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Chiral symmetry and the nucleon-nucleon interaction: Tensor decomposition of Feynman diagrams
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A class of Lagrangians that describe the interaction of nucleons and pions and that provide a non-

linear representation of chiral symmetry is considered. We simplify the form of these Lagrangians by
making an expansion in inverse powers of f and calculate the irreducible fermion-fermion scattering

amplitude to order f . Some of the integrals encountered in these calculations are divergent and are

regulated with a (Euclidean) momentum-space cutoff, A, where A = 1 GeV. While elements of the S ma-

trix are independent of the form of the Lagrangian used, somewhat different results are obtained for the
irreducible amplitudes calculated with Lagrangians that have either pseudoscalar or pseudovector cou-

pling of the pion field to the nucleon. We compare our results for the isoscalar irreducible amplitudes to
the potentials used in the one-boson-exchange model of the nucleon-nucleon force. In the case of pseu-
dovector coupling, there is only a single relevant diagram of order g, a "crossed-box" diagram. We find

that this crossed-box diagram is well represented by the exchange of a "pseudo-eta" particle, that is, an

isoscalar-pseudoscalar meson with an imaginary coupling constant. There is also a relatively small sca-
lar attraction seen, while tensor, vector, and axia1 vector terms are quite small. We also consider a La-

grangian with pseudoscalar coupling. In this case, there are four diagrams of order g in the irreducible
amplitude. Again, we find a significant attractive pseudoscalar exchange term ("pseudo-eta"). Relative-

ly small repulsive interactions of vector and scalar type are also found in this case. Further analysis of
the isoscalar amplitude requires that we extend our mode1 to reproduce the dynamics of correlated two-

pion exchange.

PACS number(s): 21.30.+y, 13.75.Cs, 24.80.Dc, 11.30.Rd

I. INTRODUCTION

One of the most useful representations of the nucleon-
nucleon interaction is to- be found in the one-boson-
exchange model [1,2]. A good fit to nucleon-nucleon
scattering and bound-state properties is obtained by con-
sidering the exchange of a number of meson s
(o, co, sr, p, . . . ). As is well known, the pion accounts for
the longest range part of the force, while the pion and the

p give rise to the nucleon-nucleon tensor interaction. The
intermediate-range attraction may be described as arising
from scalar meson exchange. However, since one does
not find a scalar meson with a mass of about 550—600
MeV in the table of known particles and resonances, that
meson is often said to be "fictitious. "

In order to understand the origin of the intermediate-
range attraction, a number of studies that make use of
dispersion relations have been perforined [3,4]. These
works suggest that a major part of the intermediate-range
attraction arises from correlated two-pion-exchange pro-
cesses. (We note that "correlated" two-pion exchange
refers to those processes in which the pions undergo re-
scattering as they are exchanged. See Fig. 3 of Ref. [1],
for example. } The studies that make use of dispersion re-
lations differ somewhat in how they implement the con-
straints that arise from chiral symmetry. For example, in
Ref. [4], use is made of a linear o. model, with a large
mass for the o field (m ~950 MeV), in order to fit the
pion-pion scattering amplitude. The success of that
analysis, with a large value for the mass of the chiral
partner of the pion, leads the authors of Ref. [4] to con-

elude that the scalar-isoscalar attraction in the nucleon-
nucleon force does not arise from the exchange of the
scalar field that is the chiral partner of the pion.

Although the study of dispersion relations leads to the
notion that the fictitious cr (of mass of about 600 MeV) is
an effective field related to correlated two-pion exchange,
the precise relation of that result to Lagrangians that ex-
hibit chiral symmetry is not clarified. On the other hand,
the need to use a large value for the scalar mass in a
linear chiral model [4] suggests that it is a nonlinear
chiral model that may be most relevant to these studies.
The nonlinear chiral models do not contain a scalar field
in the Lagrangian and therefore, the origin of the
intermediate-range attraction in the nucleon-nucleon
force is not easily seen in such models. In this connec-
tion, we should also mention work based upon the
Nambu —Jona-Lasinio model [5]. There, a scalar field ap-
pears as a broad qq resonance with a mass equal to twice
the constituent quark mass generated when the chiral
symmetry is broken. This scalar field may have some re-
lation to the effective scalar field inferred from the study
of dispersion relations. However, that matter has not
been clarified and it appears that there is no general con-
sensus as to the nature of the scalar attraction in the
nucleon-nucleon force, or of the related scalar field that
appears in various field-theoretic models of nuclear struc-
ture [6].

Recently, we have seen the development of a body of
work that discusses the behavior of the quark condensate
at finite baryon density, that is, in nuclear matter [7,10).
The quark condensate is found to decrease from its vacu-
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um value by about 25 —40%, depending upon the size of
the nucleon sigma term o.z. The precise value of o.z is
unknown; however, recent studies yield o.~=45+8 MeV
[11]. It was found useful to introduce a scalar order pa-
rameter cr that has value f in vacuum. Thus one may
write u=f +o, where a. is linearly dependent on the
baryon density [7],

oxpa
m f„

If o.& =50 MeV we have o.= —36 MeV, which is close to
the strength of the scalar field in the Serot and Walecka
model [12] in Dirac phenomenology [13] and in relativis-
tic Brueckner —Hartree-Fock theory [14]. The scalar po-
tential is then U, =G ~~o. = —340 MeV, if we use G ~~=9.45 [1,2].

