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We present an extension of the semiclassical Thomas-Fermi model to relativistic systems. These are
obtained by application of the gradient expansion scheme on the Wigner transformed Dyson equation.
Explicitly we give the expansion of the Green s functions, phase-space densities, and densities for a sys-

tem of nucleons in a vector and scalar potential to second order.
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I. INTRODUCTION

In recent years the interest in the investigation of nu-
clear systems has shifted strongly towards a relativistic
approach (see, for instance, Refs. [1—3]). However, only
little research utilizing a semiclassical expansion of the
relativistic theory, which was sometimes successful in the
simplification of nonrelativistic calculations in atomic
and nuclear physics (see, for instance, Refs. [4—9]), has
been published (see Refs. [1,10—13]). Generally the ad-
vantage of the semiclassical approach is the avoidance of
wave-function calculations by utilizing densities, which in
many cases makes the calculations easier. In particular,
sometimes one is only interested in the total energy of the
system or the density distribution. Therefore it seems
natural to search for methods that bypass the wave-
function scheme. An additional argument for the investi-
gation of the semiclassical expansion is the fact that all
one-body quantities can be expressed in terms of the one-
body density matrix. If one is capable of obtaining a
semiclassical expansion in powers of A' of the Wigner
transformed density matrix, i.e., the phase-space density,
one gets a systematic expansion, which in lowest-order
corresponds to the Thomas-Fermi treatment, which we
will deduce later for illustration. The arguments and
motivations are rather similar to the nonrelativistic case,
and we will not repeat them in detail (see Ref. [6]).
Furthermore, the gradient expansion is of interest in rela-
tivistic transport theories, where Wigner transformed
Green's functions also occur.

In the relativistic case one expects several complica-
tions, which make the formalism more difficult [1,11—13].
First one faces relativistic corrections due to the Dirac
structure of the approach. Furthermore, one has to deal
with position-dependent Dirac masses, which are absent
in the standard nonrelativistic theory. Examples are
given in Sec. III and Appendix A, where we encounter,
for instance, at least three kinds of phase-space densities,
etc. For these reasons one restricts oneself to the relativ-
istic Thomas-Fermi method in numerical calculations [1].
In the atomic case the semiclassical relativistic extended

Thomas-Fermi (RETF) expansion for particles in an
external potential was obtained by either a tricky ansatz
for the higher-order Green's functions [14,15] or "win-
dow" procedures [15] (elimination of the Dirac sea, but
tedious resummation procedures enter for the phase-
space density). An alternative procedure was proposed in
Ref. [11],where one expands the Bloch equation for the
propagator exp( —PH) and treats the coupled differential
equations in a recursive scheme. However, the solution
already becomes quite involved in the nonrelativistic case
[6]. In this contribution we want to present a pure alge-
braic method, which more closely resembles the standard
nonrelativistic scheme as described, for instance, by
Grammaticos and Voros [6]. It involves only straightfor-
ward but tedious algebraic methods, and the residuum
calcules. Furthermore, it has the advantage that it can be
generalized to interacting particles. The paper is organ-
ized as follows. In the next section we describe the gen-
eral G-function expansion by utilizing the Wigner
transformed Dyson equation. From the A' expansion of
the G function one can obtain by complex integration the
phase-space density. Integration over the momentum
then gives the density. The energy density emerges in a
similar manner. The explicit expansion for the G func-
tion, which is the key expression for the wanted densities,
is calculated up to second order in the third section. The
resulting densities are given, in detail, in Appendix A. In
order to illustrate the procedure within a Dirac descrip-
tion we rederive the TF approximation in Appendix B as
the first-order approximation of the Hartree-Fock (HF)
theory or by minimizing the energy density with respect
to the densities, respectively.

II. GENERAL THEORY

The basic quantity for the semiclassical expansion is
the Wigner transform of the one-particle propagator,
defined as (we use the conventions of Bjorken and Drell
[16]; iN ) denotes the ground state)
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G(R,p)= fd r exp(ipr/A')G(R +rl2, R r—/2)

=f d r I exp(ipr/fi)( —i)(N~ T [4'(R +r/2)%(R —r/2)]~N ) ] .

The Green s function obeys the Dyson equation, which has in the standard space-time representation the form

[iric(iy"B„=m~c/iri), 2
—X(1,2)]G(2, 1'}=fic5(1,1'},

(2.1)

(2.2}

where we sum or integrate over all doubly occurring variables (1:=x~&, spinor index, etc.). After performing the WT
one obtains the Dyson equation in the mixed position-momentum representation the following form (H ~H yN—):

~' I

iR 5 0 i iA 5 , , iA 8cy" p„+ +py —mNc —X R,p+, G2& R',p'—

=(G )&z (R,p}exp iTF —i . A 8 8 5 8
G2i (R,p)=iric5ii . (2.3)

Arrows pointing to the right imply that the differential
operator acts on the quantities to the right, etc.

