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Model test of boson mappings
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Methods of boson mapping are tested in calculations for a simple model system of four protons and
four neutrons in single-j distinguishable orbits. Two-body terms in the boson images of the fermion
operators are considered. Effects of the seniority u =4 states are thus included. The treatment of un-

physical states and the inhuence of boson space truncation are particularly studied. Both the Dyson bo-
son mapping and the seniority boson mapping as dictated by the similarity transformed Dyson mapping
do not seem to be simply amenable to truncation. This situation improves when the one-body form of
the seniority image of the quadrupole operator is employed. Truncation of the boson space is addressed
by using the effective operator theory with a notable improvement of results.

PACS number(s): 21.60.Cs, 21.60.Ev

I. INTRODUCTION

Studies of boson mappings are motivated by the oc-
currence of bosonlike features in many-fermion systems.
Phenomenologically described by various models, such
features are believed to be microscopically understand-
able by transforming the fermion problem into the boson
one. An extensive review on boson mappings with a par-
ticular emphasis on the nuclear shell model problem has
appeared recently [I].

The fermion system can be mapped onto the boson one
in various ways. As far as the boson images reproduce
the commutation relations of the bifermion operators and
an appropriate relation between the fermion and boson
vacua is defined, the mapping is exact and the fermion re-
sults are correctly obtained in the physical boson sector.
The behavior of unphysical (spurious) states can differ in
different mappings. It is clearly desirable to find map-
pings where spurious and physical states are well separat-
ed, with the lowest-lying states physical, rather than to
have to deal with mappings where these states are mixed,
although in the latter case one could still derive pro-
cedures to identify spurious states.

Another aspect which can demonstrate differences be-
tween boson mappings is linked to truncation of the bo-
son space. Since the dimension of the ideal boson space is
usually larger than that of the corresponding original fer-
mion space, one usually has to resort to truncation of the
space in practice. Some mappings then do not work well
in such a restricted space and therefore their suitability
for understanding fermion systems is limited.

One should judge the applicability of a boson mapping
by comparing its results with a particular physical situa-
tion. In the nuclear structure case, such a comparison is,
however, complicated by rather insufficient knowledge of
the effective nuclear Hamiltonian. Therefore, exactly
soluble simple models which could serve as tools for
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studying, testing, and comparing boson mappings [2,3]
play an important role.

In a previous paper [3], we have investigated boson
mappings for a simple fermion system of four protons
and four neutrons in single-j distinguishable orbits. A
monopole pairing interaction between like nucleons and a
quadrupole-quadrupole interaction between unlike nu-
cleons has been considered. This system is rather simply
amenable to numerical treatment in both the original fer-
mion form and the mapped boson version. However, the
dimensions of matrices in the boson description can be
relatively large.

It was shown in our study [3] that in a direct applica-
tion of the generalized Dyson boson mapping (DBM),
numerous spurious states appear and are spread among
physical states. Furthermore, physical and unphysical
states are mixed when the boson space is truncated.
Direct application of the DBM thus seems to be of little
value for practical purposes in the nuclear structure cal-
culations. On the other hand, if the seniority boson map-
ping (SBM) in its lowest order is applied, calculations in
the truncated sd space reproduce exact fermion results
quite well and no problems with spurious states appear.

Nevertheless, some questions and extensions which
have not been discussed in Ref. [3] remain. An extension
of the SBM to treat matrix elements for seniority U =4
states is still required. An application of the SBM in a
more complete boson space than the sd space of Ref. [3]
should also be investigated. Furthermore a generaliza-
tion of the model to include more complicated interac-
tion between like nucleons could reveal some aspects of
boson mappings more distinctly. Due to its quasispin
SU(2) algebraic structure, the monopole pairing interac-
tion used in Ref. [3] obscures or simplifies some features
of the mapping when the boson space is truncated. Final-
ly, a new approach to the truncation of the boson space
seems desirable. Here an approach based on effective
operator techniques is introduced.