These observations lead us to conclude that the scalar
potentials used in the various models mentioned above
reAect a partial restoration of chiral symmetry at finite
baryon density [7—10]. Since a scalar potential of about
U, = = —390 MeV is readily obtained when making use
of the one-boson-exchange model of nuclear forces [1,2],
it would appear that the scalar-isoscalar nucleon-nucleon
interaction should be understood in a model that em-
phasizes the broken chiral symmetry of the underlying
field theory. However, the generally accepted interpreta-
tion of the scalar part of the NN interaction is that it has
its origin, in the main, in correlated two-pion exchange
[3,4]. That interpretation does not provide a direct un-
derstanding of the relation between the NN interaction
and relativistic nuclear physics.

Therefore, in this work we are interested in the role of
chiral symmetry in the construction of models of the
nucleon-nucleon force. However, it is clear that there are
a number of ambiguities if a relativistic formalism is used
to describe nucleon-nucleon scattering. For example,
there is the question as to which relativistic equation is to
be used. Once an equation is chosen, one must choose a
procedure for the construction of a potential that is to be
inserted in the equation. Here, we wish to understand as-
pects of the one-boson-exchange model of nuclear forces
and will, therefore, describe the calculational procedure
used in that model. In the simplest scheme, one
parametrizes an irreducible amplitude in terms of the ex-
change of various bosons (o, cu, vr, p, . . . ) and obtains a
unitary S matrix by solving a three-dimensional equation
of the Blankenbecler-Sugar type, for example [1,2]. [If
one contemplates using the Bethe-Salpeter equation as
the fundamental relativistic equation, there are correc-
tions to this procedure that depend on the difference of
the two-nucleon (Feynman) propagators of the Bethe-
Salpeter equation and the Blankenbecler-Sugar propaga-
tor. However, such corrections are not usually calculat-
ed. Therefore, the form of the phenomenological irreduc-
ible kernel may have some dependence on the reduction
scheme used to go from a four-dimensional to a three-
dimensional relativistic equation. ] Further, it is worth
noting that the one-boson-exchange models are usually
evaluated in a "ladder approximation. " Therefore, in a
phenomenological study of the nucleon-nucleon force

based on the one-boson-exchange model, it is not possible
to describe the correlated two-pion-exchange process, ex-
cept in terms of the exchange of an effective meson field,
such as a o. meson. That meson is usually taken to have a
mass of about 550—600 MeV in phenomenological studies
[1,2].

We should also note that the role of chiral symmetry in
the nucleon-nucleon interaction may also be studied by
investigating the scattering of chiral solitons such as the
Skyrmion [15]. However, one does not expect that the
scalar attraction can be obtained in a mean-field approxi-
mation. Therefore, obtaining a scalar attraction in the
Skyrme model requires a rather complex procedure.
Some progress in this area has already been made [15].

In this work, we will calculate an irreducible nucleon-
nucleon scattering amplitude, making use of Lagrangians
that provide a nonlinear realization of chiral symmetry.
(There are an infinite number of such Lagrangians that
are related by chiral transforms and that have equivalent
S matrices. The specific forms used here will be de-
scribed in the next section. ) As a first step in our pro-
gram we will here study the isoscalar nucleon-nucleon in-
teraction at one-loop order. (That is, we will complete a
single four-dimensional integral in the calculation of each
of the Feynman diagrams considered here. ) In order to
extend this work we should study correlated two-pion ex-
change. That feature has been studied most recently in
Ref. [4], where use is made of dispersion relations to re-
late the NN~NN amplitude to the NN~mvr amplitude.
The later amplitude is expressed in terms of the mm. ~~a.
amplitude and chiral symmetry is used in the construc-
tion of a model for that amplitude. While we have not as
yet extended our analysis to study correlated two-pion ex-
change, we remark that some of the approximations of
Ref. [4] may be useful in that enterprise. It may also be
useful to study the Nambu —Jona-Lasinio model, which is
equivalent to a linear o model. The scalar (o ) meson of
that model will mix strongly with the two-pion sector and
may play a role in what is usually called "correlated two-
pion exchange. "

The organization of our work is as follows. In Sec. II,
we describe the Lagrangian to be used in this work and in
Sec. III we provide a description of the calculational pro-
cedure in the case where pseudoscalar pion-nucleon cou-
pling is adopted. In Sec. IV, we discuss the nucleon-
nucleon interaction in the case where we use a Lagrang-
ian with pseudovector pion-nucleon coupling. Results of
our numerical calculations are presented in Sec. V. Sec-
tion VI contains some further discussion and some con-
clusions.

II. PION-NUCLEON LAGRANGIAN

We consider a Lagrangian that possesses a chiral
SU(2)z X SU(2)z symmetry that is spontaneously broken
down to its SU(2) v subgroup, thus giving rise to a mass-
less Goldstone boson, the pion field m(x)=n(x) r One. .
convenient nonlinear representation of the symmetry is
obtained by use of the matrix 2 =exp[in/f„], where f.
is the pion decay constant f =93 MeV. As noted above,
there are infinitely many other representations that are
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equivalent in the sense that they result in identical on-
shell S-matrix elements (to all orders in perturbation
theory). To lowest order in the number of derivatives of
X, the effective Lagrangian for the pion-nucleon system is

X=iNRN M—(NI XN~+N~X Nl )

P) /

k y ~k+q
/

P2 P2

/

P) P) / %

/ 1L

kg' 'qk-q
/

P2 p

/

P) P)

/

p
k& &k+q

P2

(c)

+i A, (NI XBX NL +N„X 8XNg )

+ 41 f„T—r[d„Xd"X ] . (2.1)

Here M is the nucleon mass, as can be seen by expanding
the exponentials. We also introduce a pion mass p by
adding the term

'p f T—r(X+Xt), (2.2)

which breaks the chiral symmetry of the Lagrangian ex-
plicitly.

