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DifFerences in the Hartree-Fock and eRective shell-model interaction arising from alternative treat-
ments of the kinetic-energy operator in finite nuclear many-body problems are described. The
Hartree-Fock single-particle energies and their relationship to experimental removal energies depend
sensitively on whether or not the center-of-mass kinetic energy is retained in the nuclear Hamil-
tonian. Large efFects in particle-hole energies are obtained which have important consequences for
effective shell-model Hamiltonians. If the center-of-mass contribution of the kinetic-energy operator
is removed &om the Hamiltonian, substantial eRects appear in a simple example of the shell-model
spectra of 0 and "0 treated as four and five valence nucleons, respectively, outside a C core.
The contributions to the energy coming from the valence, relative kinetic-energy operator push. the
energy spectra of both nuclei up by about 1 MeV relative to their ground states.

PACS number(s): 21.60.Cs, 21.10.—k, 27.20.+n

I. INTRODUCTION

It has long been recognized that the nuclear shell model
is afFected in two ways by spurious center-of-mass motion
(see, for example, Refs. [1]—[7]). First, by describing any
state of A nucleons in terms of Slater determinants of A
single-particle (sp) states, one is specifying a wave func-
tion for the center-of-mass (c.m.) motion. In so far as
this c.m. motion is different in different states of the A-
particle system, the efFects on spectra, transition rates,
etc., can be highly nontrivial [2]—[7]. For this reason, con-
siderable effort has been devoted to developing methods
of projecting out or constraining the c.m. wave function
[4]—[7]. Second, by defining the nuclear Hamiltonian to
have a sum of A one-body kinetic-energy operators, one
includes the c.m. kinetic energy in the energy of each
state [6]. This efFect could be treated perturbatively in
any state by simply subtracting the expectation value of
the c.m. kinetic-energy operator from the Hartree-Pock
(HF) energy [8] or from the shell-model eigenvalue [3].
The main point of the present effort is to show that a
nonperturbative treatment of the role of the c.m. kinetic-
energy operator leads to substantial effects in the energy
spacings of shell-model states. %'e do not address here
the very interesting, but separate, issue of c.m. motion
in the nuclear wave function, since this has already been
extensively investigated [2]—[7].

We begin by noting that the simplest conventional nu-
clear Hamiltonian is written as a sum of the one-body

kinetic-energy operators, T;, and the interactions be-
tween the nucleons Vj. In other words

A A

H'=) T, +) Vis
—= T+V.

Just as T, for a two-body system, can be rewritten as a
sum of relative and c.m. kinetic energies, we can rewrite
T for A particles as

& = &hei+ &c.m.

with

(2)

(3)

and

where

2
A p2 A

i(j i(j

Pay =

p, = rn/2 and m is the nucleon mass, for both neutrons
and protons. Thus H' contains T, as a consequence of
having a simple, one-body, form of T. Here we investigate
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the changes in HF calculations and in shell-model spectra
which result from removing T, from H' leaving

(6)

suits for 0 in a basis of the lowest six oscillator shells
as a function of a strength parameter, A, multiplying V~.
We also include the two-body Coulomb interaction be-
tween protons. In summary, the two Hamiltonians whose
results we compare through HP are

To start with H, a pure two-body operator, and derive
an effective shell-model interaction following the theory
of Brueckner and co-workers [9,10], Bethe and Goldstone
[11], and Brandow [12] and using a realistic nucleon-
nucleon interaction would comprise a significant research
undertaking. Therefore, for these initial demonstrations,
treating the interactions as static nucleon-nucleon poten-
tials V~J, we will employ previously calculated effective
interactions and simply look at the approximate nonper-
turbative effects of subtracting T, from H'.

