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Nuclear equation of state in the MIT bag crystal model for nuclear matter
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We developed the MIT bag crystal model for nuclear matter in two aspects. First, we proved a Ay=4
selection rule in the harmonic expansion of quark wave function by group theory. It enables us to push
the maximum Dirac quantum number ~ up from 7 to 15, therefore improving our calculation for the
energy band and wave functions of quarks. Then, by a multipole expansion of the color fields we calcu-
late the color interaction energy between quarks. These developments enable us to calculate the energy
per nucleon in n'uclear matter as done previously for a free nucleon. A nuclear equation of state is de-
rived.

PACS number(s): 21.65.+ f, 12.40.Aa

I. INTRODUCTION

For considering quark degrees of freedom in nuclei,
bag crystal models for nuclear matter have been proposed
[1—5]. In the MIT bag crystal model [5], the crystal is
defined by periodic boundary conditions instead of the
periodic potential field. Place bags regularly in a lattice
and cut overlapping parts out. Windows are opened be-
tween adjacent bags. The formed crystal is a huge
periodically multiconnected MIT bag; quarks move freely
in it, except they are perturbed by the color interaction
between them and reflected from the wall by the MIT
boundary condition. The translationa1 symmetry reduces
our work to that in a cell. Because of this symmetry,
values of a single-quark wave function at two correspond-
ing points on two opposite windows separated by a basic
vector of the Bravias lattice can only differ from each
other by a factor of absolute value 1. Denote this factor
in direction i by exp(ip, a, ), i = 1, 2, or 3. a, is the lattice
constant in direction i. The pseudomomentum
p=(p„p2, p3) of the quark comes in here. For a given
pseudomomentum, this requirement is a definite bound-
ary condition for the single-quark wave function on win-
dows of the cell; it is the periodic boundary condition.
The combination of this condition and the MIT boundary
condition is the complete boundary condition for quark
wave functions. The single-quark wave function satisfies
the Dirac equation for a free particle inside the bag cell
and satisfies the combined boundary condition on its sur-
face. Therefore we may find the energy and the Bloch
wave function for a single quark by subjecting the free-
particle Dirac wave function to the boundary condition
[5].
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The cut bag in a cell is not a sphere and the periodic
boundary condition is not spherically symmetric either.
The energy eigenfunction for a single quark in it should
be a harmonic expansion on the basis of angular momen-
tum eigenfunctions. In numerical calculations this ex-
pansion has to be truncated. Working with an ¹erm
expansion, we have to solve an eigenvalue problem of an
N XN matrix. The CPU time and the memory needed is
proportional to N . An elimination of unnecessary terms
is desirable. We work with the simple cubic lattice, in
which basic vectors are perpendicular to each other and
lattice constants a, =az=a3=a. Authors of [5] have
found numerically in this case a Ap=4 selection rule for
the harmonic expansion of the quark wave function. We
prove this selection rule here in Sec. II by group theory.
By this rule we pushed the maximum Dirac quantum
number ~ in the truncated harmonic expansion from 7

up to 15, and therefore improved our results in a limited
CPU time and memory.

In Sec. III, we consider the color interactions between
quarks by perturbation, as done previously for single had-
rons [6]. We use the molecular orbit method, in which
the zero-order approximation for the many-quark state is
a Slater determinant of single-quark states. Of course, if
the density is low enough, the energy band approaches a
single energy leve1; the color interaction, though not
strong, may cause appreciable configuration mixing, lo-
calizing quarks in cells. In this case, the molecular orbit
method fails. Fortunately, at the normal nuclear density
the energy band is wide [5]. We assume the molecular or-
bit method is applicable here and derive the nuclear equa-
tion of state around the normal nuclear density by this
method. Again, the lack of spherical symmetry makes us
work with the multipole expansions of currents and
fields.

In Sec. IV, we fix model parameters by fitting baryon
data only. This is partly because we have nothing to do
with mesons in the MIT bag crystal. Moreover, in
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modern chiral bag models including Skyrmion models,
mesons are point particles rather than bags. Their pres-
sure on a bag surface becomes negligible if the bag radius
is large enough. A chiral bag approaches an MIT bag in
this limit. The radius of a nucleon bag calculated from
our parameters is 1.207 fm, larger than that calculated in
[6]. One may think MIT bags with our parameters are
limits of chiral bags. We completed our calculation for
energy per nucleon in the MIT bag crystal by using this
set of parameters, and thus derived the nuclear equation
of state in this model. Section V is a short discussion.

II. BI.OCH %'AVE FUNCTION AND ENERGY BAND

We call the cut bag in a cell (Fig. 1) a bag cell. A cut
spherical bag cell is characterized by its radius R and the
angle 8O defined in Fig. 1 characterizing the size of the
window. They are related to the lattice constant a by
a =2R cos80. Because of the translational symmetry of
the lattice, we need only to solve the problem in a single
bag cell.