The Lagrangian of Eq. (2.1) is very complicated when
expressed in terms of the pion fields. However, by choos-
ing a suitable basis for the nucleon fields, the Lagrangian
can be reduced to a simpler form [16]. To that effect, we
rotate the nucleon spinors to a new basis, NL ~NL
= U NI, N„N~ = UN~, where U =e' ' ' is a trans-
formation matrix that depends on the pion field. Choos-
ing a=(f ), the pion-nucleon interaction Lagrangian
becomes, to lowest orders in a formal expansion in 1/f,
XPN1v = MNN+ — Ny58nN+ 2 N[m, 8n. ]N .

2 gf

(2.3)

P
1

ky

p

P)
I

gk+q
I
I /

p

P,

p

P

k ..' k+q
//

p2

(e)

Mg.Nx=(1 —2~) (2.5)

The effective chiral Lagrangian of Eq. (2.4) can be used
to evaluate the nucleon-nucleon scattering amplitude
through one- and two-pion exchange. The one-pion-
exchange amplitude, shown diagrammatically in Fig. 1,
finds a natural place in the one-boson-exchange potential
(OBEP) model of nuclear forces. The two-pion-exchange
amplitude, however, consists of several terms (see Fig. 2)
and is rather complicated.

It can be shown [17] that this amplitude, M, can, in
general, be expressed in terms of five independent ampli-
tudes (Fermi invariants), denoted by

FIG. 2. Feynman diagrams for two-pion exchange (direct
terms): (a) two-point loop, (b) and (c) three-point loops, (d) box
diagram, and (e) crossed-box diagram.

Note that in this case, the lowest-order coupling is pseu-
dovector. We can obtain pseudoscalar coupling by set-
ting a=2K./f . Then, the pion-nucleon Lagrangian be-
comes (to order 1/f )

ps . 2A, —1—
X Ivtv-— MNN+iM — Ny5mN

2
2X 1

2

S=[u(p', )u(p1)][u(p2)u(p2)],

[u(p1 )Y5u(p1 )l[u(p2 ) Y5u(p2 ) l

I'=
I u (p1 4'„u (p I ) 1 [u (p 2 )1'"u (p2) ]

[u(P I )) pf (5PuI )][ (Pu2)7 ) 5u(P2)] ~

T=[u(p', )17„„u(pI)][u(pz)a"'u(p2)],

such that

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.1 1)iM= V(g)S+ V(p)P+ V(y) V+ V(g) A+ V(T)T .
(2.4)

iA, ( 1 —
A, )

N[
2f The potentials V(;) are functions of the Mandelstam vari-

ables s and t and can have both isoscalar and isovector
parts

0 1
V(J ) V(J )

+ V(J}7 ) "T2 (2. 12)

It is the purpose of this work to construct these poten-
tials in the isoscalar sector ( Vt;I ) and compare them with
the empirical potentials needed in the one-boson-
exchange model of nuclear forces.

(For complete expressions, and for arbitrary a, see Ref.
[16].) In the following, we will consider both pseudosca-
lar and pseudovector coupling, although X Nz and X ~z
are equivalent and yield identical on-shell matrix ele-
ments to order 1/f . The parameter )I, in Eqs. (2.1), (2.3),
and (2.4) is chosen so as to reproduce the empirical value
of the pion-nucleon coupling constant. Thus we have

P,

Pq

T
I

I

I

I

/

P)

P2

FICx. 1. Feynman diagram representing the direct term of
single-pion exchange.

III. NUCI. EON-NUCLEQN INTERACTIQN

We now consider the various exchange processes,
shown in Fig. 2, that arise in the study of the pseudosca-
lar pion-nucleon interaction described by X N&(x). [We
note that the four-point vertices in Figs. 2(a) —2(c) can be
of two types. ] In Figs. 1 and 2, we have shown only the
direct amplitudes. Throughout this work we will restrict
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our analysis to the direct terms, but as will become obvi-
ous, our conclusions hold for the exchange terms as well.
In addition, for simplicity, we will omit the initial- and
final-state spinors, since they are external constants; their
presence is implicit in our calculations.