Knowledge of the zeroth-order (Thomas-Fermi} G
function 6 " and of the functional dependence of X with
respect to 6 is now, in principle, sufficient for the deter-
mination of the semiclassical expansion. The relevant ex-
pansion of the G functions, phase-space densities, and
densities is given by the following scheme
[G (R,p) =G (R,p) ]:

(Xq=5„cV(R); c M:=c miv+X, (R)):

H =ca p+PC2M(R)+ V(R) . (2.6)

(NAZ would lead to p~)Miv/2; Xo—+XOWX~. ) The
zeroth-order (TF) solution of Eq. (2.3) corresponds to the
local-density approximation (nuclear matter) solution
[1,2, 12].

G (R,p)—:g G~ i(R p)

G(R,p)=iii g iri'O'J'(R, p),
j=0

n ( R, p ) = iri g 5'n 'J'(R, p )
j=0

(2.4a)
cy"k„+Mc cy"k„+Mc

=Ac " =:A'c
ck —Mc N

with (k=p)

ck0:=cpo+ p —V( R) .

(2.7)

(2.8)

v ~=a'y ef '. e"'"G'&'(R,p),
277l

(2.4b) The detailed pole
[e:=(c p +M c )' ]

structure 1s given by

d pn(R)= giri n' '(R)= gfi'f 3
n'1'(R, p) .

j=0 J =0 (2n. )
(2.4c) 1 1 1 1

2e cko e+irisgn(e eF) 2e eke+6 i'g

The so-called extended Thomas-Fermi (ETF) approxima-
tion [4,6] is restricted to local external potentials, i.e.,

(2.9)

X(x,x')=X 5 (x —x') .X+X 4

2
(2.5)

The poles correspond to the single-particle energies:

iiico(R, p) = V(R)+e(R, p) —p . (2.10)

The same structure is encountered in the Hartree approx-
imation [1,12]. For simplicity we will only treat the case
N =Z with a Hamiltonian of the standard structure [1,2]

The negative energies describe the energy momentum re-
lation for the antiparticles.

For the energy one obtains

E= —iTr d R 4e yH Rp+ —. , 6 R'p' ——.a, , s a
(2M) 2i BR' '

2i BR

P=P

d4p o=—iTr d R y cpo+p G Rp
(2iriri}

(2.11)

The last expression was obtained by use of the Dyson equation (2.3). The kinetic energy is given by

d4T= i Trf d R— e ' cy p+ — +mNc ymNC G(—Rp}
(2iriri) 2i BR

(2.12}
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The interpretation of the integrand as a local kinetic-energy density may be misleading, since one actually already cal-

culates in the TF approximation the expectation value of the free Hamiltonian (minus rest mass) in a "free" relativistic

Fermi gas with a position and density-dependent Dirac mass. For that reason, for instance, the Dirac energy is no

monotonic function of the density [17]. A final point is the calculation of the energy density for a mass operator emerg-

ing from a self-consistent many-body procedure. In such a case one has to subtract from H the term

—,
' [X,(R)+y V(R)], i.e., the meson contributions.

The A' expansion follows from the energy expressions by inserting of the G-function expansion (2.4a). In the following

section we will explicitly give the G-function expansion up to second order, which is the relevant ingredient for the cal-

culation of the different densities, which are obtainable in the next steps by p integration.

III. EXPANSION UP TO SECOND ORDER IN A

The RETF expansion of the G function can be obtained from a straightforward but tedious evolution of the Dyson

equation (2.3). With the Wigner operator

~:=~a ~I —~~ ~I (3.1)

one gets (A'=c = 1)

6'"(R,p)= —.G '(R,p)[G "(R,p) 'AG' '(R,p}I = o"'k . M ycr '—k . V+o' 'M . V1 0
2&' N "BR' BR' &R'

(3.2)

6'~)(R,p)=6'0)(R, p) —[G "(R,p) 'A G' '(R,p)]+—[6 (R,p) 'AG'"(R, p)]

=G,'"(R,p)+ yoG0 '(R,p) —yG'"(R, p)+ y yGO(R, p)

with

(3.3)

6(2)(R p)—

6() '(R,p)=—

[M b,M +Mk bD, V +k V(k VM)+2M(VV) +2M(VM} +2ko(VM VV)]