The paper is organized as follows. In Sec. II, the ex-
actly solvable model system to be studied is described. In
Sec. III, the Dyson boson mapping is reviewed. Section
IV is devoted to the seniority boson mapping and in Sec.
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V effective operator theory is applied to the seniority bo-
son mapping. Conclusions are summarized in Sec. VI.

II. MODEL

The model system consists of four protons and four
neutrons, each kind of nucleon occupying a single-j shell.
The proton and neutron orbits are assumed to be distin-
guishable and the isospin degree of freedom is not taken
into account. In some cases, we also present results for a
system of four identical nucleons.

As an interaction between like nucleons, we consider
the monopole pairing force (MPI) (p=nfor . protons and

p =v for neutrons)
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FIG. 1. Energy spectrum of the boson image of the SDI
Hamiltonian for the case of four fermions occupying the

2
level.

The strength of the interaction is G '=0. 1 MeV. In the first
column, the exact results are shown. In columns 2-5, the re-
sults of calculation in the sdg space using, respectively, the
DBM, the SBM, H,g)', and H,~ are displayed. The spurious
states lie at the energy 0 MeV and are not shown.

V, = F..Q Q—, (3)

with

=(4 /5)k, /& '. && (4)

For definitions of the bifermion pair operators 3 & and
S and of the quadrupole operator Q, see Ref. [3].

III. DYSON BOSON MAPPING

The Dyson boson images of operators introduced in
the preceding section are easily deduced by applying the
relations given in Ref. [3].

First, we consider four nucleons interacting through
the MPI in orbit j. Fermion states can be classified ac-
cording to the seniority quantum number u. The lowest
state is the u =O,J=O state. Then, degenerate states
with u =2,J=0,2, . . . , 2j —1 follow. The u =4 states lie
at zero binding energy. In the Dyson boson mapping,
physical boson states reproduce, of course, the fermion
spectrum. Unphysical boson states have zero energy and
are degenerate with the physical u =4 states. Truncation
of the boson space is possible and the same spectrum is
still obtained in the truncated space. Only degeneracies
of levels decrease appropriately. The truncation works,
however, due to the SU(2) symmetry of the monopole
pairing interaction and the consequent validity of the
skeletonization procedure discussed by Kim and Vincent
[4].

For the SDI, the situation is different. Here, the states
can still be classified according to the seniority quantum
number. The states of the same seniority are, however,
no longer degenerate. The exact fermion spectrum is
shown in the first column of Fig. 1 for j=

—,'. In the full
DBM treatment, the physical spectrum is reproduced
and the spurious states again lie at zero energy. In the
truncated space, the DBM picture deteriorates as shown
in the second column of Fig. 1. The physical and un-

physical states are mixed by the truncation procedure.
The energies of states originally corresponding to the
physical states are shifted up. The states corresponding
to the original spurious states remain at the zero energy.

The effect of truncation can also be seen clearly if the
Majoranalike operator [5,6] (called the Park operator in
the following) is taken into account. The Park operator
is an image of the ferrnion operator

S~=n n —2g A(A~—A~)0 ', (5)

which is identically zero. Here n is the ferrnion number
operator. The Dyson image SD of S'F is easily deduced by
using the formulas of Ref. [3]. When the operator ASD is
added to the Dyson Hamiltonian, the energies of unphys-
ical states are shifted by 12A in our case of four nucleons.

The use of the Park operator becomes worthless when
the boson space is truncated [7]. In the truncated space,
even the lowest-lying states are mixtures of the unphysi-
cal and physical components. The Park operator shifts
the whole spectrum so that the relation to the original
fermion problem is completely destroyed. This is true in
the case of both the MPI and the SDI.