The Lagrangian of Eq. (2.1) and the (approximate) La-
grangian of Eq. (2.4) are not renormalizable and are to be
thought of as effective Lagrangians, valid only up to some
mass scale. Above that scale, the effective theory breaks
down and the underlying quark and gluon fields are then
the relevant degrees of freedom. Note that the diagram
of Fig. 2(a) is logarithmically divergent and requires some
regularization scheme. In our analysis, we use a covari-
ant (Euclidean) momentum cutoff A, although one could
equally well use some suitable pion-nucleon form factors
to limit the integration to the relevant physical region.
We prefer the cutoff technique, since it provides a uni-
form treatment of all types of vertices. Physical argu-
ments concerning the chiral symmetry breaking scale
suggest a value for A of about 1 GeV [18]. We will dis-
cuss the dependence of our results on the choice of A in
Sec. V. (Note that A is the only free parameter in our
calculations. )

3M d4kI, (q')= — (1—2A, ) f G(k)G(k+q),
2f (2n )

(3.4)

where

G(k)=
k2 —p2+ic

(3.5)

A +A A
(3.6)

A +A

where 3 =p —
q (x —x ) —is. For q & 0, this expres-

sion is integrated analytically, yielding

3'M
I", (q')= 3™

32m. f

is the pion propagator. Thus, this diagram corresponds
to a scalar interaction. Combining the denominators
with Feynman parameters, we obtain

2
IPs( 2) 3™

(1 2g)432nf.

A. Two-point-loop diagram

This diagram is depicted in Fig. 2(a) and contains two
four-point vertices. As noted above, these vertices can be
of two types. Let us first examine the isospin structure of
the four terms that are represented by this diagram. If
both vertices are of type II corresponding to the Xm N
term in the Lagrangian (see caption of Fig. 3), the isospin
factor is

A +p
p

where

5=( 1 4@2/q2)1/2

2A
l

D —1

2 D+1

(3.7)

(3.8)
I, =5 p(1)5p„(2) (3.1a)

and
=3, (3.1b)

and the diagram represents an isoscalar process. If both
vertices are of type III, the isospin factor is

1/2

D= 1 —4
q

(3.9)

I = ie ~rr —(1)[—ie ~ ~s(2)]

= —2r(l) r(2),

(3.2a)

(3.2b)

Note that this diagram depends only on q and, there-
fore, it is equivalent to a local potential. This is also the
case for the three-point-loop diagrams, but not for the
box and crossed-box diagrams.

and the resulting term is isovector. When the two ver-
tices are of different type, the value for the diagram is
zero: B. Three-point-loop diagrams

I~ 4=5 p(1)[ ie ~~r~(2—)]

=0.
(3.3a)

(3.3b)

These diagrams are shown in Figs. 2(b) and 2(c) and
contain one four-point vertex and two ordinary pion-
nucleon vertices. If the four-point vertex is of type II, the
isospin factor is

Therefore, only I& is of the desired type. In that case, our
calculation yields for the full amplitude I) =6 p(2)~ (1)~p(1)

=3,
(3.10a)

(3.10b)
T

k, u

FIG. 3. (a) Diagrammatic representation of a vertex of type
I. (b) Diagrammatic representation of a vertex of type II or type
III.

I~ = [ i E ~~ry(2)]r —(1)~p(1)

iE ~rr (2)[5 p(1)+—iE ~ r (1)]
=2v(1).r(2),

(3.11a)

(3.11b)

(3.11c)

and corresponds to an isovector process. Here, we only

and the diagram is isoscalar. If the four-point vertex is of
type III, the isospin factor is
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consider the isoscalar process. Note that the diagrams of
Figs. 2(b) and 2(c) give identical results, since they de-

pend only on q . The process of Fig. 2(b) is represented

I= [r (1)rp(1)][ rp(2) r (2)]

=3+2r(1) r(2) .

(3.20a)

(3.20b)

3M d kI ( )=i (1—2A, ) f G(k)G(k —q)y,
7r

2m. '
XD(p~ —k)y~, (3.12)

where D(p) is the nucleon propagator

Thus both of these diagrams have an isoscalar and an iso-
vector part. The isoscalar parts of the box and crossed-
box diagrams are expressed as

ps 2 M 4 d k
I3 (q,p) p2}=3 (1—2A, ) f G(k)G(k —q)

(2~)4

D(k)= —M+ie
(3.13)

X [r5D(p( —k }rs]())

X [y5D(p2+k }r5](2)

Equation (3.12) can be easily simplified to give

IPS( 2) — 3
M

( 1 2~) f 1 k G(k)G(k q)—
f (2n. ) k —2pz k+ie

xk~y„.
(3.14)

As before, we combine denominators using Feynman pa-
rameters. The resulting denominator is

D = [k —2k. (pzx +qy )+(xp +yq p—+is)]3 .

and

(3.21)

d'kI, (q',p, p, )=3 (1—2A, )4 f G(k}G(k —q}
1r 2m

'
X [rsD(p) k)—rsl(()

X [yqD(pz —k )ys](2),

(3.22}

By shifting the momentum integration variable

(3.15)
respectively. The indices (1}and (2) refer to the first and
second nucleon lines. It is most convenient to express I3
and I4 in terms of q,

k"—+k"+xp"+yq~, (3.16) ')rl =—(p 1 +pI } (3.23)

we complete the square in D. Then, the term linear in k~
vanishes (since it is odd in k), as does the term linear in
q", since g vanishes between the on-shell spinors. Thus,
only the term proportional to xp~z survives and, since P2
may be replaced by M, when I/2 is found between the spi-
nors, the result is of purely scalar form:

~ 4I ( )=— (1—2A, )16~'f4

and

~2 , (p»2+ p»—— (3.24)

We also change variables (k-+k —q/2}, in which case
the integrals of Eqs. (3.21) and (3.22) can be brought into
the symmetric forms,

MI =3 (1—2A, )4

AX f'ay f' 'ax
A'+ A

(3.17) X
d k G(k+q/2)G(k —q/2)

(2~) [(k —m() —M ][(k+m~) —M ]

where

A =y(x+y —1)q +x M +(1—x)p ie . —(3.18) and

Xk"k "y„(1)y (2) (3.25)

We can perform the integral over the x variable analyti-
cally, but the result is a rather long expression and is not
given here.