II. ELIMINATION OF T . . FROM
HARTREE-FOCK

We first investigate the HF problem before studying
its effects on shell-model calculations. Starting with H
as given in Eq. (6) one may solve the nuclear HF problem
along traditional lines [8], as was first done in Ref. [13].
Some of the important consequences of this choice of H
for the interpretations of the sp energies and for correc-
tions to HF have been discussed [14]. It is our intention
to review the salient issues at the HF level and later to
outline the consequences for effective shell-model inter-
actions as well as for the resulting shell-model spectra.

Next we note that one can also write H in the form

and

Hg ——T+ AV+ Vt.- (8)

H~ = &rei + &V+ Vc (9)

(10)

which can also be written as

@HF
2 ) [~A+ (A I

&
I A)]

The usual mean-field potential, (A
~

U [ A), is given by

(A
~

U
~

A) = ) (AB
~ Hi,

~
AB). (12)

On the other hand, for Hp, the HF energy is

1
EHF = —) EA ~

2

We will use the convention that normally occupied (un-
occupied) orbitals are signified by capital (lower case)
Roman letters. Greek letters are used to signify all pos-
sible states. In the case of H& the HF energy is expressed
in terms of the sp energies ez, such that

(7)

where a one-body operator is still manifest. The HF
treatment of this form has been shown to yield the same
solution as the HF treatment of Eq. (6) to within a uni-

tary transformation among the occupied orbitals [15]. Al-

though the HF solutions of Eqs. (6) and (7) are simply
related, it is important to note that the HF Hamilto-
nian's sp wave functions and sp energies are different for
each form of H as well as being nontrivially different from
those obtained in the HF solutions of H', Eq. (1). It is
our intention here to follow the consequences for the HF
and shell-model problems that emerge from the choice
of Eq. (6) for the Hamiltonian rather than the conven-
tional choice of II' in Eq. (1). To the extent that these
differences are significant, we motivate a future effort to
employ Eq. (7) in a similar study.

For VJ we select an effective interaction developed [16]
from the Reid soft core nucleon-nucleon interaction [17]
specifically for applications, such as HF calculations, in

very large model spaces. This effective interaction is ob-
tained in a harmonic-oscillator basis with hA = 14.0 MeV
and this same basis is employed throughout the calcula-
tions we report here. Improvement of this effective inter-
action in the form of a folded-diagram correction, which
we include here, and applications within thermal HF have
been described previously [18]. We evaluate the HF re-

One can think that the form of E~F in Eq. (13) emerges
from E&F in Eq. (11) when we proceed from H& to Hx
and omit the one-body operators from the nuclear Hamil-
tonian.

Within HF one usually obtains first the "HF rms ra-
dius" based on the A self-consistent sp wave functions
with point nucleons and then applies two corrections to
compare with the measured charge radius in light nu-

clei. However, the corrections to the HF rms radius for
the finite charge distribution of the proton and the c.m.
motion of the nucleus largely cancel in a light nucleus
such as isO [1,9]. Thus, we may, to a very good approx&-

mation, compare the HF rms radius without corrections
with the measured charge radius of 2.71 fm in ' O [2o]
For this reason, we simply employ the HF rms radius in
the presentation of our results.

The HF energies and rms radii are evaluated for each
Hamiltonian at selected values of A and the results are
plotted in Fig. 1. Experimentally the point-mass rms
radius for isO is 2.59 fm [20] and the binding energy is
127.617 MeV [21]. Note that for A = 1.0 the results for

H& are reminiscent of the Brueckner-Hartree-Fock results
obtained earlier for isO [22]. That is, there is significant
underbinding while the rms radius, before correction for
spurious c.m. motion in the wave function, is in rough
accord with the point-mass radius deduced from experi-
ment [20].

