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Three-boson system with absorptive short range potential
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We study the properties of the three-boson system with absorption, through a short range in-
teraction in the limit where the range reduces to zero. We derive an analytic expression for the
three-boson width that relates it to the real part of the three-boson energy, two-boson binding en-
ergy and decay constant. One of the characteristics of this expression is that, in this limit, the ratio
between the width and the three-boson binding energy is proportional to the range.
PACS number(s): 25.10.+s, 21.45.+v, 25.43.+t

The formulation of thr"" body systems with absorp-
tion has application in many-body theory [1] and also
in few-nucleon —antinucleon systems such as the antipro-
ton deuteron [2—4]. The motivation for the study of
the antiproton deuteron system relies on the possibility
to test the nucleon-antinucleon interaction in the pres-
ence of a third nucleon. This gives the opportunity to
check the much unknown imaginary part of the nucleon-
antinucleon potential under different conditions. The
mechanism for the antinucleon annihilation on two nu-
cleons [5] may also be studied.

The research in the antiproton deuteron atom is ac-
tive [3, 6] and experimental data are available [7]. As
a three-particle system, the energy and width of the an-
tiproton deuteron system has been calculated [3] and also
the spectator nucleon spectrum [4], using separable inter-
action model in Faddeev calculations.

In the thr""=nucleon system, qualitative studies have
been done [8, 9] exploring the short range of the nuclear
interaction. One of the intriguing characteristics of this
system, first observed by Thomas [10], is the collapse
of the three-body binding energy, when the interaction
range of the two-body system goes to zero. This effect is
also closely related to the appearance of the Efimov states
[8,9], as shown in Ref. [11],where it is demonstrated that
both effects essentially arise from the same singularity
structure of the kernel of the integral equation. Also
related with Thomas and Efimov effects, and discussed
in Ref. [11],is the model dependence of the three-particle
observables.

Our main purpose is to discuss some general qualita-
tive properties of a three-boson system with absorption
through a schematic two-body potential model that has
just what is essential to understand the behavior of the
system in the limit where the range goes to zero. In
the antiproton deuteron system the characteristic inter-
action distances are small compared to the deuteron size.
To have an insight to the qualitative properties of such a
system with absorption, we choose a two-body potential
without any structure, but with the essential information

about the range of the interaction. So, we use a range
parameter that characterizes the interaction. When this
parameter goes to infinity, the potential has a zero range.
A potential without structure can be useful in this case
to distinguish the main eEects due to the range of the
interaction from other effects. We also hope that such
a study will be useful in understanding the limits one
has to consider when using a more realistic two-body in-
teraction. As in the case where there is no absorption,
the system still collapses in the zero-range limit, but now
the state has a width due to the imaginary part of the
interaction.

The absorptive information present in the potential is
supplied by the width of the two-boson state. Anticipat-
ing our results, the three-boson state has a width that,
unlike the energy, does not increase as the inverse of the
square of the interaction radius as it goes to zero. The
width increases, but with the inverse of the interaction
radius. Then, the collapsed state oscillates an infinite
number of times before it decays.

We start presenting the zero range three-boson inte-
gral equation for the bound state [12]. We wrote it in a
way that allows the input of two-boson data beyond the
bound-state energy [13]:

X(q) = 2r(Es —tq ) f d k(zq —q —k —q k) 'y(k),

where Es is the three-b—oson binding energy and we are
using units such that h, c, and the nucleon mass m are
equal to 1. The two-boson T matrix for the zero-range
interaction is given by

(2)

The coupling constant A is fixed by one physical input,
for example, the pole position of the two-boson scattering
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amplitude. The two-boson scattering amplitude has one
pole, at E2, which has in our case real and imaginary
parts)

The above value of A, when substituted into Eq. (2),
provides the cancellation of the linear divergence of the
momentum integral and results [13]:

~(E) = [2~'(V' Ez -—&-E)] '. (4)

A similar reasoning was applied in two spatial dimensions
to determine the scattering amplitude for two particles
[14]. The absorption in the zero range model is intro-
duced by the width of the two-boson state, which is twice
the imaginary part of E2.