MI = —3 (1—2A)

d k G(k+q/2)G(k —q/2)
(2m. } [(k n)) —M ]—[(k. —m2) —M ]

C. Box and crossed-box diagrams Xk"k "y„(1)y (2), (3.26)
The box and crossed-box diagrams, shown in Figs. 2(d)

and 2(e), respectively, are related by a change of variables
and therefore, we analyze them together. We first discuss
the isospin factors. For the box diagram

after performing some Dirac algebra.
We now combine the four denominators to a single

one. The denominator can be written as

I=[r (1)r&(1)][r (2)r&(2)] (3.19a) D=[k —2k p —8 ] (3.27)

=3—2r(1) r(2},
while for the crossed-box diagram

(3 19b} where

p~(3) =ye", xm)2+ ,) (x+y+2z ——1)q"— (3.28)
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and FIT) —1 q2(x2+y2) (3.35)

p~(4) =yW+x&2+ —,'(x+y+2z —1)q",

B =(1—x —y)(l2 —
q /4)+(x+y)q l4 .

(3.29)

(3.30)

while for the operator p~4~y„(1)p~4~y (2), we obtain

(3.36)

Here p~(3) and p~(4) are the momenta that appear in Eq.
(3.27) for the case of the box and crossed-box diagrams,
respectively. The tensor integral can be reduced to a sca-
lar one. The second term of this equation, proportional
to g"", leads to a term that is of the form y"(1)y„(2),
describing a pure vector interaction. The remaining
term, proportional to p"p, requires further analysis.
The terms that are proportional to q" and/or q do not
contribute, since q"y„(1)=q"y,(2)=0, when these ex-
pressions are found between the spinors. Only the terms
proportional to p",p„p",pz, p2p„and pzpz contribute.
We exhibit the various tensorial parts of these terms. For
the operator p~I3) 7 „(1)p(3)y,(2) they are

F(P) F(s)
(4) (4)

FI~~) =
—,'M (x +y )+m. , ~2xy,

F(4)'= —'q xy

F,','= ——'q (x +y ) .4

(3.37)

(3.38)

(3.39)

(3.40)

3iM AI s(i) = — (1—2A, )16' f

Then the various pieces I3 ' ' of the box diagram for
j=S, P, A, and Tcan be written as

FI3I = ,'n, ~2—(x +y ) Mxy- ,

F(P) F(s)
(3) (3)

FIvI —~M2(x2+y2) ~ .~ xy

F((,')' = —-'q 2xy

(3.31)

(3.32)

(3.33)

(3.34)

X f 'dz f ' 'dy f ' ' 'dx
o o o (A+A) A

XFIJ3I, (3.41)

where A =B +p(3) The vector part contains the addi-
tional term proportional to g"', thus

I ' '= — (1—2A, ) dz dy dx FIP~—16''f' o o o (A'+ A )'A' A(A'+ A )' (3.42)

I ' (q, ~ rr )=I '(q, —m, m ),
I""(

' ~ rr )=I""( ' ~m )—
(3.43)

(3.44)

IPs(vI( 2 . )
— IPs(v)( 2 . )

IPS(A)( 2
) IPS(A)( 2

)4 q, m, .~2 3 q, VrJ 772

(3.45)

(3.46)

IPS( T)( 2
) IPS( T)( 2

)4 q ) 7T) 7T2 —
3 q ) 7T)'772 (3.47)

The integrals of Eqs. (3.41)—(3.47) are then evaluated nu-
merically. (Since we are calculating an irreducible ampli-
tude, we do not require the results for the box diagram. )

IV. NUCLEON-NUCLEON INTERACTION:
PSEUDOVECTOR COUPLING

Similar expressions can be written for the various pieces
of the crossed-box diagram. Upon inspection, one can
easily verify that

man diagrams representing the nucleon-nucleon interac-
tion via two-pion exchange are identical to those of the
pseudoscalar case (shown in Fig. 2). However, there is
only a single four-point vertex in this case of type III and,
as shown in Eqs. (3.2) and (3.11), a type III vertex always
yields an iso vector nucleon-nucleon interaction. The
only diagrams that have an isoscalar part are the box and
crossed-box diagrams [Figs. 2(d) and 2(e)j. In both cases,
the relevant isospin factor is equal to 3, as was shown in
Eqs. (3.19) and (3.20).

Since the Lagrangians of Eqs. (2.3) and (2.4) are
equivalent, the sum of all diagrams in each coupling
scheme is identical, as long as we systematically calculate
all terms up to order f, for example. In fact, the sum
of diagrams up to that order (or any other order) is an in-
variant quantity that does not depend on the particular
realization of chiral syrnrnetry used. However, since we
are interested in separating the reducible and irreducible
parts of the amplitude, we proceed to evaluate the box
and crossed-box diagrams separately.