In the ground-state nuclear matter, we consider posi-
tive energy massless u and d quarks only. The Dirac
wave function for a free massless quark with positive
eigenenergy e may be written in the form

boundary condition we may [5] solve the eigenenergy e as
a function of pseudomomentum p, that is the energy
band, and solve the set of expansion coefficients [c' ] in
(2.1), therefore solving the wave function (p itself, that is
the Bloch wave function. %' is normalized in a bag ce11.

A. Selection rule and the reduction
of the harmonic expansion

In the numerical calculations we have to truncate the
expansion in (2.1) at a maximum absolute value K of a..
To save CPU time and memory, and also to eliminate the
accumulative error as much as possible, we would elimi-
nate unnecessary terms from the expansion for a given

. It is the reduction of the expansion. Here we prove
the hp=4 selection rule for the simple cubic lattice. Ac-
cording to this rule, the difference of quantum number JM

for two terms in the harmonic expansion of the single-
quark wave function is an integer multiple of 4.

Selection rules are from symmetries. Beside the
translational symmetry, a lattice also has its point-group
symmetry. The point group of a simple cubic lattice is
m3m [7]. Euler angles for the 24 rotation elements of
this group are

(0,0,0), (p, p, n. /2), (Q, Q, Ir), (0,0, 3Ir/2),
Vp„(r, 8,y ) =gc', (Kp)4„'„(r,8,y),

KP

(2.1)
(n. /2, Ir/2, 3Ir/2), (3n/2, ~/2, .n/2), (0., m. /2, 0),
(m, m/2, n ),. (n, m/2, 0),. (O, Ir/2, Ir),

(Ir/2, m. /2, Ir/2), (3n. /2, Ir/2, 31r/2}, (Ir/2, Ir/2, 0),
(0, m /2, n. /2), (n, n /2, Ir/2. ), (Ir/2, Ir/2, }I,r

(0, Ir/2, 3n. /2), (3Ir/2, Ir/2, 0), (m, n /2, 3n /2),

in which p is the pseudomomentum and v is an appropri-
ate spin quantum number for a particle in crystal. This is
a harmonic expansion on the basis of simultaneous eigen-
functions

j, (er)y„„(8q )

r8 " isgn(K)j, (er)g „„(8y)
K

(2.2) (3m. /2, n/2, n), (3Ir/2, m, n l2), (Q, Ir, p), (m, n', n/2),

of energy e, angular momentum j„=~sc~
—

—,', its z projec-
tion ((I and parity ( —1)"sgn(K). @=+I,+2, +3, . .. is the
Dirac quantum number. 1„=~(I~—[1—sgn(K)]/2. j&(g)
is a spherical Bessel function of order l. y„„(8(}(1)is a spi-
nor spherical harmonic function. 3'„ is an appropriate
normalization constant. Subjecting (2.1) to the combined

r
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and (O, n/n/2) . '

Substituting these Euler angles in the famous formula
(see, for example, [8]) for the irreducible representations

(j ) (j„)D " =(D„„") of the rotation group, we obtain represen-
tations of m3m. But they are reducible for m 3m in gen-
eral except the one with ~K~=1. The irreducibility of
D" ' for group m3m may be seen by the following
reasoning.

D" ' is a two-dimensional representation. If it is re-
ducible, there must be a one-dimensional invariant sub-
space in its representation space. Suppose the only
linearly independent spinor in this subspace is

C)

C2

The element

0 —1
D(1/21(p p)— 0

transforms it to

FIG. 1. Cut spherical bag cell in a simple cubic lattice.
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D(1/2)(O O )

—i 0
0 i

Invariance of the subspace means —c2 =bc, and c i
=bc2.

The solution of this set of equations is c, =+ic2. On the
other hand, the element

Single-quark wave functions in a free nucleon belong to
the D" ' representation of the rotation group. By the
consideration of correspondence we see the single-quark
wave function in a bag cell should belong to the D(in)
representation of group m3m. A projection of 4„'„on
the representation space of D" ' for m 3m is

transforms the same spinor to

1Ci

1C2

@„=ggD,","(g)*D„„"(g)@;„
P

=QC(happ'vv')4„' (2.3)

Invariance of the subspace means —ic i
=b'c, and

ic2 =b'cz. The solution of this set of equations is c, =0
and/or c2=0. Therefore we have c, =c2=0; the sup-
posed invariant subspace is a null space. D" ' is an irre-
ducible representation of group m 3m.

g is an element of group m 3m. v is the spin quantum
number of a quark in a simple cubic lattice, mentioned
after (2.1). Completing the summation over g in (2.3), we
get

[5„„6„„+(—1) '+"+"+'5 „„5 „„]+16S(happ')S(lvv') if (p —v)/2 and (p' —v')/2 are even,
C(lapp'vv') = .