The 8-wave projected three-boson integral equation,
with the input of the two-boson energy, is given by

x(q) =
vr g E2 — —sqz —Es4

f(y) = q x(q) =—Ay x(Ay)

In this case we obtain

f(y) =
vr g—ez — -y' —es3 2

4

1 2+~2+

where the cutoff, A goes to infinity as the radius of the
interaction decreases. It qualitatively represents the in-
verse of the interaction radius [15]. The collapse of the
three-boson binding energy is obtained for A -+ oo. In
order to clarify our points, let us make a transformation
of Eq. (5) to the units in which the cutoff is 1. With
rescaled variables x:—k/A, y = q/A, and energies
e, = E,/A2, we can redefine our projected S-wave such
that

E'g = E'3 + 663 (8)

The unperturbed energy and spectator function are cal-
culated in the zero range limit. We observe that the
prime quantities have real and imaginary parts, when
the two-body bound state decays. Corresponding to the
case ez ——0, the quantities es and f"(y) are real, as one
can obviously see from Eq. (7). In the next we use a
first order correction in g—ez for the b quantities.

The expansion of Eq. (7) in lowest order in g—ez,
where we make use of the unperturbed equation to sim-
plify the expression, is written below

For fixed real E2 the collapse of the three-boson en-

ergy comes from the existence of solutions of Eq. (7)
in the limit t 2 —+ 0, where the inverse range parame-
ter A goes to infinity. In this limit, with n labeling each
bound state, e3 are real and given by universal constants,
as will be shown in our numerical results. The three-
boson bound-state energies scale with the cutoff param-
eter, Es = es A2, and collapse in the limit A ~ oo. This
is known as the Thomas efFect [10]. The infinite number
of states that appear in this limit are also known as the
Efimov states [8], if one takes A finite and constant as E2
goes to zero. So, as it was also shown in Ref. [11], the
Thomas and Efimov effects are directly related by a scale
transformation, given by the inverse range parameter A

in our case.
The important point to be noted in Eq. (7) is that,

for E2 having an imaginary part, when the inverse range
parameter goes to infinity, the spectrum of es does not
change. Thus, the first feature of the absorptive interac-
tion in the zero range limit is that the real part of the
energies of the three-boson states goes to infinity, and
increases as the inverse of the square of the range param-
eter.

In order to calculate the width of the three-boson en-
ergies, we expand Eq. (7) in g—ez. The ratio of Ez 'to ss
vanishes going to the zero range limit, due to the fixed
value of Ez and A increases to infinite. Thus, we are
allowed to perform such perturbative expansion. We in-
troduce the perturbed quantities

pfn( ) g + ~s f (y)(

/ d l ~y+ +y
~~f ()+ yf ()

3 Q ~n p (y + x —y2' —~3 j (y + 2: —e3) —(yx)49
(10)

Prom the linearity of the above equation, the change in
the three-boson energy is given by

6'es ———|„g—&g, (11)
where C„are the coefficients that come from the solution

of Eq. (10) for each three-boson state. These coefficients
attain universal values depending only on the structure
of the three-boson integral equation, Eq. (7). They are
independent of the two-boson energy.

The coefficients C„are also approximately propor-
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tional to g—es, such that

lim
A~OO

where o. is a well-defined constant that will be obtained
numerically. To qualitatively understand this property,
we must consider that —es (( 1, as shown in Table
I. The value of es in Eq. (10) is important only when

y
——eP. The inhomogeneous term in Eq. (10), i.e. ,

the first term in the right-hand side (RHS), increases
as the inverse of g—eP for —eP going to zero. In the
second term in the RHS of Eq. (10), 6es must be pro-
portional to g—sP to produce the same behavior as the
inhomogeneous term when —Ps vanishes, as required by
the linearity of such equation. Thus, roughly we have

6ts ~ 2Q —ts Q—s2 . —

We do not consider the behavior of f", since the nor-
malization is free and we always can rescale it. These
considerations are substantiated by our numerical results
presented in Table I.

We give in Table I the first few unperturbed energies,
the coefficients C„and the ratios C„/g —eP for the three-
boson bound states. One may observe the constancy of
these ratios for a wide range of variation in the magnitude
of aP and C„, where we found o;, given by Eq. (12), to be
very close to 2, as also anticipated by our above discus-
sion. It is worthwhile to mention that the adimensional
quantities es are in fact the energies of the Efimov states
for an interaction with a finite range of A = 1 and zero
two-body bound-state energies. The collapsed energies of
the Thomas states [8] are obtained in the units where A

goes to zero and the two-body bound state is finite. This
numerically illustrates the connection between Thomas
and Efimov states [11].