There is only one vertex to consider,

The Lagrangian of Eq. (2.3) describes pseudovector
pion-nucleon coupling to lowest order in f '. The Feyn-

r. = y,PT. .pv 2A, —1

2. (4. 1)
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4
pv 2A, —1

2f f G(k)G(k —q)
e4k

(2m )

X [y5(g k—)D(p, —k)y~k](, )

X [y5(g —k )D(pz+k )r5k ](2)

(4.2)

and

The box and crossed-box diagrams are given by 4
pv

2f„ f G(k)G(k —q)
d4k

(2m. )

X [y,(g k—)D(p, —k )y,k](, )

X [r &D(p l —k)r ~(4 —k) ]~2)

(4.3)

respectively. After simplifying the Dirac structure by
commuting the y5's, and using the on-shell character of
the initial and final spinors, these amplitudes can be writ-
ten as

4
Pv 3(4M2)

2f

and

I = —3(4M ) 2f

4
1 4Mf G(k)G(k —q) 1+ 1+

(2n ) 2M S(p, —k)

d k 1 4Mf G(k)G(k —q) 1+ 1+
(2n ) 2M S(p, —k)

k'(2) 4M
2M S(pz+ k )

k'(2) 4M
2M S(pz —k )

(4.4)

(4.5)

where

S(p)=p M+i—e . (4.6)

~e now rewrite Eqs. (4.4) and (4.5) in a symmetric form by changing the integration variable (k ~k'=k —q/2) and
expressing I3 and I~ in terms of m& and n.

~ [see Eqs. (3.23) and (3.24)]. Using the symmetry under the change
k ~—k, some terms are seen to vanish, and the amplitudes become

I = —3(4M ) G(k)G(k —q) 1+ 2M 1 2M 2

2f. (2~)4 S(m, —k ) S(m~+k )

and
4

Ipv 3(4M2)
2f

g(1)tt!(2) + 4M
4M

d~k 2M@(1) + 2Mk'(2)
(2~)4 S(m )

—k ) S(m'p —k )

+ k'( l )k'(2) 4M'
4M' S(n., —k )

4M
S(m.~+ k )

4M
S(n ~ k)—

(4.7)

(4.8)

An inspection of the results derived in Sec. III reveals
that the box and crossed-box diagrams can be expressed
as

and

I =—'[I +2I ]+I +I~2

IPV —1 [IPs+2IPs ]+IPs

(4.9)

(4. 10)

where

I„=3(4M ) f G(k)G(k —q)k(1)k'(2)2f. (2~)'

x ' +
4M' S(m, —k)

Note that as expected the sum of the pseudovector ampli-
tudes is equal to the corresponding pseudoscalar sum:

IPV +IPV IPS +2IPS +IPS +IPS
3 4 1 2 3 4 (4.12)

Iz = —
( —,

—A. ) dx 2A ln(1) 1 4

64m. f
A +A

A

The integral of Eq. (4.11),I„,is found to consist of three
terms. The first term, I~ ', is proportional to 1/(4M )
and does not depend on m, or m.2. Therefore, the integral
can only be proportional to g""y„(1)y„(2)(we recall that
g vanishes between the spinors), and describes a purely
vector interaction. We find

1

S(7r~+ k )
(4.11)

A (A +23)
A +A

(4.13)
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where

A =p +q x(x —1) . (4.14)

The other two terms can be shown to have equal con-

tribution. Therefore, we write IR =IR"+2I„' '. The pro-
cedure used to calculate IR ' is similar to that used in the
case of I2, except that, in this case, the integral is of ten-
sor character. We find that

2f o
'

o (2n. ) (k —A ) (2m) (k —A )
(4.15)

where

and

P"=x,q" +x2pI1' (4.16)

A =(1—x2)p —x, q +P (4.17)

The first term in Eq. (4.15) is a pure vector interaction. The second term is proportional to I'( l li'(2) and therefore
has several tensorial components Jz". Assuming that we will form spinor matrix elements, and using Eq. (4.16), we
have

I'( l lI'(2) =x 2M/& (2) .

A tensor decomposition of this term can be made [19,20]. The result for the various J„'I is then

3M 1 —x) A
J2t'—,~ (1—2A) J dx, J dx2x2, , F~~',

32rr2f 4 A(A +A)

(4.18)

(4.19)

where j=S, P, A, and T. The vector part is given by

I' '=I„"'+ (1 —2A, ) dx, dx x F'"'+ ——'1
2f4 o

&

o
2 2 A(p2+A)2 ~ 4(A2+A)2

(4.20)

where

F' '= —'~ .vrR p~1~2 ~

F(P) F(s)
R R

F'"=-'M'
R

F(A) 0

F(T) i 2
4q

(4.21a)

(4.21b)

(4.21c)

(4.21d)

(4.21e)

We present results of the numerical evaluation of Eqs.
(4.19) and (4.20) in the next section.

V. NUMERICAL RESULTS

V (q )=iIJ (q ) for j=1, . . . , 4,
V (q )=iI+ (q ) for j=3 and 4,

(5.1)

(5.2)

and V (q ), the scalar potential arising from cr-meson ex-

Here, we present the results of the numerical evalua-
tion of the various tensorial components of the in-
tegrals I, (q ), I2 (q ), I~s(q, p, .p2), I~ (q,p, .p2),
I, (q,p, .p2), and I4 (q,p, .p2) as given by Eqs. (3.6),
(3.17), (3.30), (3.41)—(3.47), (4.9), and (4.10). The pion-
nucleon coupling constant used is such that g„~z/(4~)
= 14.9.

