i.e. [25],
J
2% ks (92,96 EY) = 8ap (8na 9o Ka JT|Go(E") |gnss 45 Kp I T) (13)

where g, is the form factor of the separable potential
in the n, channel and will be discussed in more detail in
the next section.

The bound, excited, and resonances states of the
(N N) system are described by the homogeneous part of
the same integral equation that describes the o + d scat-
tering process. In that process the possible final-state
three-body channels are

a+ (NN)—>a+ (NN)
— N+ (Na) . (14)

We immediately notice that because of the symmetry of
the two nucleons, we may reduce the number of equa-

[
tions involved by antisymmetrizing with respect to the
exchange of the nucleons [26, 27]. Let us designate the
a+ (NN) and N + (Ne) channels by the subscripts “:”
and “f,” respectively. The final antisymmetrized am-
plitudes can then be symbolically written in a matrix
equation as

X _ 0
X Zy
4 0 Ziyf ; O Xm-
Zs; Zyy 0 7y Xsi) o

(15)
From the properties of Eq. (13) it can be shown that
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Z¢; = Z; 5. The kernel in the above equations can also
be symbolically written as

K= (Zf,z' Zf,f) (0 "'f) ' 19)

All the general remarks made in the previous section on
resonances also apply to this kernel. Our primary ob-
jective is to study the behavior of the eigenvalues of the
above kernel in the complex energy plane and from that
to extract the bound and the resonances states of our
system. Moreover, by solving the inhomogeneous inte-
gral equation for the a-d scattering amplitude, we will
be able to compare the resonance parameters extracted
from the scattering amplitude at real positive energies
with those extracted from the eigenvalue search. In this
way we can determine the effect of the inelastic thresh-
olds on the energy dependence of the cross section, and
in turn will be able to put a confidence level on the res-
onance parameters extracted from experimental data.

C. Two-body interactions

We mentioned earlier that assuming separable inter-
actions in all the two-body subsystems enables one to
reduce the AGS equations to a set of coupled one-
dimensional integral equations. In this section we de-
scribe our choices for the separable interactions between
the (Na) and (NN) pairs.

First, we partial-wave expand our two-body potential
in momentum space as

(PIVIp') = (BInt) Vi (p,p') (nl'|p) , (17)
nee'

where n = {t,7, S} stands for the total isospin ¢, total
angular momentum j, and total spin S of the two-body
system (notice that for simplicity we have dropped the
subscripts a, 3, and «). For separable potentials in mo-
mentum space we can write

Ve = 9ne(p) Clr gne (P')
= (plgne) Cle (gne'|p’) (18)

where C}, are the strength parameters of the potentials.
Since we are dealing with coupled channels for £ # ¢/, we
can write the above potential in matrix form as

Va(p,p') = (p|VIp') , (19)
where

V =|gn) Cr (gnl (20)
and

[Chleer =Chp ,  [I8n)leer = eer |gne) - (21)

This potential includes the coupling due to the tensor
force by admitting Cj}, # 0 for £ # £’ . The correspond-
ing scattering amplitude has the same partial-wave ex-
pansion as given in Eq. (17) with t,(p,p’, F) replacing
V.(p,p’), and t,(E) given by
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tn(E) = ‘gn> T‘n(E) <gn| ) (22)
with the two-body propagator given by

[Tl "H(B) = [C;1 = Go(B)] !

=Cyp [I-Go(E)Cn] ™", (23)
where
(Go(B)er = [(8] Go(E) |8) g
=o' {gne| Ge(E) |gne) - (24)

In the above equations, Go(F) designates (symbolically)
the free Green’s function in the two-body subspace and

2 -1

E — 2—}%\]—) for NN system ,
5 \ -1

(E - 2—}%{;) for Na system

(25)

(PIGe(E)|p) =

with uyny and pns being the reduced masses of the
NN and Na systems, respectively. Here we remind the
reader that when dealing with quantities in the three-
body Hilbert space (as in the last section), unyny and
INo are referred to as v,’s with a designating the label
for the appropriate spectator particle. Our choices for
9gne(p), the form factors of the separable potentials, are
as follows:

£

=P - ion -
Ine(p) = AR for the NN interaction ;

(26)

and

pl

gne(p) = ———5—>—~ , for the N interaction .
n. [p2 +ﬂ?j](€+l)

(27)

Here, (¢ are the inverse range parameters of the poten-
tial; their values are tabulated, along with the strength
parameters (C7,, ), in Tables I and II for the NN and No
interaction, respectively. The virtues of the above two-
body interactions are discussed extensively in the works
of Lehman and co-workers [12, 13]. (We warn the read-
ers that the strength parameters in Tables I and II are
defined differently than those in the references just men-
tioned, but are consistent with the definition of the po-
tential as given above.) We are now in a position to
elaborate on the three-body models that are used in our
calculations and have their bases in the parametrizations
of our two-body interactions.