0 otherwise, (2.4)

with

S( I) —g( 1 )II2 JK (
' + )!(

' — )!(
' + ' )!(

' — ' )!

(j„p n)!(j—,+—p,
' n)!n!(n—+p —p')! (2.5)

From (2.4) we see, for a given v, the difference of quan-
tum number p for two nonzero terms in (2.3), therefore
also in (2.1), must be a integer multiple of 4. The selec-
tion rule hp=4 is proven.

This selection rule much reduces the harmonic expan-
sion of the single-quark wave function and makes us be
able to push ~ up from 7 in [5] to 15 here, therefore
considerably improving our result. However, the numeri-
cal result does not change much compared to that in [5],
as it should be.

3

e(p)= g&;f;(p),
i=0

(2.6)

with

Having considered symmetries for the simple cubic lat-
tice, we suggest the following four-parameter expression
for the single-quark energy:

B. Fourier expansion and the parametrization
of the energy band

The factor exp(ip;a; ) in the periodic boundary condi-
tion itself is a periodic function ofp;, the period is 2m. /a;.
Therefore the energy and the Bloch wave function of a
single quark are periodic functions of p; with this period.
We may expand e(p) in a Fourier series of p. The expan-
sion may be further simplified by the point group of the
lattice. In the numerical calculations we, of course, have
to truncate the series to a finite sum. This is permissible
because the contributions to the high harmonic com-
ponents in this series are from cells far away, therefore
they decrease with the period of the harmonic com-
ponent. This is especially true when we average various
quantities over the energy band. A higher harmonic
component, with shorter period in p space, cancels more
completely on average. We use the truncated Fourier ex-
pansion as an approximate analytic expression of e(p),
with expansion coefficients determined by fitting the nu-
merical results of e(p) at some specific values of p.

C)0
CD

0=

O

cD-

0 ~ 68
I

0 ' 76 0-84

CDSe.
0 ' 92 F 00

FIG. 2. B; and E as functions of cos00. Curve i shows RB;
for i =0, 1, and 10 RB; for i =2, 3. Curve x shows REq.
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fo(p) =1,
f, (p) =cos(p, a)+ cos(pea }+cos(p3a },
fz(p) =cos(p i a) cos(pea )+cos(p2a ) cos(p3a)

+cos(p3a ) cos(p, a),

f3(p) =cos(p, a ) cos(p2a ) cos(pea ) .

(2.7}

E9 =
3 f f f E(p)F(p)d'p . (2.10)

This condition determines the Fermi energy e~. Substi-
tuting the determined eF into (2.9), we obtain a well
defined occupation function F(p }. Using it and the ex-
pression (2.6) for e(p }with the determined parameters B;,
we calculate average quark energy per nucleon

The four parameters Bp, B1, B2, and B3 are determined

by fitting four single-quark energies e(0,0,0), e(0, 0,~/a),
e(n/a, n./a, 0), and e(n/a, n. /a, n/a), numerically calcu-
lated before. Numerical results for B, as functions of
cos8p are shown in Fig. 2.

C. Average quark energy per nucleon Eq

For a given pseudomomentum there are two spin states
with v=+ —,', two isospin states, and three color states; al-

together 2X2 X 3=12 combinations. Filling quarks into
the energy band up to the Fermi energy eF, we obtain the
zero-order approximate state of the quark system accord-
ing to the molecular orbit method. There is one nucleon
per cell, therefore a three-quark per a volume on aver-
age. We find

The numerical result of E as a function of cosOp is also
shown in Fig. 2.

III. COLOR INTERACTIONS BETWEEN QUARKS

In nuclear matter composed of massless u and d quarks
only, the color charges cancel completely everywhere,
and the color electric energy is zero, just as in a single
strangeless hadron. Because of the translational symme-
try of the lattice, we need only consider the color magnet-
ic energy per cell E, . The color magnetic interaction
is a two-body interaction. Denoting the color magnetic
field of octet color k associated with quark i and at posi-
tion r by H'"'(i, r), we have for the state

~
) of the quark

system

with

', f ff"F(p)d'p=3,

12 if e(p) ~ e~,
0 otherwise .

(2.8)

(2.9)

8

E, = —2+a, H' ' i, r .H' ' i', r d7,

(3.1)

where a, is the color fine-structure constant. According
to the molecular orbit method, state

~ ) is a determinant
of single-quark states ~~). Therefore

E..= 2~~,-f pi&~'IH'"'(r)l~'& &ilH'"'(r)li& —
i&i H'"'(r)~a'). (i'~ H'"'(r)~i)] dr. (3.2)

H'"'(r) is a color magnetic field associated with a single quark. The single-quark state is a direct product of the space-
spin state ~pv), the isotopic state

~f ), and the color state ~c ). 4 „in (2.1}is the coordinate representation of
~ pv). We

may also factorize H'"'=HA, '"', in which H is color independent and A,
'"' is the kth generator of the color SU(3) group.