We define the potentials

change in the one-boson-exchange model (direct term),

2 2 2 2
gaNN Aa ~ a

2 2 2 2m —
q A —

q
(5.3)

VPS( 2) VPS( 2)+2VPS( 2)+ VPS( 2) (5.4)

while in the pseudovector case, it is simply the contribu-
tion of the crossed-box diagram:

The cr-nucleon coupling constant is taken to be
g &zl(4n)=8. 31, the cr mass is 0.55 GeV, and the
form-factor cutoff is A =2.0 GeV. This corresponds to
the potential A of Table A.2 in Ref. [2]. (A should not
be confused with the cutoff A. )

In Fig. 4 we plot the individual contributions V, (q )

and V, (q ) of the scalar components of the potentials
for A=1.0 GeV and for g =4M +0.3 GeV . In the
pseudoscalar coupling scheme, only V&s(q ) varies ap-
preciably with increasing A, as is expected, since V& (q )

diverges logarithmically as A~ ~. Note also the strong
cancellation between the various terms. In the pseu-
dovector case, both V3 (q ) and V4 (q ) are logarith-
mically divergent with increasing A.

Our main interest lies in the irreducible part of the
two-pion-exchange potential. In the pseudoscalar cou-
pling scheme, the irreducible interaction is represented
by the sum



222146 AND THE NUCLEON-NUCLEOCHIRAL SYMMETRY

A=1 GeV 0.1— A=1 GeV

O
d

0 ............,......
C

Q
W-1- a

0
CU

(D

C) -0.1

(3
O

-0.2

S
A

I

0.3 0.2
Q (GeV )

0.3
-0.3

0 0.1 0.2
Q (GeV2)

0.3

han e dia-s of the various two-pion-exc g
d 1 ( 1'd 1' )grams to the sea ar p

ling schemes: (a) V& qvector (dotted lines) coup ing
)(th - oi loo )'()p p ) (b)V, (q

P (S) 2)(crossed-box d gia ram); (d) V;„q
A= l.o GeV, g2/(4m) =14.9, an

m onents of the irreducible two-pion-po
seudoscalar coup

'
exchange potential in the p

for comparison. HereqGeV. The potentia or co
3 GeV . (S) Virrs=4M +0.

'"' (T) V ' ' and (0)birr

yPV( 2) yP ( 2) (5.5)

Vpv($)
irr

lim
ps(
1rf

(5.6)

esent the various tensoria
' 1 corn onents

ion-exchange potential in theof the irreducible two-pion-e c
pseudoscalar coup

'
glin scheme for

cible art o e
'

herf th potential (in eitheroo'g ' p
me excludes from the sum

h o [ (
2 ' '

i 11 b dV (q )], since tha t term will automa ic
- ion exchange) inhe Born term one-pion

huation. There ore,p

Not ho th t th
11 taken into account w

ri
11-o -hll lit d h'1 th(q') i y-o-tia s

B h -Salpeter equation resolution
'

n of the et e-
-shell amplitude as well.

b fh 11

h o ib io of h
individual term s (in either coup mg sc

h t o-pion-exchange p ro-
'b1 1

earsthatt e w - '

at
and certainly canno ac

f he o e-boso - chan otential o t e o
t in the pseudovec or 1 h

outh d bo- ion exchange can-p

p p
'

al otential V q
is sma11 a p 1

pv(s)
doscalar case it is s

b th V. and Virrer that for A~ao~ 0 irrin mind however a
h ically, with [see Eq.d diverge logarit micaare negative an iv

(4.10)]

rin that the potentials are eval-

py go
ion the irreducib e po e

g o " p
plot, for comparison, the empirica o. '

o
Eq. (5.3).

' . 5
'

the prediction of a largeThe main feature g. e
'

ar eofFi . is e
alar otentia corre

se - " n e. The effect o h
1 b dfhwou e
h OBEP darticle is included in t e0

f '' t thtifo i 1 df V sugges s
a ', corres onding potentia w

irr

py n o po

'd
ribution of the opposi e
'a ram. ) This ea ug

ment for the consistency of OB
1 d n g particle meson.

5, we observe som
g atdonotinc u ean

'1 Ho thi gp potentia s.an
lier that the correspon intude is much srna er

e model that arise from co and cr ex-g
lar er a-like po en

'

.) 1o o h
f h

r-order diagrams. e
the axia vecctor and tensor componen s o

- "for
glgb

11
' f 1 1A =2.0 GeV. Althougou h the physica y m

V 't is interesting to seefor A is thought to bee about 1 GeV, it is in e
ff. We observe littleend on the cuto . ep

V '"' and V. as, eg
inte rais are nite asthe corresponding in eg
' ' is more sensitive to A, since there

change is o serve



2222 L. S. CELENZA, A. PANTZIRIS, AND C. M. SHAKIN 46

0.1 eV 0.1 A=2GeV

0
O
Q)

~ -0 1

Q
O

-0.2

A
0

O
Q)

G
«3 -0.1

Q
O

-0.2

T
-~v

-0.3
0.1 0.2

Q (GeV)
0.3

-0.3—
0 0.1 0.2

Q2(GeV )

0.3

FIG. 6. Tensor components of the irreducible two-pion-
exchange potential in the pseudoscalar coupling scheme at A =2
GeV. The potential V (q ) is shown for comparison. Here
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FIG. 8. Tensor components of the irreducible two-pion-
exchange potential in the pseudovector coupling scheme for
A=2 GeV. Here s=4M +0 3 GeV (S) V ' ' (P) V
(V) VP ' ' (A) V ' ' (T) V ' and(cr) V
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ing A, since the corresponding integral is logarithmically
divergent as A~ (x).