For T = O states of Li, the two-body NN interac-
tion (see Table I) is fitted to the low-energy properties
of the deuteron and can be included with different values
of the percentage D state thus enabling us to assess the
role of the tensor force in our calculations. For 7" = 1
states, the NN interaction is in a spin singlet and the
parameters of the interaction are fitted to the singlet ef-
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TABLE I. The NN parameters used for generating the 7' = 0 and T = 1 states of SLi. The strengths, CJ,/, are in units of

fm~3, while the range parameters, B¢;, are in units of fm~1.

Channels
Model 35 1 3D1 SS 1 -3D1 lSo
Ciy Be; Cher Bej Cie Be; Chw Be;
(0%) -1.0325 1.4180 0.00 e 0.00
(4%) -0.6419 1.3134 -1.8320 1.5283 +1.0849
(7%) -0.3776 1.2410 -7.6301 1.9480 +1.6975 e e
Singlet (NN) .- e .- ‘e ‘.- -0.3943 1.1648

TABLE II. The Na parameters used for generating the T = 0 and T = 1 states of 5Li.
fm~2 for S wave, and fm~® for P waves. The range parameters, (;, are in units of fm™1.

The strengths, Cpp/, are in units of

Channels
Model S1/2 Py P32
Chor Be; Cho Bej Cher Be;
A \ +1.0519 0.7496 -1.8221 1.1770 -7.9735 1.4490
B +1.0519 0.7496 -3.5188 1.3040 -8.8367 1.4810
TABLE III. The position of the P/, and P;/; resonances in the k and E plane for the potentials A and B. In calculating

the position of the resonances, we have taken m, = 939 MeV, hic = 197.327 MeV fm, and the a-N reduce mass u = %mp.

Model Channel kr E€R
A Py 0.1667 — 0.03174 0.6944 — 0.2739¢
B Py 0.1766 — 0.0349: 0.7767 — 0.3193¢
Experiment Py 0.1766 — 0.03489: 0.7778 — 0.3196¢
A Py 0.3172 — 0.1731% 1.8312 — 2.84501
B P1/2 0.3109 — 0.14027 1.9958 — 2.26001
Experiment Py 0.3111 — 0.1404: 1.999 — 2.267:

TABLE IV. The T = 0 states of ®Li. The calculated results are for 0%, 4%, and 7% D-state probability for the deuteron,

and make use of model A for the No interactions. All energies and widths are in MeV.

Ajzenberg-Selove [33].

The experimental values are from

Levels Experiment 0% 1% 7%

Jr E r E r E r E r
1t (g-s.) -3.70 0.00 -4.45 0.00 -4.06 0.00 -3.82 0.00
3+ -1.515 0.024+0.002 -2.40 0.00 -1.87 0.01 -1.54 0.06
2t +0.61 1.7+0.2 +0.53 1.30 +0.26 1.10 +0.34 1.18
1t +1.95 1.5+0.2 +0.90 1.43 +1.05 1.72 +1.05 1.78

TABLE V. A comparison of the resonance parameters for the T'= 0, J™ = 2% and 17 states as extracted from the speed
analysis and the eigenvalues of the Faddeev kernel. Also included are the experimental results of Refs. [35] and [33]. The results

of the calculation are for the N-a potential A, and the 4% N-N potential.