Even more complications occur in the proton-neutron
system. %hen the neutron-proton interaction is switched
off, the spectrum is simply given by superimposing the
proton and neutron spectra. The seniority classification
is still relevant and the unphysical boson states have
E =0 and/or E =0 and lie in the upper part of spec-
trum. For nonzero quadrupole-quadrupole strength k
the seniority classification is no longer valid. It appears
that with increasing strength k, the energy of unphysi-
cal states decreases more steeply than the energy of the
physical states. At some stage, an unphysical state be-
comes the lowest-lying one in the boson spectrum (see
Figs. l and 2 of Ref. [3]). Moreover, truncation of the
boson space disturbs the task considerably and the Park
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operator is again of no use. Both the presence of unphys-
ical states in the lower part of spectrum and the impossi-
bility to truncate make the DBM rather impractical for
the treatment of problems with the multipole-multipole
interactions between unlike nucleons.

Iachello (OAI) [9] method of bosonization.
Starting from the nonunitary Dyson picture, the

seniority image of the pair annihilation operator S would
be given as in Eq. (7). An image of the pair creation
operators would be

IV. SENIORITY BOSON MAPPING (S )„„=&Qs [1+(1/Q)s s —(2/Q)N] . (8)

Reasons which complicate application of the Dyson
mapping are made transparent by considering the DBM
image of the pair creation operator S (see Ref [3.] again
for details in notation), namely,

(S )D=s [1—(2/Q)N +(I/Q)n, ]

—(1/Q) g R(B~&B&~ )' 's
A,AO

k3
+&2/Q y R,X,k,

(6)

Of course, images of the bifermion operators in the SBM
should be in accordance with the respective bifermion
commutation relations. Equation (8) is constructed in a
proper way.

Generally, the above task of finding a (nonunitary)
seniority mapping is not defined uniquely. Leading order
terms in the seniority images of bifermion operators have
been given in Ref. [3]. These follow also from an exact
and full realization of the seniority mapping given by
Geyer [10]. This realization is discussed in some detail in
the following.

In Geyer's approach, referred to also as the seniority
mapping from the similarity transformed Dyson map-
ping, the SBM operators e„„and the DBM operators
eD are related by a similarity transformation

(S)D=&Qs . (7)

One, therefore, attempts to construct a mapping in
which both bra and ket images of the v =0 and 2 states
would be simple. Such a mapping is called a seniority bo-
son mapping (SBM). Unitary realizations of the seniority
mapping have extensively been studied by Klein and col-
laborators [8]. In the lowest order, that approach gives
results identical to the well-known Otsuka-Arima-

The fermion state with v =0 is obtained by an application
of the operator (S ) onto the fermion vacuum, N being
half the number of nucleons. As follows from Eq. (6), the
corresponding Dyson mapped state for N & 1 contains a
complicated mixture of components of bosons with all
possible angular momentum quantum numbers. A simi-
lar situation occurs for v =2 states. On the other hand, it
would seem natural to map the v =0 state onto a boson
state composed of N bosons with A, =O only and the
v =2,L states onto boson states containing N —1 bosons
with A, =O and one boson with angular momentum X=L.
Such a natural connection holds only for the bra vectors
in the DBM. The bra v =0 state can be constructed by
the DBM image of the pair annihilation operator S

e„„=ze,z-'. (9)

For the transformation matrix, a series expansion has
been given [10]

z-'= y
k=p Pp Hp

k

W h, (10)

in which Ho and 8' are diagonal and nondiagonal parts,
respectively, of the Dyson image of the MPI, and the
symbol h denotes the positional operator [11]determin-
ing at which position the operator 8p is evaluated. To
the extent that we work with finite systems, it is sufficient
to consider only a finite number of terms in expansion
(10). For our model case of four identical nucleons, the
k =0, 1, and 2 terms should be taken into account in the
expansion of Z '. The operator Z is found from the re-
lation ZZ '=1.