There is a systematic difFerence between EiiF (short
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III. EFFECTS ON HARTREE-FOCK
SINGLE-PARTICLE SPECTRA

AND WAVE FUNCTIONS

Let us look at the HF sp energies e& and e~ as shown
in Table I for sO with A = 1.18. The occupied HF states
from H& are 20 —22 MeV more bound than those from
H~ while the unoccupied states are about 24 MeV more
bound. These differences for the occupied states are, to
a rough approximation, the consequences of Eqs. (11),
(13), and (17). If we put these equations together and
approximate the differences between e& and eH as being
state independent, we obtain

eH = ~'B+ (B I
T

I B) ——(Tc.m. ) (»)

FIG. 1. Hartree-Fock energy (EIIp and EIIF) vs rms ra-
dius for 0 in a six-major-oscillator-shell calculation as a
function of the taro-body interaction strength A. The values
of A are indicated close to the corresponding point for each of
the Hamiltonians considered.

dashed line) and EHF (long dashed line) which is pri-
marily accounted for by evaluating the perturbative cor-
rection and showing that

EHF ~ EHp (Tc.m. ) i (14)

where the prime signifies taking the expectation value
with respect to the HF solutions to H&. In fact since

Hg =%, +Tc.m.

it follows that

EHF (HA) = (H~ + T. )' (H~) + (T . . ) '

(15)

(16)

The inequality arises since the HF solution for Hg is,
by definition, the minimum-expectation value of H&
Clearly, the perturbative correction to EHF will leave the
corrected HF energy above EHF. That is

EHF EHp (Tc.m. ) ~ (17)

The difFerences in the rms radii are more interesting and
more subtle. To our knowledge, these rather sizable dif-
ferences have not been noted in the literature. These
differences indicate that the presence of T, in the nu-
clear Hamiltonian has a significant impact on the HF
wave function, since it increases the rms mass radius by
an amount between 0.04 and 0.06 fm in isO. Reading
from the curves in Fig. 1, to get an impression of the
significance of this result, we see that it takes about a
5% reduction in the strength of AVI~ to accomplish the
same rms-mass-radius change for a given choice of the
Hamiltonian. These differences in the HF wave functions
may be expected to have significant effects on shell-model
spectra as well, and we will consider these effects in an-
other efFort [23]. Here, however, we will discuss the con-
sequences of the different definitions of the Hamiltonian
and the different HF sp energies on the results obtained
for the shell-model problem.

) ) (CD[T... ~
Ca) (21)

C96B D

and implies that the sp energies e are not directly com-
parable with the experimental removal energies. If we use

TABLE I. Hartree-Fock energies A = 1.18.

Oex] ~

%3g2

Odg]2

1~&/2

0&3]2

-66.78
-32.28
-21.05
-4.24
-1.42
5.27

u
-62.01
-28.22
-16.96
-0.50
2.02
8.64

-44.98
-12.67
-0.74
19.62
22.39
29.21

p
-40.25
-8.57
3.37
23.40
25.86
32.57

and

sa = s~+ —P'.I)
1 (»)

Now, in the harmonic-oscillator ground state (hA
14.0 MeV), isO has (T, ) = 10.5 MeV, (T) = 252 MeV,
and (T„i) = 241.5 MeV, which implies an estimate for

g(T„I) = 15.1 MeV. The larger effects actually observed
are primarily a consequence of the smaller rms radius of
the HF solution at A = 1.18, compared with the pure
oscillator with hA = 14.0 MeV .

Since our goal is to examine the consequences of se-
lecting Hg instead of H& for the basis of a theory of the
shell model, we examine the sp spectra more closely. Let
us recall Koopmans' theorem [24] which assumes the self-
consistent fields are the same for the A and the (A —1)
systems and then states that the removal energy for a
particle in state B is the same as the HF sp energy

EHF —EHF(B removed) = t'H (20)

In the spirit of this result one assumes these rearrange-
ment efFects are small and compares the HF sp ener-
gies with the experimental removal energies. Implicit
in Koopmans' theorem is the use of the A-independent
form of the Hamiltonian, H', of Eq. (1). The use of Hp,
Eq. (6), leads to a state-dependent correction [15]

EHF —EHF (B I'eIIloved)
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TABLE II. Neutron wave functions.