J" Experiment Model
Ref. [33] Ref. [35] Speed Eigenvalue
E r E r E r E r
2+ 0.61 1.7+0.2 0.58 1.07 0.27 1.10 0.26 1.10
1t 1.95 1.5+0.2 1.66 2.62 1.08 1.40 1.05 1.72
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fective range and scattering length. In both 7" = 0 and
T = 1, for the interaction between the N-a pairs, the
dominant P33, P2, and S}/, components are included.
In particular, the S;/2 component of the N-a interac-
tion is represented by a purely repulsive potential. This
component is of utmost importance in incorporating the
Pauli exclusion principle at the level of dynamics [28].
As mentioned in the Introduction, it is possible to repre-
sent the Na interaction by an attractive potential from
which the spurious bound state is excluded by means of a
projection method [14, 15]. One of the interesting prob-
lems is to see if these different representations of the S; /o
component of the Na interaction, by a purely repulsive
or an attractive (with projected bound state) potential,
can be distinguished by their effects on the calculation of
the observables. The electromagnetic form factors do not
seem to be effected [28]; however, the binding energy of
8He is increased by nearly 40% to give a better agreement
with the experimental value, while the binding energy of
6Li is shifted away from experiment by (< 4%) when an
attractive (with projected bound state) potential is used
for the Sy/2 component of the Na interaction instead of
a purely repulsive one {14]. The question is by no means
settled yet. In this work we have opted to use the purely
repulsive representation of the S/, component of the Na
potential because it is considerably easier to adopt within
the framework of our calculations and we think that our
calculations, in particular, would not shed any more light
on this problem than the work of Lehman [14]. Moreover,
as will be discussed later, more relevant effects might be
expected from the inclusion of the excitations of the «
particle or the inclusion of the Coulomb interaction.

We assess the sensitivity of our calculations to the role
of the Na interaction by using two different parametriza-
tions of the Na potentials labeled by model A and model
B (see Table II). In model A, the parameters are fitted

by the low-energy (,5 20 MeV ) Na phase shifts, whereas
in model B they are chosen such that the positions and
widths of the P3/; and P;/; (Na) resonances are repro-
duced (see the work of Lehman and Gibson for more de-
tail [29]). In Table III we give the position of the P32
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FIG. 1. The Na P;; phase shifts for model A, dashed

line, and model B, solid line, are presented. The points are
the results of the phase analysis of Arndt and co-workers [31].

A. ESKANDARIAN AND I. R. AFNAN 46
=% U s S S S S B B B B L I B e ]
70 = "é
60 é— o . —f
F o P e ]
_ 50 F P 3
o E Ve E
S 40 F / 3
w g o/ 3
F % E
20 =
E 2 Bp
o - — A =
10 F 4 A 3
0 » PN S S S S U TN T ST SO S WA ST ST SN S SV S S S WS S S S
0 5 10 15
ELab(MeV)
FIG. 2. The P/, phase shifts for model A, dashed line,

and model B, solid line, are presented. The points are the
results of the phase analysis of Arndt and co-workers [31].

and Py poles for the potentials A and B. Included also
are the position of the N-a poles as predicted by the
phase shifts [30]. In Figs. 1 and 2 we present the P/,
and Pj/; No phase shifts as given by models A and B,
respectively, versus the experimental phase shifts (the ex-
perimental points are taken from the work of Arndt and
co-workers [31]).

III. NUMERICAL RESULTS

Before we proceed to a discussion of our results for the
A = 6 system, we should specify the numerical proce-
dure used in the solution of our equations for both the
a-d scattering amplitude, and the determination of the
eigenvalues of the Faddeev kernel. Since we need the
method of contour rotation to expose that part of the
second and third Riemann sheet of the complex energy
plane where resonance poles reside, we have used the
same method for the determination of the scattering am-
plitude as well. In particular, we have chosen the angle of
rotation for the scattering amplitude calculations to be
one-half the maximum angle of rotation allowed at that
energy [32]. With this angle of rotation and 32 point
quadrature for the integral equations we get sufficient
accuracy to be able to extract the resonance parameters
from the “speed” curve.

For the determination of the position of the resonances
on the second and third Reimann sheet of the complex en-
ergy plane, we have employed the method of Refs. [23,16].
The singularities of the Faddeev kernel put limitations on
the parts of the second and third Riemann sheet of the
energy plane that we can access by the method of con-
tour rotation. The most convenient numerical method of
analytically continuing the homogeneous Faddeev equa-
tion is the rotation of the contour of integration, i.e.,
4o — gae”*® and ¢, — g,e*®. This particular choice
for the rotation of the contour of integration renders the
moving logarithmic singularities of Zk_;x. (qa,g~; E) to
the imaginary momentum axis [32]. As a result of this,
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the only limitation on the rotation of the contour comes
from the quasiparticle propagator 7, . The two-body
unitarity cut in 7, (E — ¢2/2u,), which gives rise to
the three-body unitarity cut in the Faddeev equation,
requires that the angle of rotation ¢ be greater than 65,
where