The seniority image of the MPI is, of course, the diago-
nal matrix Hp (this is the starting point in Geyer s
method). For the SDI Hamiltonian, the seniority image
is obtained from the DBM image HD

' by

HsDI HsDI+HsDI ~ P Pr P HsDI ~P HsDI Pr P

which gives the final expression
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For the quadrupole operator, using an expression analogous to Eq. (11) we get the SBM image as

(12)

Ag 2

Qse~ =+1/5( J (~r Y2 (~J & &2/Q s 8+ 1 — d s —2 1 — g A &A2
'. . . '(B& B& )2

. A )X240
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J A& J

X [(Bt Bt )(k)B )(21$
Ar] A2 k3 (13)

One immediately sees that, unlike the DBM in which
states are complicated and operators simple, we have in
the SBM simple images of states but complicated images
of operators.

Now, the SBM calculations are performed. When the
SBM Hamiltonian is diagonalized in the full boson space,
the results obtained are identical to those of the DBM
presented in Ref. [3]. Of course, this is to be expected as
the Dyson Hamiltonian and the seniority Hamiltonian
are connected by a similarity transformation and there-
fore have identical spectra. The SBM thus does not re-
move problems connected with the presence of the un-
physical states in the low-lying part of spectrum when the
quadrupole-quadrupole interaction is switched on.

Differences with results obtained by the DBM and the
SBM appear when the boson space is truncated. In the

third column of Fig. 1, the SBM results in the truncated
sdg space are shown. The 0&, 2&, and 4& states are given
at exact positions in the truncated SBM calculations
since the SBM has been constructed in such a way that
the boson images of these states are not affected by the
truncation of the boson space. The above result was thus
to be expected. Of course, the 6, and 8& states are outside
the sdg-boson space and are not present in the boson
spectrum. An agreement for the group of the v =4 states
is of the same quality as that in the DBM.

Unlike the DBM case, the seniority form of the Park
operator seems to be applicable to the lowest seniority
states in the truncated space as motivated below. Using a
procedure analogous to Eq. (11), we obtain the SBM im-
age of the operator (5) as
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the Hermitian conjugate according to the well-known prescription [12]. For the sd space, the resulting image is identi-
cal with the OAI expression [9]. In the full boson space, the above procedure leads to

X —1
1/2 2

Q,b=&1/5(j)~1'Y, )~j) &2/0 1 — (s d+d s) —2 1 — g X,X, '. . . (Bt~B~ )"'2N —2

A, lk.2%0

(17)

Expression (17) represents the simplest form of the
seniority image of the quadrupole operator which exactly
reproduces the fermion matrix elements for U =0 and 2
states.

It has been found (see Fig. 3 of Ref. [3]) that using Q,b

in the seniority image of the Hamiltonian, one gets re-
sults which reasonably reproduce the exact fermion re-
sults even in the truncated sd space. Moreover, the spuri-
ous states do not appear in the lower part of the spec-
trum. In the present study the same conclusions are also
reached in the full boson space and in the truncated sdg
space. Results in the sdg space are shown in Fig. 3 for
the MPI. One immediately sees a principle difference
with the calculations of Fig. 2. Unphysical boson states

4 —.2

—1.7

—2.2

among the lowest states do not move with the increasing
strength k . In the restricted boson space and also in
the full boson space, states have a mixed structure of the
physical and unphysical components (the mapping with

Q,b is not exact). Nevertheless, those states which ap-
proximate the fermion states lie below states with a dom-
inant unphysical component.

The lowest-lying 0& and 2, states are well approximated
in boson calculations in the whole range of displayed
values of k . For k„„&0.9, the state 4, is also described
reasonably (here the dashed line cannot be distinguished
from the full one in the figure scale). On the other hand,
for k, & 0.9, the lowest 4, state is that with a dominant
u =4 component. It is not described well in the boson
calculations. Also a description of excited states of a
given spin deteriorates for higher values of k . Never-
theless, an identification of the exact and boson eigen-
states can be made essentially by following the order of
levels. The correctness of the above identification can be
confirmed from calculated matrix elements of the quadru-
pole operator (see our present Fig. 4 and also Table II of
Ref. [3]). Finally, we note that the quality of results for
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FIG. 3. The same as Fig. 2, but the dashed lines are the bo-

son calculation obtained by using the SBM Hamiltonian with
the one-body form of the seniority quadrupole operator (17) in
the sdg space.