Since nuclear matter is colorless, we always sum over complete color triplets in (3.2). Using the fact that the color field

operators do not act on fiavor state
~f ), the orthonormality (f ~f ' ) =5//. , identities g3~=, ( c

~
A, '"'~ c ) =Trk, '"'=0, and

8 3 8

(c~A,'"'~c')(c'~A. '"'~c) = g Tr(A, '"') =16, (3.3)
k =1 c,c'=1

we obtain

k=1

E, = ' f ff" ' "PF(p)f ff" '"P F(p')f g~ &pv~H(r)~p'v'&~dr.
VV

(3.4)

The color magnetic field H'"'(r) satisfies the field equation V XH'"'(r) =I'"'(r), where I'"'(r) is the color current. We
then factorize the color current, I' '(r)=I(r)A, '"'. I(r) is a color-independent factor. The field equation becomes
V XH(r) =I(r), which is common for every kind of color. Color fields satisfy this field equation in the bag cell, satisfy
the MIT boundary condition r XH=O on the wall, and the periodic boundary condition on windows. We may think
that the field H in a bag cell is a superposition of two parts, H, and H&. H, is the field generated by the current in the
bag cell under consideration, therefore satisfies the inhomogeneous field equation VXH, (r)=I(r) and vanishes at
infinity. H& is the field generated by currents in other bag cells and the field reflected from the wall, therefore satisfies
the sourceless field equation V XHI(r) =0 in the bag cell under consideration, and makes the total field H=H, +HI
satisfy the combined boundary conditions. We solve H(r) from this well-defined boundary-value problem in the follow-
ing.
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A. Multipole expansion for color currents and fields

From (2.1) we see the matrix element of current

(pvlI(r) lp'v') =%~ (r) u4~ (r) = g c~„(ap)*(eaplI(r)le's'p')c~ „(~')u'),
KPK }M

with

(EsplI(r)le'~')M') =iy,„(8y) [u'+ (r )r+iu" (r)r Xo ]y,„(8p),
and

(3.5)

(3.6)

u+ (r)= A'„A; [ —sgn(a')j, (cr)j, ( er)+sgn( s}j, (er)j, (e'r}) . (3.7)

a is a Dirac matrix vector, o. is a Pauli matrix vector, and r is a unit radius vector. A simple Racah algebraic deriva-
tion gives (see Appendix A)

and

I

X„„(8y}rX».„.(8y) = g XiJ(KK )Cj~~p~JMTL J~(8p)
LJM

I

y„„(8q) i(rX~)y„„.(8q)= g Y~(«')CJ pJMTLJM(8% )
LJM

(3.8)

(3.9)

with

2l~l(2J + 1)(21„+1)(2l„+1)(2l„+1)
X~q(«') =g( —1)

K)

IK jK

I,
LO

01, 0
JK JK

1
JK'

1

JK
P

L L j ~

(3.10)

and

2 la l(2J + 1)(21„+1)(2l„+1)(2l„+1)

K) K2

1 I, IK
LOX51 1 C101 OC1 01,0

JK JK
1

JK,

I„. jK L

JK, 1 JK

1
K2 2

L 1 J

2 I»
I (3.11)

TLJ~(8p) is a vector spherical harmonic function; it is a simultaneous eigenfunction of orbital angular momentum L,
total angular momentum J, and its z projection M. Abbreviation CJ"„,„=(j,p,jzpzlj, j2jp) for Clebsch-Gordan

~1 ~i~2)"2

(CG) coefficients and usual notations [9] of 6-j and 9-j coefficients are used here. From (3.5)—(3.9) we get the multipole

expansion of the current

& pvl I(r) lp'v' & =i g ILJM(pvp'v', r)TL~~(8p),
LJM

with

(3.12}

and

Ii J~(pvp'v', r) =QZ»» &M(pvp'v')[XLJ(«')u + (r)+ YIz(av')u" (r}]
KK

(3.13)

I

Z»» JM(pvp'v')=pc~„(~p)*C "JMc .„(~'p,'). .
I

Substituting (3.12) into the source term of the inhomogeneous field equation, we solve (see Appendix B) the multipole

expansion of the color magnetic field

&pvlH, (r)lp'v'&= &HLJM(p v v 1)TLJM(8v )
LJM

(3.15}
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with

~LJM(p P v
2J+1

J
J

2J+1

1/2
R

IgJM(pvp'v', r')r' dr'r ' if L =J—1,
r

1/2
R
IJ+ ] JM(pvp'v', r')r' dr'r if L =J,

1'

1/2

f IzzM(pvp'v', r')r' + dr'r if L =J+ 1 .
0

(3.16)

XTJ ]zM(8]P); (3.17)

the expansion coeScients bJM are determined by the
combined boundary condition in the next subsection.