E;
tan 260, = B’ (28)
and E = E, —iE;, E; > 0. This implies that as we an-
alytically continue our equation into the complex energy
plane we have to increase the rotation angle of the con-
tour of integration ¢. The pole of 7, due to the deuteron
imposes a similar, but weaker constraint on the rotation
angle ¢. The most important singularity of 7, is the N-«
resonance pole. This gives rise to a square-root branch
point on the second Riemann sheet of the energy plane
at E = eg = ¢, — ig;, where eg is the N-a resonance en-
ergy. In our calculation there are two such branch points
corresponding to the P3/; and P;/; resonances in the N-
o system, and their positions are given in Table III. The
Py /3 resonance with a half width of more than 2 MeV
will not play as important a role as the P55 resonance.
This latter branch point and the corresponding branch
cut divide the energy plane into four sections. For ener-
gies F such that E, < €., we can continue our equation
in the energy E into the region E; > ¢; and R, < &, with
no problem provided ¢ > 6. On the other hand, for that
part of the energy plane with E,. > ¢, as we continue our
equation into the complex energy plane into the region
E, > ¢;, we move into the third Riemann sheet of the
energy plane [23]. We now have to make sure that the
angle of rotation of the contour of integration, ¢, is larger
than 6,, where

E; — =>r

tan2t9,.=E’ — -
r— Cr

(29)
Although we can analytically continue our equation be-
yond these two regions using this method of contour ro-
tation [23], we have not needed that for the present anal-
ysis. To get an accuracy of =~ 0.01 MeV in the resonance
energies, we have had to take ¢ > 1.56; or ¢ > 1.50,
depending on the region we are searching, and carry out
the final search for the pole with 64 point quadratures
In Table IV we present the calculated T = 0 states in
6Li for the N-a potential A, and for the three different

potentials with a deuteron D-state probability of 0, 4,
and 7 %. Also included are the “experimental” results as
reported by Ajzenberg-Selove [33]. Considering the fact
that these N-N potentials are simple Yamaguchi poten-
tials that do not have any short-range repulsion and give
the wrong sign for the 3D; phase shifts [34], and that the
S1/2 N-a potential is a one term repulsive separable po-
tential, the overall agreement between the calculated and
the experimental spectrum is very good. The two appar-
ent major discrepancies are the width of the J™ = 2+,
for which the model predicts too small a value, and the
position of the J™ = 1% states which is predicted at a
lower energy than observed experimentally. Both of these
states are close to the square-root branch cut due to the
production of a resonant A = 5 system in the P3/5 chan-
nel. We note at this stage that the square root branch
point at E = 0.78 — 0.32: MeV is closer to the physical
region than either of the 1% or 2%+ states. This square
root branch cut is not included in any analysis of the a-
d data to extract resonance parameters based on speed
analysis. It is also not included in the recent energy-
dependent Pade analysis of the d-a scattering data [35].
This may suggest that there might be a problem in the
analysis of the experimental data in terms of the simple
idea that the resonance can be represented by a Breit-
Wigner form, i.e., a simple pole, and therefore does not
include the effect of the square-root branch point.

To examine the role the square-root branch point plays
in the analysis of the data, we have calculated the a-d
amplitude in both the J™ = 1t and 2% channels as a
function of the energy. We then used the phase shifts
in the 3D, and 3D; channels to calculate the speed in
this channel. In Table V we compare the results of
the determination of the resonance parameters using the
speed analysis and the search for the pole in the complex
plane by calculating the eigenvalues of the Faddeev ker-
nel. Also included are the experimental results from the
tabulation of Ajzenberg-Selove [33] and the more recent
energy-dependent analysis of Krasnopol’sky et al. [35].
By comparing the speed and eigenvalue method we ob-
serve that for the 2+, the two methods give the same
results within the accuracy of the methods. However, for
the 17, the width as predicted by the speed analysis is
less than predicted from the position of the pole. This
could be due to the fact that the 1* resonance pole is on
the third Riemann sheet further from the real axis than

TABLE VI. The T = O states of °Li. Comparison between different N interactions. The NN interaction is taken to have
0% D-state probability. All energies and widths are in MeV.
Levels Experiment Model A Model B
J" E r E r E r
1t (gs.) -3.70% 0.00® -4.45 0.00 -4.75 0.00
3t -1.515% 0.024+0.002* -2.40 0.00 -2.25 0.00
2t +0.58° 1.07° +0.53 1.30 +0.15 0.80
1t +1.59+0.1°¢ 1.94+0.1°¢ +0.90 1.43 +0.85 1.06

®The experimental results of Ref. [33].
PThe experimental results of Ref. [35].
°The experimental results of Ref. [36].
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TABLE VIIL.
experimental values are from Ajzenberg-Selove [33].