FIG. 4. The dependence of the diagonal matrix elements of
the proton quadrupole operator for the states 2,+- (i =1,2, 3) on
the strength of the quadrupole-quadrupole interaction for calcu-
lation of Fig. 3. The full lines connect the exact fermion results.

The dashed lines are obtained with the one-body form of the

seniority quadrupole operator (17). The factor &5/4 (r Ir) is

not included in the displayed dimensionless quantity ( Q ).
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the 0, and 2, states is very weakly sensitive to the trunca-
tion of the boson space to either the sdg space or the sd
space. Of course, for the description of the 4& state, the g
boson is of vital importance.

In Fig. 5, results analogous to Fig. 3 are shown for the
SDI. Qualitative conclusions are the same as those dis-
cussed above. Perhaps, differences between the exact and
boson results cases are more pronounced in the SDI than
in the MPI calculations. This can be understood rather
simply because even for k, =0, the energies of the v =4
states are not exactly reproduced in the truncated space
for the SDI case.

Another possible form of the boson quadrupole opera-
tor is obtained by considering the Hermitian one-body
form of Eq. (13) with the n, dependence retained. This
prescription agrees in the sd space with the Otsuka-
Arima-Iachello-Talmi (GAIT) expression [13]. The re-
sults of calculations with this form are close to those with
the full SBM image.
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FIG. 5. The dependence of the lowest states 0+, 2+, and 4+

on the strength of the proton-neutron quadrupole-quadrupole
interaction for the system of four protons and four neutrons on
the levels j„=—,+, j„=—, . The SDI with the strengths

6 =0 $ 3 Me@ and 6 =0 $0 Me@' is considered among
identical nucleons. The full lines connect the exact fermion re-
sults. The dashed lines are the boson calculation obtained by
using the SBM Hamiltonian with the one-body form of the
seniority quadrupole operator (17) in the sdg space.

We thus see that when the lowest-order expression Q,b

(OAI prescription) is employed in the mapped Hamiltoni-
an, the results are in better agreement with the exact cal-
culations than those obtained with the full SBM image of
Q or with the more general OAIT formula.

Let us discuss this point in more detail. Obviously, the
strong decrease of the energy of unphysical states with
the increasing k strength is connected with the large Q
matrix elements between unphysical states. A boson
mapping is exact as far as it reproduces fermion matrix
elements for physical states. The matrix elements be-
tween unphysical states can, however, differ for different
but still exact boson rnappings. The one-body form Q,b

of the quadrupole operator discussed above exactly
reproduces the v =0 and 2 matrix elements. The re-
quired reproduction of the v =4 elements is not exactly
satisfied in this approach, but, as previous results suggest
(see Fig. 3), the matrix elements for the physical U =4
states are given reasonably well with the approximate
Q» form. On the other hand, the matrix elements of Q,b

between unphysical states are suppressed in comparison
with the full SBM and GAIT quadrupole operator (this
can be seen from the n, dependence in the OAIT expres-
sion). As a result, the unphysical states do not appear in
the lower part of spectrum when k, is increased.

Remember, however, that the present calculational
procedure with Q,b goes somewhat beyond the OAI ap-
proach. Namely, the two-body terms in the image of
H ', which take into account the presence of the v =4
states, are not obtained straightforwardly within the
OAI.

Another comment should be made in connection with
the use of the SBM image of H ' (12). Terms of the type
s~B~BB and s~s~BB which have no Hermitian counter-
parts appear in Eq. (12) and also in the image S„„[Eq.
(14)] of the Park operator. As long as we require the
v =0 state to be built by s bosons only and v =2 states to
be built by s bosons and one A,AO boson then these terms
connect physical v =0,2 bra states with some unphysical
ket states. This follows from the fact that H ' as well as
the Park operator is diagonal in seniority in the fermion
space. These terms therefore connect unphysical ket
states with the physical bra states and have no effect on
the spectrum in the full space calculations. Also in the
truncated space, their effect is very small when the QQ in-
teraction is switched on and null otherwise. Discarding
these terms, we slightly change the mapping from
Geyer's similarity transformed form, but the mapping is
still exact. In fact, we do not consider these terms in ob-
taining the present results.