Osg)2

Ops)2

Od5)g

isa/2
Od3)2

n=0
-0.9621
0.9613
-0.9783
0.9887
0.2643
0.9901

~HF
n=1

-0.2650
0.2615
-0.1865
0.1500
-0.9643
-0.1400

n=2
-0.0644
0.0867
-0.0907

0.0181

n=0
-0.9637
0.9532
0.9716
-0.9883
-0.2581
-0.9869

~HF
n= 1

-0.2596
0.2874
0.2158
-0.1525
0.9656
0.1611

n= 2
-0.0621
0.0937
0.0969

-0.0320

the additional approximation of Eq. (14) together with
Eqs. (20) and (21), we obtain another potentially useful
relation

) ) (|."Dis„) icD).
CgB D

(22)

IV. CONSEQUENCES FOR THE EFFECTIVE
SHELL-MODEL INTERACTION

How the above calculated differences in p-h energies
and sp wave functions affect other observables in a full

For purposes of using HF as the starting point of a
microscopic many-body theory, the differences between
the sp energies of the occupied and unoccupied states
are of central importance. Insofar as the shift between
e~ and e' is a state-independent quantity, as the approx-
imation in Eq. (18) suggests, then differences between
sp energies are unaffected and there are no consequences
for effective shell-model interactions. However, the resid-
ual state-dependence leads to substantial changes in the
particle-hole (p-h) energies. For example, the neutron
1dsi2-lpiiq spacing is 16.8 MeV arising from H&, while
it is 20.4 MeV arising from Hp. In general, all the p-h
spacings are 1 —4 MeV larger for e than for e' .

Now, let us consider the self-consistent sp wave func-
tions for the A = 1.18 HF results. We already expect
some differences between the HF orbitals obtained from

H& and Hp in view of the differences in rms radii depicted
in Fig. 1. We present in Tables II and III the amplitudes
for the occupied and lowest-lying unoccupied HF orbitals
in the harmonic-oscillator basis for H& and Hg. While
these amplitudes exhibit, as might be expected, a healthy
mixing of the oscillator states used to describe the HF
orbitals, there are only small differences evident between
the HF states of H& and the corresponding states of Hp.

microscopically derived shell model will be investigated
further in a future publication [23]. At present we prefer
to outline the formal consequences for the shell model
emanating from the selection of H = T„i + V, rather
than H' = T + V, and to provide schematic calculations
that indicate the scale of differences that may emerge in
the shell-model spectra

Let us signify by Hp the HF Hamiltonian resulting
from H. The HF sp states,

i n), are solutions of

Hp i n) = e
i
n). (23)

The HF energy, EHF, is given by Eq. (13). There are a
number of ways we could proceed to define a shell-model
problem. In analogy with the usual procedure of adding
and subtracting the self-consistent potential U, we will

add and subtract the self-consistent Hp,

H = Hp + [H —Hp] (24)

and we treat the "residual" interaction H —Ho as the
source of our effective shell-model interaction. Immedi-

ately, one notices a very important consequence of this
choice of the residual interaction when one works in the
self-consistent basis (i n)): The usual cancellation of sp
insertions is achieved in a particularly simple way ex-
pressed by the diagram elements shown in Fig. 2 since
the basis is the eigenbasis of Hp. The vast majority of

sp insertions vanish altogether. The surviving diagonal
insertions (which still cancel in pairs) are equal in mag-
nitude to HF sp energies.

The usual linked, folded-diagram expansion for the
effective shell-model interaction (see, for example, Ref.
[25]) may be carried out starting from Eq. (6). Using the
basis, (i n) ), the expansion is free of diagrams with inser-
tions and the conventional Brueckner-Bethe-Goldstone-

TABLE III. Proton wave functions.