+2M (VM) +4M ko(VM VV)],

b V [kOMb M +—eb V+ k V(k V V}+2M ( VM V V) ]
4N N

[e k V(k VV)+Mkok V(k VM)+koe (VV) —ko(k VV) +koM (VM)
N

+ko(k VM) +2Me (VM VV)],

3 5M-
4N

N4 0[2Mk k V(k VV)+2M k V(k VM) —2M(k VV) +2e M(V V} +2M(k VM)

(3.4a)

(3.4b)

G"'(R,p) =—1

N
[Mkb, M+k kb, V+2k(VV) —2VV(k VV)+2VM(k VM)]0

N
[k kk V(k VV)+Mkk V(k VM)+e k(VV) +k(k. VV) —2k VV(k VV)+2k VM(k VM)

+M k(VM) —k(k VM) +2Mkok(VM. VV)], (3.4c)

Go '(R,p)= —,[VM(k V V) VV(k VM)]—. .2 (3.4d)

The phase-space density is now obtainable from Eqs. (2.4b), (2.7), (2.9), (3.2), and (3.3) by complex integration. Crucial

in this context is the pole structure of 6' ' and N, respectively, which is given in Eq. (2.9). It permits the decomposition

of N " in powers of (ko+ e). The contributions corresponding to the poles at ko= care neglecte—d in the further pro-

cedure. The general space density is obtainable by integration over the momentum. Here, one is mainly interested in

the scalar and baryonic density, which can be extracted from the general density by performing the corresponding

traces. For instance, for the baryon density one obtains (6"' is traceless)

n&(R)= Tr y f d p e [6' '(R,p)+G'"(R,p)+G (R,p)](2'�)
which yields the following expression for each kind of nucleons (xF ..=eF /pF):

(3.5)
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3

n~(R)= +Pr 1

3m. 24m

Is+1
2 AM—2x —2 ln i)) V—2(x —1)p

1
F F M

+(2— P) (VM)
(

2 3)
VV —2 (

2 3)
(VV VM)

(3.6)

which agrees with Ref. [15]for M* =m)v. The other den-
sities and the energy density can be calculated by similar
procedures and are given explicitly in Appendix A.

As a final remark we would like to mention that the
RETF formalism developed above on the basis of a rela-
tivistic field theoretical scheme is the equivalent of the
ETF method in nonrelativistic physics (see, for instance,
Ref. [6]). However, due to the more complicated relativ-
istic ingredients caused by the Dirac structure, it involves
substantially more effort as in the nonrelativistic case in
the numerical many-body treatment, which is presently
under investigation. This feature is not unexpected, since
also the wave-function scheme is much more complicated
in the relativistic treatment (see, for instance, Refs.
[2,18]}.
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APPENDIX A: PHASE-SPACE DENSITIES, DENSITIES,
ENERGY DENSITY, KINETIC ENERGY DENSITY

no(R, p}=Tr[y n(R, p)],
n, (R,p) —Tr[n (R,p)],
n„(R,p)= Tr[y pn(R, p)] .

(A2a)

(A2b)

(A2c)

Evaluation of (Al) and (A2) leads to [8(x) denotes the
step function, ~p~—:q angle averaging over R is implied]

1. Phase-space densities

The Wigner function follows according to Eq. (2.4b) as

n( '(R, p)= . fdp exp(ipori)G' '(R,p) .
1

(2' )

The different kinds of phase-space densities for each kind
of nucleon (no isospin trace) are defined by (no ——nz)

n 0 '(R, p) =28( —co(R, p) ), (A3a)

~(P)(R p) 4~y q 1 8 5(co) + 1 1 1

36 (2e)~ c}A@2 8 2e 6 (2p)'

+ — —— 5(co)+ —
5

—
3 8( —co)

2 q 1 1 4 q 1

3 (2e)' 2 (2e)' 3 (2e)' (2e)'

1 q c} 5(co) 1 1 1 q
18 (2E) Bc@ 4 (2e) 3 (2e)

c)5(c0) 2 q' 1 1

3 (2 ) 2 (2 )

+4(V V}
1 1 q 1

24 (2E) 18 (2e}
a'5(~)

Bco' 3 (2e) 4 (2~)'
(15(co) 1 1 2 q

2 (2e) 3 (2e)'

B5
6 (2e) Bc@ (2e) c}~ (2e)

B5+4M(VV) (VM)
6 (2e) Bco

aS( ) 4, ,
8

(2 )' 5 (2e)' (2e)
(A3b)
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n,' '(R, p)=2 8( —co(R,p)), (A4a}