V. EFFECTIVE QPKRATQR APPRGACH

In the preceding section we have found that the SBM
gives a correct picture of the v =0 and 2 states in the
truncated space. On the other hand, the v =4 states are
inAuenced by the truncation procedure and are not satis-
factorily described in the sdg-boson space. To remedy
this deficiency and to take into account the effect of states
outside the truncated model space in general, one usually
resorts to effective operator theory [14]. In the nuclear
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where

V,s = V+ Va 6V
1

0
(19)

is the energy-dependent effective interaction acting in the
model space. In the above, Ho denotes the part of the
Hamiltonian H diagonal in the P+ Q decomposition and
V =H —Ho.

We apply the theory described above to the SBM im-

age of the SDI Hamiltonian (12). The model space is the
space of states composed of s, d, and g bosons. States in
the complement space contain at least one boson with
A. )4. In the present model study, the whole procedure
of the P+ 6 decomposition and of finding effective opera-
tors is applied separately in the space of states with two
bosons of nonzero A, , the physical section of which con-
tains the v =4 states. This follows since the SDI Hamil-
tonian does not connect states of different seniority and
the boson operator (12) does not change the number of s
bosons (discarding the s~BtBB and ststBB terms as dis-
cussed in the preceding section). On the other hand, it
makes no sense to improve the treatment of the v =2,
L &4 states in the effective operator approach as these
states lie outside the model space completely.

Two points need to be solved in the procedure of con-
structing the effective operator V,z. First, the inverse of
the operator (E Ho 6VO) h—as to—be found. One usu-

ally treats this problem perturbatively by expanding

1 1 ~ 6 g 1

E —Ho —OVAL E —Ho „ E —Ho
(20)

and considering the first few terms in the above expan-
sion. One frequently retains only the first n =0 term.
We do account for the higher-order terms in (20) and
truncate the expansion when convergence is reached
(n =9 for the present SDI Hamiltonian is needed). In
our model calculations, we can even afford the straight-
forward and actually simpler approach to invert the ma-
trix (E—Ho —6V6) directly in the 6 space.

The second problem is related to the presence of the
energy E in the denominator of Eq. (19). Equation (18},
is, in fact, a nonlinear eigenvalue problem. When E in
the denominator is fixed at E&E,„„,of a particular
state, the calculated energy from Eq. (18}is below the ex-
act one, and vice versa. In principle, one can proceed by
an iterative procedure to determine the eigenenergy for

physics Geld, effective operator theory is frequently used
to find the effective shell model interaction [15]. Its for-
malism is, however, quite general and can be directly ap-
plied to the present case. Actually, effective operator
techniques have been used in connection with the micro-
scopic derivation of the interacting boson model [16].

The full space is divided into the model truncated
space and its complement in the full space. Introducing
the projection operators P and 6 onto the model space
and onto the complement space, respectively, one obtains
an equation for the projected part of the wave function

(18)

S,q=S„„+SiQ OS', (21)

where Sc is the part of S „diagonal in the P+ Q decom-
position and S& =S„„—So. In the case of the operator
(21), we have found a slow convergence of the perturba-
tive expansion and a direct inversion of the operator in
the denominator has to be used. Note, that the energy-
like factor E in the denominator of Eq. (21) is set to zero
and S,z does not depend on it. The physical states are
eigenstates of S„„with the eigenvalue 0 and expression
(21) is thus an exact form for them. In the case of un-
physical states, the exact eigenvalues of S„are greater
than zero. Correspondingly, the operator, s with the
choice E =0 must have eigenvalues greater than zero
when diagonalized in the P projected unphysical boson
space. The operator S,s thus identifies and separates the
physical and unphysical states in the model truncated
space. Adding S,z to the H, z&', we observe that the un-

physical states are shifted up and the states correspond-
ing to the physical ones remain at the same position.