Osg(2

Opsy~

Opiy~

Od5(2

1sggg

Od3(g

n=O
0.9652
0.9653
0.9825
-0.9921
-0.2519
0.9848

HHF
n=1
0.2549
0.2480
0.1644
-0.1252
0.9663
-0.1739

n=2
0.0599
0.0822
0.0876

-0.0529

n=O
0.9666
0.9569
0.9757
0.9921
-0.2457
0.9804

HHF
n= 1
0.2498
0.2763
0.1979
0.1257
0.9668
-0.1968

n=2
0.0570
0.0895
0.0936

-0.0699
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subdivide T„~ into

~C A A

arel = ) Tij + ) Tij + ) Tij = &c+Tc~+&g~

(28)

where we have a core component T„acore-valence com-
ponent T,„, and a valence component T„. Following the
usual path for the two-body efFective interaction we ar-
gue that the contributions of T, will be included in the
core energy and the effects of T„will be included in the
valence space sp energies.

V. INITIAL SHELL-MODEL APPLICATION

0

FIG. 2. The simple values for insertions that emerge when
H —Hp is chosen for the residual interaction and when one
employs the self-consistent basis generated by Hp. We employ
dashed lines with a terminating "X" to represent insertions
of —H&& and wavy lines to signify the two-body operator H
Lines drawn without arrows indicate either particle lines or
hole lines. Note that there is a minus sign before the —Hp
insertion so that the net result is +e . In addition, note
that all ofF-diagonal insertions on particle lines and hole lines
vanish.

Brandow theory [9]—[12] can be implemented with

V=T„)+V, (25)

2y

G(u) = V+ V G(cu),
4J —Hp

(26)

where Qz" is the two-particle Pauli operator and u is the
starting energy; and the effective interaction V,ir can be
written in terms of G as

Vs =G+G „„Vir,
where it is understood that only the linked terms are
retained. The unperturbed, self-consistent Hamiltonian
for the valence particles is Hp~, and Ep signifies the un-
perturbed valence energy. The operator Q' allows exci-
tations into all intermediate states outside the valence
model space, except for the two-particle ladder states al-
ready included in the calculation of G.

In subtracting T, from H' to get H, we first note
that, once a core of i, nucleons has been chosen, we can

replacing the usual V in all expressions. This leads to
the equation

Q&P Q&P
G = (T„+V) + V G+T„G.

4J —Hp 4) —Hp
(29)

(Note that T„ is the part of T„~ not involving core nucle-
ons. ) To obtain a first estimate of the size of the changes
arising from our removal of the c.m. kinetic-energy term,
we drop the last term in Eq. (29), arguing it is small
compared to the third term, because T„couples only to
low-lying excited states, while V can also couple to high-
lying excited states. We combine the second and third
terms to form

Q2PO'= V+V G.
4) —Hp

(30)

Our interest is focused on the role of T„which appears
in a similar capacity as the effective-residual interaction
between the valence nucleons. We simplify the problem
by selecting a sp shell-model space of harmonic-oscillator
states instead of the full solutions to the HF problem [8],
as described earlier. This is done to look for the predom-
inant effects of treating the two-body character of the
kinetic-energy operator and ignore the presumed smaller
energy effects due to difFerences between oscillator and
realistic sp wave functions in light nuclei.

By writing the kinetic-energy operator in the form of
Eq. (2), we are able to remove its c.m. contribution ex-
actly. Also, by writing the antisymmetrized wave func-
tions only in terms of the relative coordinates, the spu-
rious c.m. motion could, in principle, be completely re-
moved from the calculated excitation energies. However,

sp wave functions calculated with respect to a fixed po-
tential are used and because these wave functions are
written in the form of a Slater determinant to handle
the antisymmetrization correctly, spurious c.m. effects
are introduced into the calculated excitation energies. In
the present calculations we do not address these spuri-
ous c.m. effects due to the wave functions which have
been studied in Ref. [8], but concern ourselves with how
the exact removal of the c.m. part of the kinetic-energy
operator influences the calculated excitation energies.