' '(R p)=4MEV 1 a 5( )+ 1 1 1

18 (2e) aco 4 (2e) 3 (2E)

a5(co) 2 q~ 1 1

3 (2e) 2 (2 )

1 q M a5(co) 1 q M 1 4 q M a5(co)

(2e) aco 6 (2e) 2 (2e) 3 (2e)
r

+ 3 1 q 3M +20qM
4 (2e)' (2~) (2e) 3 (2e)

3 1 2q2 6M2 40 q2M'

2 (2e)' (2e)' (2e)' 3 (2e)'

M 1 a 5(co} 1 1 2M as(co} 4M
(2e)' aco' 2 (2e3 (2~) aco (2e)' (2e)'

r

2 q 1 M a 5(co) 4 q a5(co)
9 (2e) 3 (2E) aco 3 (2e)

20 q 1

(2e) (2e)

+ 40 q 2 8( —co)
(2e) (2e)

+4M(VM) 1 q + 1 M as(co) 1

9 (2e) 3 (2~) aco (2e)'
4 q 4M a5(co)
3 (2E)' (2e)'

20 q 20~
(2e) (2e)

2

n„' '(R, p)=2 8( —co(R, p)),
E'

6 40 q 40M

(2e) 3 (2e) (2e)
12 8( —co)

(2e)

(A4b)

(A5a)

(p)(R ) 4gy q 1 a 5(co) 1 q q 1

18 (2e) aco 4 (2e) 3 (2e)

1 q a 5(co) 1 q 4 q
9 (2e) aco 2 (2e) 3 (2e)

as(co) 2 q 1 q
3 (2E)' 2 (2~)'

a5(co) 20 q 3q

(2e) (2e)

40 4

+ Q( co)
(2e}' (2e)'

+4M(VM. VV) —2q + 5(co)
3 (2e) aco (2e) aco (2e)

4 ) 2

+4(VV)' ——' q + '
9 (2e) 12 (2&)

a 5(co) 1 q 4 q
aco 3 (2e) 3 (2e)

4 2 40 2+ — + 5(co)+ — + 8( —co)
(2e) (2e) 3 (2e) (2e)

+4(VM) q 1 q M 1

(2e) 3 (2e)
a'5(~) q~ 1 4 q

aco 3 (2e)' 3 (2e)' (2&)
—4q M

20 2 2 40 4 2

+20q~M~ — q 5(~}+ q, +40q'M' — q 8( —~)
(2e) (2e) (2e) 3 (2c) (2e) (2e)

(A5b}



46 APPROACH TO THE RELATIVISTIC EXTENDED THOMAS-. . . 235

2. Densities

The densities emerge from the phase-space densities by momentum integration [see Eq. (2.4c}]. It follows that [the
baryon density n0 is given in expression (3.6}]

(0) M 3

n, (R)= MpFeF — ln
2 2

xF+ 1

x —1F
(A6a)

xF+1
n' '(R)= —hV +6M 31n

24H pF
2XF XF(XF+2}

(VM)

(V—M) (V V) (2+xF)— xF(x—F+1)2 2 (VV)

PF
r

n, (R)=
2 5pFeF 3pFeF+ —M ln(0) 1 3 3 3 g F+

8m 2 xF —1

(A6b)

(A7a)

xF+1
n„' '(R)= —2MEM ln

24m. xF —1

xF+ 1
+ 3xF——1n

2 xF

xF+1—4pF 5V+ 3x —1n
x —1F

( VM ) +6 ( VM ).( V V)
PF

(VV)'

(A7b)

One obtains from (2.11)

3. Energy density (m =m)(, )

e""(R)=n""(R)+
U

1 ——X (R}+m n' '(R)+ 1 ——V(R}n' ' '(R)S S 2 0

=n„' ' '(R)+ 1 ——M+ —m n' ' '(R)+ 1 ——Vn' ' '(R) .0 P 02
2 2 0 (AS)

A, =O corresponds to a purely external potential; A, = 1 describes the case, if meson contributions are included (see text).

Evaluation of (2.12) gives

4. Kinetic energy density

r

r' '(R) = 2pFeF M5 —4— pFeF+M 3 —4 ln —mn,'"(R), (ASa)

r(2)(R)— 1

24H
m m xF+1

3—(1+x ) x —(3—x ) —ln

PF m xF+1
+2m xF — 2 —(1—xF) + ln

m M xF —1

(VV)

PF
(2+xF)+2xF (3—xF }+6 (1—xF } (VM). (VV)

M M

m, m m, 1 xF+1
(2—xF )— 3 —2 xF + x„+—ln (VM }

PF M 1 xF+1—2m xF + (1—xF )— 3 —2 —ln
M m 2 xF —1

hM (ASb)

By use of the definition of the Fermi momentum V(R}and its derivatives can be eliminated by means of n0(R) and M
and their derivatives. For M =m the relativistic atomic expansion is recovered [15],which reduces to the nonrelativis-
tic limit for pF, V(R) «m. In principle, one can also eliminate M (i.e., X, ) in favor of n, (R}. However such a pro-
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cedure is not applicable for a general relativistic mass operator, since its Dirac structure is more complicated as the

general density structure [2,12].