Of course, expression (21) is only meaningful when
1/afse„a is a nonsingular operator. One can then
proceed further. The nonsingularity of the above opera-
tor is equivalent to the property that there is no physical
state which lies completely in the complement Q space.
Consequently, the number of states in the model truncat-
ed P space must be greater than or equal to the number
of physical states. One can then relate a state P~f~„„,} in
the model space to each physical state ~f~„„,} such that
two states are connected by

ly, h„.)= 1+6 „' „OS, v'ly, „.).—So —OS' 6 (22)

The states in the set P
~ g h„,} are certainly linearly in-

dependent.
The SBM image e„„ofany fermion operator e+ does

not scatter outside the physical space when it acts onto
the physical ket state. One can then diagonalize 8 „sep-

each state separately. We employ, however, the fact that
the eigenenergies of the v =4 states are grouped close to-
gether in our case and take one fixed energy E in the
denominator of Eq. (19) for all the U =4 states. The ener-

gy E is chosen between the energies of the 22+ and 42+

states. Then the 42+ state lies slightly belo~ the exact one
and the other v =4 states lie above the exact ones after
diagonalization. We denote the effective Hamiltonian ob-
tained as outlined above with H,~'.

Results of the calculations for the four-nucleon system
(denoted as sdg-effl) are shown in the fourth column of
Fig. 1. A notable improvement is seen in comparison
with the SBM results of the third column. It is also in-
teresting that the states corresponding to the spurious
ones in the exact calculation (not shown in the figure)
remain at zero energy in calculations with the effective
operator.

As presented above, it is possible to construct an
effective Park operator S,~. Starting from S„„(14),the

ff operator is obtained as follows:
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ism, we have found a notable improvement of results.
The effective Park operator identifies unphysical states in
the truncated space. Moreover, since eigenstates of the
Park operator with a zero eigenvalue are physical states,
it is possible to derive another form of the effective boson
operators which is related to the original boson descrip-
tion in the physical subspace only and which reproduces
fermion matrix elements in the truncated boson space.

Of course, the effective operator theory could be ap-
plied both within the DBM and the SBM. In the SBM,
however, images of the v =0 and 2 states are simple and
they are not affected by the truncation process. Conse-
quently, it is sufticient to work out the effective operator
theory only in the boson counterpart of the v =4 sub-

space.
As we consider a simple model system with the number

of like nucleons being four, the mapping up to the v =4
states is all we need. For many-fermion systems, the
v )4 should be considered. The full SBM taking into ac-
count such states contains many-body terms and its
derivation and application would not be easy. One may
hope that those terms are of less importance and the
present, then only approximate, formulas of the SBM
with one- and two-body terms could then still be applic-
able. A similar comment applies to the use of effective
operator theory. In the present model, we are able to em-

ploy it in an exact and complete form. In the case of
many-fermion systems, one should resort to the lowest-
order terms of the perturbative expansion.

Of course, an extension of the present methods to the
case of several nonQegenerate shells would be important.
In a passage from the original fermion problem to the
collective boson description, one could proceed in two
ways: first truncate and then bosonize or vice versa. In
both procedures, effective operator theory can be em-

ployed at the truncation step.
In the truncated fermion space, it is not, however, clear

how to carry out the bosonization unless the truncated
fermion operators close an algebra or the direct
Marumori-like approach is applied. The former case
could only occur under special conditions. In the latter
method, one must know a solution of the fermion prob-
lem to some extent and the treatment of the unphysical
states is not well under control. The approach studied in
the present paper, in which the bosonization is first per-
formed and only afterwards the important degrees of
freedom are determined and the boson space truncated,
seems to be more straightforward. In this way, the
lowest-order one-body terms of the SBM operators have
been obtained for the case of several nondegenerate shells
in Ref. [17].
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