B. Boundary condition and the determination
of the color magnetic field

Translational symmetry makes the matrix elements of
a field at two corresponding points on opposite windows
separated by a basic vector of the Bravias lattice di6er
only by a factor of absolute value 1. Because the quark
wave functions satisfy the periodic boundary condition,
the matrix element of the quark current (pviI(r) p'v')
and therefore that of the field (pv~H, (r)ip'v') directly
generated by the current automatically satisfy this condi-
tion with the factor exp[i(p —p; )a; ] for i =1, 2, and 3.
We need only to pose the periodic boundary condition
with this same factor on the sourceless field Hf. The
MIT boundary condition is rX(Hf+H, )=0 at every
point on the wall. The combination of these two condi-
tions is the combined condition, which is a complete
boundary condition on the whole surface surrounding the
bag cell. It may be written in the form

F(8%') QGJM(89')b JM
— 0

JM
(3.18)

for every direction (8q&), and for every pair (pv, p'v') of
quark states. F and GJM are vector functions of direc-
tion (8q&).

Multiplying the left-hand side of (3.18) by its Hermite
adjoint and integrating the result over 4~ solid angle, we
obtain a semipositive definite quantity

The multipole expansion of the sourceless field is (see Ap-
pendix B)

(pv~Hf(r)~p'v') =gbzM(pvp'v')(r/R)

Orthonormality of the set of vector spherical harmonic
functions makes us need to do numerical integration only
on windows. Q reaches its absolute minimum 0 if and
only if condition (3.18) is satisfied. Minimizing Q with
respect to bJM, we obtain

g ~JM, J'M'bl'M' BJM
J'M'

(3.21)

for all possible JM. A solution of (3.18) must be a solu-
tion of (3.21). Therefore, instead of (3.18) we solve the set
of equations (3.21). In the numerical calculation, we have
to truncate (3.21). It is a truncation of the multipole ex-
pansion (3.15) and (3.17) for the color magnetic fields. In
these equations only terms with J(J are kept. We put
Jm =15.

E(P —P —)=E(P —P —)=E(0 P P )

E(p, —,', p', —
—,')=E(p, —

—,', p', —,')=E(l, p, p'),

E(k, p', p) =E(k,p, p') for k =0, 1 .

(3.22)

To complete the remaining sixfold integration in p and p'
space, we find an approximate analytic expression for
E(k, p, p'). From the symmetry consideration we have
found a ten-parameter expression

3 3

E(k, p, p') = g g B;; (k)f;; (p, p'),
i =Oi'=0

(3.23)

C. Parametrization and integration in the calculation of E,

After having solved the color magnetic fields, we are
now going to complete the integrations in (3.4). We com-
plete the volume integration over the bag cell first. The
result is a function E ( p, v, p', v' ). From the point-group
symmetries of the simple cubic lattice we find

Q g ~JM, J'M'b JM bJ'M'
JMJ'M'

with

f;; (p p') =f;(p—p')lf; (p)+f; (p') l (3.24)

with

g(BJ'MbJM+ zM
—

JM )+C,
JM

4m.

B,M= f GJM(8f) F(8f)de,
4n.

C = f F(8y) .F(8y)d A .
4m

(3.19)

(3.20)

For a given k =iv —v'i, we fix ten parameters B,,'(k) in
(3.23) by fitting numerically calculated E(k, p, p') for ten
pairs of p and p' from four pseudomomenta (0,0,0),
(0,0,m/a), (m/a, ~/a, 0), and (~/a, m/a, n/a). Using
(3.23), we reduce the sixfold integration to a few products
of threefold integrations in p space and p' space separate-
ly. We complete these threefold integrations by number
theoretical method for numerical integrations [10],which
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keeps the numerical error within 2X 10 in limited CPU
time. This is necessary for keeping the overall error of
energy per nucleon within 2 MeV.

We have also applied this procedure to a spherical
MIT bag. In this case everything is analytical. We
recovered the expression for the color magnetic energy in
[6]. It may be regarded as a check of the procedure.

IV. MODEL PARAMETERS AND
NUMERICAL RESULTS

A. Model parameters

To get final numerical results, we need to specify the
model parameters. For the MIT bag model, they are the
volume energy constant B, the zero-point energy constant
zp, the color fine-structure constant a„and the strange-
quark mass m, . Masses for u and d quarks are assumed
to be zero. A set of these four parameters has been deter-
mined [6] by fitting the hadron spectra. Input masses are
those for the nucleon, the 6 isobar, the 0 hyperon, and
the co meson. Baryon mass spectra and ratios between
baryon magnetic moments calculated from this set of pa-
rameters agree with experiments rather well. The calcu-
lated rms charge radius for the proton is slightly smaller
than its experimental value. Calculated absolute values
of baryon magnetic moments are too small. The situation
for mesons is worse. The most serious problem is that of
the pion mass. The calculated value is about double that
of the experimental value. Although various attempts
have been done to escape from this problem, the
"disease" is not finally cured.