APPENDIX B: RELATIVISTIC ETF APPROXIMATION

As a simple example, we give the derivation of the relativistic Thomas-Fermi theory defined as the first term of the A

expansion of the relativistic Hartree-Fock approximation. For simplicity we restrict ourselves to the o-co model with

X =Z. In the Hartree-Fock approximation one obtains for the self-energy in the signer representation the following

expressions [12]:

X' '(R p}=— f d R'd qg b, ' '(R —R')TrG(R', q)
(2M)

+ f d x d q exp[ix(p q)/fi—]g 6' '(x)G(R, q)
(2M)

4 2
$2= f d3R'u' '(R —R') Trn(R')+ ~ f d qg 2 2

G(R, q),
(2M) (p —q) —m c2+ir)

(2W)' f d R'd q g y"b, ','(R —R') Tr[y G(R', q)]

+ f d x d q exp[ix(p q)/R]g„b—.'„'(x)y"G(R,q)y'
(2m)'

X' '(R,p) =—

l 4 2
g2

=yv f d3R' v' '(R —R') Tr[y n (R')]+ „f d q( —g ) 2 z z y G(R, q)y
(2M)" (p —q) —m c +iri

(8 la)

(8 lb)

(82a)

(82b)

The second parts give the exchange contribution. 6' '(x)
denotes the O.-meson propagator:

1
—ikx

( )(x)=
4

d4k 2'
2(2~) k v+i ri—

The potential v (R) is given by

2 -~ ~R~

u' '(R) =—
4~ IRI

(83)

(84)

A similar expression holds for the co propagator and
v' '(R). In static approximation (pv

—qo) «m~c one

can perform in the second terms of (Bl) and (82) the q
integration which leads according to (2.4b) to the replace-
ment (i/2vrfi) jdq&G(R, q) —+ n(R, q). —Therefore one

needs for the evaluation of the self-energies only the den-

sities and phase-space densities, respectively. In the

zeroth orer of the R expansion one can neglect the Fock
terms, since they are, according to (Bl) and (82), at least

of order A .
The TF approximation is now defined by expression

(2.7) for G ".

particle relation (2.10)

V(R}+e(R,p~(R)) —p, =0 . (BS)

+—'V(R)n' '(R) —@no '(R)

leads to the desired result:

(89)

The set of equations (86)—(BS) combined with the expres-

sions for ns '(R) (=pz/3m ) (3.6) and n' '(R) (A6a)

define the first order in the A expansion, i.e., the

Thomas-Fermi expression.
As expected, one can recover this result also in the

traditional manner by minimizing the energy density,

given by (AS) (X= 1 for the self-consistent case; see text)

with the subsidiary condition of conserved baryon num-

ber, with respect to the "density. " However, in the rela-

tivistic case one has to deal with three types of density

variations, i.e., 5np ', 5n,' ', and 5n,' '.

Minimization of

e' ~(R)—pno '(R)=n„' '(R)

+[—,'X,' '(R)+mc ]n,' '(R)

and

ck"y„+Mc
G "(R,p)=Pic

k —M
(85)

5[e' '(R) yon' '(R)]—

=5n' '(R)[e(pz(R})+V(R) —p] . (810)

This can be demonstrated by rewriting of (89) utilizing

r"'"(R)=f d'R' u "(R—R')n,' '(R'),

y(co),TF(R ) yo V( R)

(86)
n' '(R)= — y ——y p+[p~ 1 F d p p c Mc

2 0 (2M) e e
(811)

=y f d R'v'"'(R —R')ns '(R') . (87) n,' '(R)+Mc n,' '(R)= Tr d p e(p, X,' '),1 PF

2(2M)'

The Fermi momentum pz(R) is defined via the single- (812)
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and neglecting the surface terms —which give no contri-
bution to the total energy —in calculating 5X,' ' and 5V
via the differential form of (B6) and (B7). Higher-order
corrections with respect to the density of the H approxi-

mation are partly incorporated in Ref. [11], where one
starts directly from the nucleon-meson Lagrangian for
the energy expression.
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