We now follow the time-independent effective interac-
tion approach [11,12,25] to second order in the Brueckner
G matrix [9,10] to obtain an effective shell-model Hamil-
tonian given by Eq. (27). We begin by considering the G
matrix itself written as
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Next we approximate G' as the solution of a Bethe-
Goldstone equation

A2&G'= V+V G',
u) —Hp

(31)

where G in Eq. (29) differs from G' by the term T„. Thus
we arrive at

G = T„+G',

which embodies a major point of our development. We
argue that one major effect of eliminating the spurious
c.m. kinetic-energy operator from the development, in
the fashion we have chosen, results, approximately, in

T„as an additive effective interaction term. Utilizing
Eq. (32) in the role of the traditional Brueckner G matrix,
working to second order in G, and maintaining only the
leading-order term in T„, we obtain

H, ir = T„+G' + G' „„G'—= T„+V,g. (33)

In the usual effective interaction theory the energy de-
nominator in Eq. (33) is replaced with unperturbed oscil-
lator energies. As our earlier HF calculations show, the
differences between particle (unoccupied) and hole (oc-
cupied) energies can vary by up to 25%. Consequently,
a more accurate investigation of V,ir should include this
effect as well but we leave this study to a future effort.

With these approximations, we argue that the main
difFerence in the effective shell-model interaction arising
from the removal of T, is the additive T„ term appear-
ing in Eq. (33). Through our HF discussions it is clear
that the sp energies are also different once T, is re-
moved. Our goal is then to compare shell-model spectra
obtained with H, rr and with V,ir when sp energies are
separately determined by fits to experimental spectra.

We now investigate the effect of removing T, on the
spectra of 160 and 0. For simplicity, we will employ in
Eq. (33) a similar V,p [16, 18, 26] to that used in our HF
calculations. The terms involving G' are taken to be a
no-core G matrix [16,18] plus a folded-diagram correction
[18] evaluated in an oscillator basis [16,18, 26) with M =
14.0 MeV and with a starting energy of 9.0 MeV. The
model space for Qz" = 0 in this shell-model application is
comprised of the lowest four oscillator shells (Osi/3, Opi/3,
OP3/2) Od3/2) Ods/2) Isl/2& Ipl/2& P13 2/) f5/2& f7/2)'

It is sufhcient for our purposes to demonstrate the
differences in H,g and V,g in the the low-lying shell-
model spectra of 60 and ~ 0, treated as four and five
valence nucleons, respectively, outside a C core. The
valence space for our shell-model calculations consists of
the Opqg2, Od5g2 and 1sqg2 sp orbitals. In order to account
for the differences in the HF sp spectra, for the role of
T, , and for neglected core-polarization effects, we sepa-
rately adjust the single-particle spectra for H,g and V,s.
By adjusting the sp energies so that we fit the many-body
spectra of the two nuclei in question, we might actually
camouflage part of the net effects we are atttempting to
examine.

The spectra are computed with the QXBASH shell-

TABLE IV. ' 0 spectra.

State
0+
3
1
2

Experiment
0.00
6.13
7.12
8.87

Hg
0.00
6.39
7.08
8.84

&eb

0.00
5.35
6.19
7.79

Ve'
0.00
5.72
6.79
8.17

H,g
d

0.00
6.81
7.73
9.26

Fit H,s with e(lds/q) = 8.50 MeV, e(2sq/2) = 4.75 MeV.
Calculation using V,» with sp energies from [1].

'Fit V,s with e(ldll/2) = 9.00 MeV, e(2sq/z) = 5.50 MeV.
Calculatiou using II,~ with sp energies from [3].

model code [27]. The results for the spectra of ieO and
70 are listed in Tables IV and V, respectively. Calcu-

lation 1 is performed with the interaction H,g, fitting
the lowest 3, 1, and 2 states in 0 and the ~

and 3 levels in 0, and using the sp energies e(0ds/2)
and e(lsi/3) as adjustable parameters. In all calculations

e(0pi/3) is fixed at 0.0 MeV and the isO and i70 spec-
tra are shifted so the ground states are at zero energy.
These same sp energies are then utilized in calculation
2 to determine the spectra of 0 and 70, but now for
the interaction V,ir. Conversely, calculation 3 is done by
fitting the above-mentioned states with the interaction
V,ir and again by using the sp energies as adjustable pa-
rameters. This set of sp energies is then employed with
H,g to calculate the spectra of isO and i70, yielding the
results of calculation 4.