Having nothing to do with mesons in our MIT bag
crystal model for nuclear matter, we concentrate our at-
tention on the baryon sector of bag models. The nucleon
structure had been understood in considerable detail by
meson-nucleon field theory long before any quark model
was proposed. In this theory a physical nucleon is a bare
nucleon surrounded by meson clouds. Its radius should
therefore be near the Compton wavelength of a m. meson,
at about 1.4 fm. This point is crucial for getting reason-
able results in that theory. In the MIT bag model, there
is nothing outside the bag, and the size of the nucleon is
about the size of the corresponding bag. In this view, the
radius (1 fm) for the nucleon bag calculated from the
above set of bag model parameters is too small. The
reason of having obtained this set of parameters and
therefore the small sizes of baryon bags is that people
have tried to fit the meson mass spectra simultaneously.
Since this could not be well done, we would rather limit
our object to baryons only. In the various chiral bag
models, including Skyrmion models, mesons are point
particles rather than bags. These bag models are for
baryons. They partially recovered the achievements of
meson-nucleon field theories on nucleon structure. If the
bag is large enough, the pressure of meson clouds on the
bag surface may be ignored, and chiral bags approach
MIT bags. Therefore we may work with a large MIT bag
model for baryons.

Replacing the co-meson mass by the empirical datum
[11] 0.88 frn for the rms charge radius of proton, using

TABLE I. Baryon masses in unit of MeV.

Baryon 1V A X

Moia

Mnew

Mexp

938 1105 1144 1289 1233 1382 1529 1672
939 1110 1157 1301 1233 1383 1530 1672
939 1116 1193 1318 1233 1385 1533 1672

the latter and masses of the nucleon, the 6 isobar, and
the 0 hyperon as input, we determined a new set of mod-
el parameters

B' =125 MeV, zp=0. 88,

a, =0.67, m, =275 MeV .
(4.1)

Masses for u and d quarks are assumed to be zero again.
The bag radius for a proton corresponding to this set of
model parameters increases to 1.207 fm. The calculated
absolute value for proton magnetic moment also in-
creases from 1.9p& to 2.3p&, nearer to the experimental
value 2.7pz. Baryon mass spectra calculated from pa-
rameters (4.1) are shown in Table I; they are slightly
better than the old calculated values quoted from [6].

B. Phenomenological zero point energy
for a nonspherical bag

Zero point energies have been calculated from first
principles only for a few cases [12]. Even for a spherical
MIT bag, it was introduced phenomenologically with a
dimensionless constant zp determined by fitting experi-
mental data. It seems that, in the present stage, we are
only able to extend this phenomenological consideration
to general cases. Some general principles may guide us in
the extension. The first one is the principle of relativity.
This principle tells us that the energy should be deduced
from a scalar action. The surface energy may be deduced
in this way [13]. This point suggested us to distribute the
effective zero point energy on the bag surface. In our
model, it is on the wall of the bag cell. The second is the
principle of correspondence. This principle tells us that
the zero point energy should be characterized by a single
dirnensionless constant zp, and should recover the form
—zo/R in [6] for a spherical bag. The simplest form of
zero point energy for a static bag fulfilling these condi-
tions is

)
3/2

Eo= zo f — ds, (4.2)

zp 0Ep=-
R 4m

(4.3)

where 0 is the total solid angle opened by the wall. In
our case, A=4m. (3 cos00 —2) for a bag cell, and the zero
point energy per nucleon is

where K is the Gauss curvature of the surface at the
point under consideration, and the integration is on the
surface. For a spherical bag of radius R, E =1/R [14],
we recover the right form —zp/R. For a cut spherical
bag cell,
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FIG. 3. Average energy per nucleon as a function of lattice
constant a in the simple cubic lattice.