A. ESKANDARIAN AND I. R. AFNAN 46

The T = 1 states of °Li for the two models of the N« interaction. All energies and widths are in MeV. The

Levels Experiment Model A Model B

Jr E r E r E r
ot -0.137 (8.2 0.2)x107° -0.56 0.00 -0.45 0.00
2+ +1.67 0.540+0.020 +0.95 0.30 +1.08 0.35

the square-root branch point. As a result, the speed anal-
ysis does not see the pole on its own. This situation does
not arise for the 2% since that pole is, in this model, at
a much lower energy than the branch point. A compar-
ison of two analyses of the experimental data indicate a
considerable discrepancy, particularly in the width deter-
mination. For the 2%, the results of Krasnopol’sky et al.
include more recent data and the analysis was done in
the region of this resonance. To that extent their results
might be more reliable. On the other hand, for the 17
resonance, Krasnopol’sky et al. extrapolated their S ma-
trix from lower energy to the region of the 17 resonance.
As a result, their determination of the width is substan-
tially larger than the results of Jenny et al. [36] which
give a width of 1.9 MeV. With the above observation
regarding the experimental data, the main discrepancy
between our model and experiment is the position of the
1% resonance. Considering the simplicity of our two-body
input, there is scope for improvement.

We now turn to the sensitivity of our results to the
o-N input interaction in the P3/5 and P/, channels. In
Table VI we compare the results for the N-a potential A
which gives an optimum fit to the P-wave phase shifts,
and potential B whose parameters were adjusted to fit
the position of the P3/; and P;/; resonance poles. We
have also included the experimental results. In the case
of the ground state and 3* state, we have given the re-
sults of Ajzenberg-Selove [33], while for the 2% state we
have given the results of Krasnopol’'sky et al. [35], who
fitted the data in the region of this resonance with Pade
approximation for the S matrix. Finally, for the 17 we
give the results of Jenny et al. [36]. Here we find that
the ground state and first excited state are not very sen-
sitive to the choice of the P-wave N-qa interaction, but
the 2t and 1% states are very sensitive, suggesting that
one might get a better fit to the experimental data by a
better choice of the P-wave interaction.

Finally in Table VII we present our results for the
T = 1 states, which cannot be observed in a-d scatter-
ing, for both N-a potentials. Here the results are not
very sensitive to the choice of the two-body input, and
although in absolute value the agreement with experi-
ment is not very good, the spacing between the levels is

in reasonable agreement with experiment. One expects
a shift upwards in the spectrum if one uses a 1S; N-N
potential that has short-range repulsion. In addition, we
may have to improve on the S;/; N-a interaction, if we
are to get a more realistic model for the A = 6 nuclei.

IV. CONCLUSIONS

In the present investigation we have made use of a
three-body model for the description of the low-lying
states of the A = 6 nuclei. In particular, we have used
the model based on the Faddeev equations with sepa-
rable potentials for the description of the 7' = 0 and 1
bound states and low energy resonances of the a-N-N
system. Since both the bound and resonance states are
eigenstates of the Hamiltonian when analytically contin-
ued to the second and third Riemann sheet of the energy
plane, we use the homogeneous Faddeev equations for
both classes of states. We find that with the simplest
of separable potentials, for both the N-N and N-« in-
teractions, we get a reasonable description of low-energy
T = 0 and 1 spectra of the A = 6 nuclei. The wave
functions for these states can also be determined by cal-
culating the eigenvectors of the Faddeev kernel at the res-
onance energies. Finally, by comparing the results of the
speed analysis with the position of the resonance pole, we
may conclude that for resonances close to the square-root
branch point resulting from the production of a resonant
subsystem the speed analysis might be misleading.

The agreement with experiment can be improved by
replacing the present N-N interaction by a separable ap-
proximation to any of a number of more realistic po-
tentials. Furthermore, since we are only considering
the homogeneous Faddeev equations, we can include the
Coulomb potential for the resonance state as suggested
for the bound state by Lehman et al. [37]. This work is
presently in progress.
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