In calculation 1 the best fit to experimental data yields
sp energies of 8.50 and 4.75 MeV for the Od5yq and

lsqyq states, respectively. Similarly, in calculation 3,
where V,ir is fitted to the experimental spectra of isO
and i70, the sp energies are e(0ds/3) = 9.00 MeV and

e(lsi/3) = 5.50 MeV. For the reasons outlined above
these sp energies should not be compared directly with
experimental sp energies. However, in both cases the
Ods/3 sp energy value is higher than that of the 1si/3 sp
energy which is consistent with the experimental order-
ing. Note that this calculation is done with a izC core,
and, experimentally, C shows the 3 state lying lower

than the sz state by 0.76 MeV.
We notice that calculations 1 and 3 provide reasonably

good fits for those states in the spectra of isO and i70,
which are easily constructed within our model space. A
0 intruder state appears in the calculated isO spectrum
due to inadequacies of our simplified model and it is not
listed for reasons of clarity. Likewise, the second experi-
mental 0+ and the first 2+ states of sO are believed to
be due to a coherent four-particle —four-hole excitation,
are not well represented in our limited model space, and
are, therefore, not listed.

Comparing the fit of calculation 1 with that of calcula-
tion 3, we note that, when the Hamiltonian contains the
relative kinetic-energy operator (calculation 1), the ex-
cited states are "pushed" up relative to the ground state.
In the limit of a closed core plus a single valence nucleon,
this effect would be contained in the sp energies. Here,
in the case of configuration mixing in the four- and five-
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TABLE V. 0 spectra.

State
5+
1+
2
1
2
5
2

Experiment
0.00
0.87
3.05
3.84

0;g
0.00
0.25
5.19
5.51

&exb

0.00
-0.11
3.42
3.77

&em'

0.00
0.17
4.35
4.44

H.ed

0.00
0.52
6.09
6.18

'Fit H,s with e(ldeI2) = 8.50 MeV, e(2sig2) = 4.75 MeV.
bCalculation using V,s with sp energies from [1].
'Fit V,s with e(ldegq) = 9.00 MeV, e(2siIq) = 5.50 MeV.

Calculation using H,s with sp energies from [3].

particle states, the effect arises because the different lev-
els are "pushed" up by difFerent amounts, so the excited
states are more spread apart by T„. This result appears
in spite of the fact the sp energies are adjusted in each
case to obtain a good fit to the experimental spectra.

The difFerence between the spectra for H, ft and V,tr
for the same set of sp energies (i.e., calculations 1 and
2) shows on the average a 1.5 MeV effect, or about a
25% shift due to the role of T„.

By fitting the isO and i70 spectra with V,tr (calcula-
tion 3) and then using these new sp energies to calculate

the spectra with B,tr (calculation 4), we show the same
qualitative role of T„.

VI. SUMMARY

In summary we have shown that the Hartree-Fock
single-particle energies and their relationship to the ex-
perimental removal energies change dramatically when

the c.m. kinetic-energy operator is removed from the
Hamiltonian. We have also shown that the differences in

the spectra of isO and 0 by omitting T,.m. and treat-
ing the resulting T„as part of the two-body interaction,
are of the form of a positive additive shift of the spec-
trum away from the ground state on the order of 20—25%%up.

These efFects merit a more extensive study, where one, for
example, includes T„i along with the nulceon-nucleon in-

teraction in the calculation of the Brueckner G matrix as
indicated in Eqs. (25) and (26).
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