ZpEo= — (3cos80—2) .
R

(4.4)

C. Energy per nucleon and nuclear equation of state

According to the MIT bag crystal model considered
here, the energy per nucleon E in nuclear matter is a sum
of quark energy E, color magnetic energy E, , zero
point energy Ep, and the volume energy

E =Bv= R (4.5cos80 1.5co—s 80—2)B
4m.

v 3
(4.5)

V. DISCUSSION

We completed the calculation of energy per nucleon in
a MIT bag crystal model for nuclear matter, and derived
the nuclear equation of state numerically in this model.

per cell. E~ is calculated in Sec. II. Integrations in (3.4)
are completed in Sec. III. Substituting the obtained
values (4.1) for parameters a„zo, and B in (3.4), (4.4),
and (4.5) respectively, we get numerical results for E,
Ep, and E„, and therefore also for E as a function of a
and Op. Minimizing E with respect to Hp for a given a, we
obtain the energy per nucleon E (a ) in the ground-state
nuclear matter as a function of a, or a function of the nu-
cleon number density a, that is, the nuclear equation of
state. The numerical function E(a) is shown in Fig. 3.
We see a minimum energy per nucleon of E =926.4 MeV
at a =1.98 fm; it means a maximum binding energy of
12.6 MeV per nucleon at a saturating nucleon number
density of 0.13 fm . These results are comparable with
corresponding empirical data [15] 15.986 MeV and 0.147
fm, and are therefore quite reasonable for a theory in
which nothing is adjustable.

In the calculation we considered everything considered
previously in the MIT bag model for single hadrons. We
are faithful to the MIT bag model in that we have not
changed anything in its basic assumptions. What we
have added is the lattice geometry. We extended the phe-
nomenological consideration for the zero point energy,
but it is a minimum extension consistent with the original
idea and general principles. We have reparametrized the
model, but it is consistent with the history and the gen-
eral trend of development for the topic. The color in-
teractions are considered by lowest-order perturbation.
This is common in bag models. The overall error in the
numerical calculation has been limited to within
2X10 . It is 2 MeV for energy per nucleon. This is
necessary to make the results meaningful.

The main approximation used is the molecular orbit
method; it is to use the determinant of the single-quark
Bloch states as a zero-order approximate state for the
quark system. In this state there is no definite number of
quarks in one cell. This is acceptable if the density is not
too low, and therefore the energy band is not too narrow.
This is the case for the nuclear matter at normal density
in our model. When one lowers the density, therefore,
bags separate from each other, the windows between bags
become smaller, the energy band shrinks, and finally be-
comes degenerate into a single energy level as shown in
[5]. In this case, color interactions, no matter how weak,
shall induce a finite configuration mixing, localizing
quarks in bag cells, and considerably lowering the energy.
We see in Fig. 3 that the energy per-nucleon on the low-
density end of the curve is too high, even higher than that
for a free nucleon. This is of course unacceptable. The
reason for getting this result is that the molecular orbit
method fails there. The above-mentioned configuration
mixing shall cure this "disease. " It may also slightly
lower the energy per nucleon around the normal nuclear
density. This is in the right direction for improving our
result.

We have set the color electric energy to zero. This is
justified only in first-order perturbation. In the second-
order perturbation, the color polarization is to be con-
sidered. There must be a nonzero color electric energy.
Since the color fine-structure constant a, =0.67 is not
small enough, the omission of the color electric energy as
well as the perturbative treatment of the color magnetic
energy is a limitation of the present work. However, this
is a limitation of the MIT bag model itself. Every work
following this model, including that for single hadrons,
shares this limitation. We hope it may be removed in
later works.

On the high-density end there is another problem. The
geometry of our bag cell (see Fig. 1) makes sense only if
Op (45 ~ At the normal density the window is already
rather wide, Op=42. 6', at higher density windows will be
even wider. There must be a critical density higher than
the normal nuclear density, at which a transition of nu-
clear matter to a new phase occurs. This is a phase of
quark gas with normal vacuum bubbles in it; it may be a
phase between phases of nuclear matter and of quark-
gluon plasma.

We have not considered the motion of the bag as a
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~hole, for example, the lattice vibration. This is because
it becomes less important as the bags open up. It may be
considered by quantum bag dynamics [16] in further
researches.

We, of course, do not believe that nuclear matter is
really a bag crystal. But the reasonable numerical result
tells us that perhaps it is not far from the truth. It may
be an effective theory if one likes to describe nuclear
matter by considering quarks only. Contributions of had-
ron configuration are averaged and substituted effectively
by quark equivalents. This form of theory may be espe-
cially suitable for considering the problem of phase tran-
sition between nuclear matter and quark-gluon plasma.
It offers a quark model for nuclear rnatter consistent with
empirical data and at the same level as bag models for
single hadrons, and is therefore better founded for that
object.

This work was partly supported by National Science
Foundation of China and by the Energy Source Ministry
of China.