3.166 x 10 ~

6.021 x 10
1.174 x 10

3.570 x 10
1.640 x 10 ~

7.193 x 10

2.0
2.1
2.1

We present below the three-boson width as a function
of the observables of the system. The real part of Es
gives us the inverse range of the force, A, which is used
to obtain the width of the three boson. The expression
for the inverse range parameter, as well as the expression
for the three-boson width, are obtained from the real and
imaginary parts of Es, using Eq. (11):

E3 —('P3 + 6s3 )A (C3 C~Q—fz)A

= esAz —C„Q E2A—
I &z I

—Re(&z)
2

E& +Re E& (14)

where
I Ez I= /[Re(Ez)]z + (I'z/2)2 and I'z is the two-

boson width.
From Eq. (14), the width of the collapsed states, I's,

are given by

I
&z I +Re(&z)

2
1

and, from the real part of Eq. (14), we have the inverse

range parameter:

TABLE I. First few energies and universal coefficients C„
of the collapsed three-boson states. In the last column is
presented the ratio C„/g —e3.

& /V' —~3

I &z
I

—&e(&z)
2

C~ I
E&

I +e(E&)~ 4p g (16)

The width increases linearly in contrast with the real
part of the energy that increases quadratically with the
inverse range of the interaction.

Finally, by replacing A, given by Eq. (16), in Eq. (15),
we obtain the expression that correlates the three-boson
width with the real part of the thr""-boson energy, as a
function of the two-boson width and energy:

o, & (2& 2Re(—Es)
Eq —Re E2

Following our previous argumentation we drop the label

n, as C„/g —eg is approximately constant, as given by
Eq. (12) and shown in Table I. We should observe that
the analytical expressions written above are valid only in

the limit of zero interaction range, but we believe that
can be very useful in understanding the limits one has to
consider in a more realistic situation.

In Fig. 1 we present a plot showing the correlation
between the width I'3 and the real part of the three-boson
energy. The set of curves presented are given for diferent
values of the two-body energy ratio I'q/(2

I
Eq I). All

quantities are shown in units of the absolute value of the
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two-boson energy and for cr = 2. As one can see in this
plot, the values of I's as a function of Re(Es) have an
upper limit given by the curve that has

~
Ez ]= I'z/2.

In summary, we show that the absorption in the two-
boson interaction does not prevent the collapse of the
three-boson system in the zero range limit. The width
of the collapsed states increases linearly with the inverse
of the range of the interaction. It is negligible compared
to the real part of the three-boson energy in this limit.
We obtain numerically the universal proportionality co-
efficients for the variation of the three-boson energy with
the square root of the two-boson energy. It is important
to mention that this schematic model has only the phys-
ical information about the two-boson pole in the scat-
tering amplitude. For practical applications, with short
ranged potentials, one may note that the physical infor-
mation contained in the two-body scattering amplitude
goes behyond the two-boson pole, and this may reflect in
a difFerent value of the a coefficient. We expect that in
such a case the general behavior of the imaginary part
of the three-boson energy will be correlated with the real
part in a similar way, as shown in Fig. 1.

We have presented, in a schematic model, some simple
explanations of general features of a three-boson system
with absorption that as far as we know have not been
pointed out before. Our conclusions can shed light to
the physics of a more realistic three-boson system with
absorption. With a realistic local interaction a corre-
spondent analytical study is not so easy to be followed,
and we think that may be unnecessary, because the main
characteristic of such a system, relevant for the present
study, is already presented in our schematic approach.
A study of the model dependence of the three-boson ob-
servables with general short range absorptive potentials
can easily be followed by using separable interactions.

r3
2 E2
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FIG. 1. Plot of the imaginary part against the real part of
the three-body energy, given by Eq. (1'F). All quantities are
given in units of the absolute value of the complex two-body
energy, and for the n coefBcient equal to 2. The set of curves
presented are given for I'z/(2 ] Ez ]) = 0.2, 0.4, 0.6, 0.8, and
1.0, where the solid curve, I'z/(2 ] Eg ]) = 1, shows the upper
limit for I's/(2 ] Es ]).
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