In Fig. 7 we plot the various tensorial components of
the irreducible potential in the case of the pseudovector
coupling scheme for A = 1.0 GeV and s =4M +0.3
GeV . We observe that the two coupling schemes lead to
similar qualitative results in most cases. Again, the main
feature is the appearance of a "pseudo-g" pseudoscalar
potential with a mass parameter closer to that of the
physical q particle than that found in the pseudoscalar
coupling scheme. In Fig. 7 we also see that vector in-

teraction is negligible (again due to very large cancella-
tions in its calculation). The axial vector and tensor in-
teractions are again quite small.

We repeat the calculation of Fig. 7 for A=2 GeV and
present the results in Fig. 8. As in the case of the pseu-

V;„' ' remain essentially unchanged, while the logarith-
mically divergent component V;„' ' becomes comparable
to V (q ). The results shown in Fig. 7 suggest that some
part of the scalar attraction associated with the o. meson
of the boson-exchange model may have its origin in the
two-pion-exchange potential if the pseudovector coupling
scheme is used.

Since the sum V;„+V„,d is the same in both coupling
schemes, one should prefer the coupling scheme in which
the reducible diagrams are best approximated within the
reduction schemes used in the boson-exchange model.
We have not undertaken such a study in the present
work.

As we mentioned previously, we have only calculated
the contribution of the direct diagrams of the two-pion-
exchange process. In a similar fashion we can calculate
the nucleon-exchange terms of the two-pion-exchange in-
teraction. The results for V. and V. are the same as
before, except that in this case the relevant variable is
(q') =(p) —p2) instead of q =(p, —p', )

VI. SUMMARY AND DISCUSSION

0 0.1 0.2
Q (GeV)

0.3

FIG. 7. Tensor components of the irreducible two-pion-
exchange potential in the pseudovector coupling scheme for
A=l GeV. Here s=4M +0.3 GeV . (S) V;„' ', {P) V;„'
(V) V ' ' (A) V '"' (T) V- ' ' and(cr) V.

Starting from an effective chiral Lagrangian describing
the interaction of nucleons and pions, and determining
the constants M and A, in Eq. (2.1) so that the known
values of the nucleon mass and pion-nucleon coupling
constant are reproduced, we have calculated the (un-
correlated) two-pion-exchange contribution to the
nucleon-nucleon force. In carrying out this program, we
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made a systematic expansion of the Lagrangian to the
lowest orders in I/f, keeping all the relevant terms of
order f . We then isolated the various tensorial parts
of the interaction in the isoscalar sector, and subtracted
from that the contribution that arises from the iteration
of the Born term of the single pion-exchange process in
the Bethe-Salpeter equation. The resulting potentials de-
scribe the irreducible two-pion-exchange contribution to
the NN isoscalar amplitude at one-loop order.

Our numerical results show that the content of the ir-
reducible two-pion-exchange interaction, in the isoscalar
sector, is mainly an attractive pseudoscalar potential that
would tend to cancel out the repulsive potential due to
the exchange of the physical g particle. There is also a
small repulsive vector potential and in the case of the
pseudovector coupling scheme, we found that about 25%
of the empirical o.-meson scalar potential may originate
from this process. We did not find any significant axial
vector or tensor interactions in either coupling scheme.

As noted earlier in this work, we will have to provide a
model for correlated two-pion-exchange process in order
to extend the analysis given here. Correlated two-pion-
exchange processes have been considered in studies based
upon the use of dispersion relations [3,4]. In those stud-
ies the 1VN~m. m amplitude receives important contribu-
tions from m.-m rescattering terms, which are expressed in
terms of the on-shell ~m. scattering amplitude. We hope
to use the insight gained in the studies based upon the use
of dispersion relations in further developments of our
model.

Our analysis represents a first step in a program whose
aim is to provide a relation between a chiral Lagrangian
and the boson-exchange model of nuclear forces. We
may use that relation to obtain a deeper understanding of
the relativistic Brueckner —Hartree-Fock formalism [14],
for example. Studies made using the Brueckner-
Hartree-Fock theory may be understood as involving a
two-step process: One starts with a Lagrangian that pro-
vides a nonlinear representation of chiral symmetry and
then one replaces that Lagrangian with another effective
Lagrangian that contains several auxiliary fields. The
second of these Lagrangians, which we may identify with
the Lagrangian of the OBEP model, may be studied in
the "ladder approximation. " That is, one identifies irre-
ducible one-boson-exchange interactions that may be
iterated in a relativistic two-body equation [2]. As a next
step, one constructs nuclear matter reaction matrices and
proceeds to carry out a calculation of the properties of
nuclear matter. As an alternate, we may also study the
Nambu —Jona-Lasinio model and consider the coupling
of the cr meson of that model and the two-pion continu-
um. Results of that program will be described in a future
publication. The full implementation of these procedures
may provide some understanding of the role of chiral
symmetry when a field-theoretic formalism is used to
study the nuclear many-body problem.
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