Definitions for spinor and vector spherical harmonic
functions are

1/2

~.„(8~}= y C,
'"", Y, „„(8~)q„

v= —1/2 & 2

(Al)

and

1

T~M(8q))= g Ci M „, YL M,(8y)e„.
v= —1

(A2)

Y]„(8]p) is the spherical harmonic function; it is the
simultaneous eigenfunction of orbital angular momentum
l and its z projection p. g„ is an eigenspinor of z projec-
tion v of spin —,. e„ is an eigenspinor of z projection p of
spin 1, which may be expressed by orthogonal unit vec-
tors I, y, and z on directions x, y, and z, respectively:

APPENDIX A:
X COEFFICIENT AND Y COEFFICIENT

We prove expressions (3.10) and (3.11} for I and Y
coefficients defined in (3.8) and (3.9), respectively.

e+, =+ —(x+iy), eo=z .
2

Using (Al) and the identity

(A3)

I)+12 (21, +1)(212+1)
4m(21+ I }

(A4)

with the orthonormality of CG coefficients and the definition of the 6-J coefficient, we find

(21„+1)(21„,+ 1)
( —1) '

4n.(2L + 1)
LO J ~ P Lp p)

la']l(21 +1)(21,+1)
=g( —1) '

L 2'
JK,

LO
Ci„ot„,o l, JK'

2

(A5)

Considering also (A2), we obtain

y„„(8q ) ry„„(8y)=&4~/3+y„„(8q ) Y]„(8]p)'y„„(8y)e,

l l

=g( 1 ) +2lKl(21&+ 1 )C]0]
1

I, J P+V
C]".', „X„„+„(8q)tX„,„,(8q )e.VJ P KlP V

l]c]r] l ( 21,+ 1 )(21 ~ + 1 )(21, + 1 )= gg( —1) ' ( LO

LJMKl v 7T 1

Kl JKl

l ~

X '
1

JK, JK JK'

1

j v+pK J,P JMC] j p Cj +pL p' —p —Cj p' —p — ] TLJM(8$ )
K Kl

(A6)

Completing the summation over v, we get (3.8) and (3.10).
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In the same way, defining o+& = + ( I /&2)(o „+io „)and o 0=o „we find

1

l„p pl 2 pl 2 p)1v
Pl

1 1 p'+ v
=/12~a'~ sgn(~')+51 I l, . C, „') „.y„„+„(8p), (A7)

therefore

y„„(8y)tir Xoy„.„.(8y)= 4n/3 i+( —1) y„„(8qr) Y, (8y)'e„Xe „.o „.y„.„.(8p)
vv

IK IK

( 1) " " 1/48iKIC i(21 +1)5I I CiOI
t

1 2

IK' 2 JK' j v+ p j„p,'+ v'

X
1

. , C, „'J „CI"„."„C '„.)„.y„„(8y) yt„q (8p)e„
2

LJMVV KlK2

3(2l„+1)(2l„+1)(2l„+1)

n(2L +1)

1 IK
Ki0 LO+C10l Ocl Ol, 0

JK
1

l 1„.

jK 1

1

2

JK,

JK'

1

2

JKi Ki
l

P ~

I„. j„K2

1

2

I

~1 v' —v ~Lp+ v —p' —v'~ ~j p, +v 1 —v~j —p' —v'1 v'~ 1 —v1 v'~j p+vj —p' —v'
K) K2

XCz +„„,~ &„,T~M(8p) . (A8)

Completing the summation over v and v by using the definition of 9-j coefficient we obtain (3.9) and (3.11).

APPENDIX B: MULTIPOLE EXPANSION FOR COLOR MAGNETIC FIELDS

From the field equation VXH=I, the natural boundary condition H, ( 00 ) =0, and the multipole expansion for the
current

I(r) =i g I~M(r)T~M(8V'),
LJM

(B1)

we solve the color magnetic field generated by this current in a cut spherical bag of radius R,

H, (r)=VXf, dr
4m. /r —r'/

I

=iVX g f IIJ~(r')r' dr'+r'f'I~~(r )
LJM r +' 0 p~L —1

TiJM(8m)
2L +1 (B2)

Using the identity
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1/2J+1 df J —1 f (r) T JJM(8(p) if L =J 1
dT T

1/2J+1
2J+1

df J+1+ f (r) TJ i JM(8tp}
dT T

VX [f(r)TLJst(8tp)] =i X '

df Jf(—r) TJ+i JM(8y) if L =J,
T

J
2J+1

1/2

+ f(r) TsJM(8+) if L =J+1J df J+2
dT T

(B3)

and the continuity equation V I=0 for the stationary current I, we get the multipole expansion

s( } X LJM( } LJM(
LJM

with

(B4)

HLJM(r) = 2J+1
J

J
2J+1

1/2

1/2

r J I&JM(r')r' + dr' if L =J+1 .
0

(B5)

The sourceless electric multipole vector potential r~ 'Ts i J st(8gr) is curlless, therefore only the magnetic multipole
vector potential r Ts JM(8y) contributes to the magnetic field. From the identity (B3) we see the multipole expansion
for the sourceless magnetic field

J —1

Hf (r) =gbJM
T

JM
TJ —i J M(8%} (B6}
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