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The pp y reaction at intermediate energies is investigated using a modern relativistic meson-exchange
potential model. Both the single-scattering and rescattering terms are treated including relativistic
corrections. It is shown that for energetic photons in the region near the end-point energy the relativis-
tic spin correction is very large and reduces the ppy cross section by a factor of -2. This large correc-
tion is dynamical in origin and can be traced in a very simple way to the strong energy dependence of the
So state contribution. It is also shown that, under these kinematical conditions, the rescattering term

reduces the cross section, which amplifies the relativistic effects on the ppy reaction. For the kinematical
conditions of the recent TRIUMF experiment at Ti,b =280 MeV the rescattering contribution enhances
the cross section and reduces the discrepancy between the data and the calculation.

PACS number(s): 25.20.Lj, 25.10.+s

I. INTRODUCTION

Interest in the nucleon-nucleon bremsstrahlung (NNy )

reaction as a means of testing the off-energy-shell behav-
ior of the NN interaction has been rejuvenated consider-
ably, both experimentally and theoretically, in the past
few years [1—8]. In fact, it has been demonstrated for the
first time by the TRIUMF group [1—4] that NNy reac-
tions, or more specifically the analyzing power in the
proton-proton bremsstrahlung (ppy) process at an in-
cident energy near the pion production threshold, shows
a clear signature of off-shell effects. Also the spin correla-
tion coefficients are shown to be very sensitive to the off-
shell behavior of the NN interaction [7]. However, a
rather disturbing disagreement has been observed be-
tween recent ppy cross-section data [5] at an incident en-

ergy of Tl,b=280 MeV and calculations [2,3] using a
modern potential model. In order to remove this
disagreement, the data of Ref. [5] were reduced by a fac-
tor of —'„' however, no obvious reason for an error in the
absolute normalization has been found. A large part of
the disagreement between the calculated and the non-
renormalized data may be attributed to the relativistic
spin correction (RSC) [9,10] which reduces the calculated
cross section by about 20—30% with respect to the non-
relativistic results [11] (our present calculation which in-
cludes the RSC confirms this discrepancy). Therefore, if
the unmodified TRIUMF data are correct, the potential
model may be unable to describe NNy processes. The
calculation [2,3] accompanying the experiment reported
in Ref. [5], however, does not include the rescattering
(RES) contribution which, in the nonrelativistic ap-
proach, enhances the cross section by about 20%%uo [8].
Significant RES corrections have also been found in non-
relativistic calculations made for different kinematical
conditions [12—14]. Given the comparable sizes of the

RSC and RES contributions it is, therefore, crucial that
both corrections are included simultaneously for a proper
assessment of the current status of agreement between
theory and experiment. This is the major purpose of the
present work.

In connection with the problem mentioned above, we
also investigate relativistic effects with an emphasis on
the RSC, in an effort to better understand its role in ppy
reactions. Relativistic effects have been investigated by a
number of authors in the past [2,15,16] who have shown
that these effects reduce the ppy cross section with
respect to nonrelativistic results and that the dominant
relativistic correction arises from the RSC. However, the
physical basis for this reduction has received limited at-
tention; we focus on identifying the physics underlying
this reduction. In particular, we demonstrate that, for
energetic photons, the effect is largely dynamical in origin
and arises predominantly from the strong energy depen-
dence of the 'So state. We show that this can be under-
stood in a very simple way.

The present paper is organized as follows. In Sec. II
we outline the formalism used. In Sec. III the RSC is an-
alyzed. The effect of the RES term is discussed in Sec. IV
together with a comparison with selected data. The con-
clusions are discussed in Sec. V. Appendix A contains
some details of the formalism. In Appendix B, a pro-
cedure for constructing a Lorentz invariant transition
amplitude from a nonrelativistic T matrix is presented.

II. FORMALISM

In the present work, the pp bremsstrahlung transition
amplitude is calculated in mornenturn space within a
framework of potential models. The calculation includes
the single-scattering contribution [second and third terms
in Eq. (2.1b)] as well as the double-scattering, or rescat-
tering, contribution [last term in Eq. (2.1b)). We write
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M = QE', s2co M+s, E~, (2.1a)

the invariant transition amplitude M for producing a
photon of momentum k and polarization e in an NN col-
lision as

with

IQ(p;)) =
c. +m 1/2

I

~ pi

+m

(2.2b)

where co denotes the energy of the emitted photon and
s', , E~ (E,, sz) are the energies of the two interacting nu-
cleons, 1 and 2, in the final (initial) state; they are defined
as E, —=E =—Qp, +m with p, being the momentum of
ith nucleon and m the nucleon mass. In the above equa-
tion M denotes the bremsstrahlung transition amplitude.

In order to facilitate a close comparison with the
bremsstrahlung transition operator obtained within the
entirely nonrelativistic approach, we express M as

M=(e, k;pf V IO;p )+(6,k;ffI(T ) Qf V, IO;p, )

denoting the positive energy Dirac spinor without the
two-component spin-wave function y, . We follow Bjork-
en and Drell's notation [17].

The relativistic electromagnetic interaction Hamiltoni-
an P", for nucleon i ( =1,2) is obtained from the Dirac
equation describing the interaction of a nucleon with an
external electromagnetic field. It is given by

+(~,k;yfIV, s, T+Io;y, )

+(e,k;pfI(T ) Qf V, 0;T+IO;$;), (2.1b)

(p, ,
—1)e

(2.3)

where the last term is the magnetic moment interaction
representing the observed anomalous magnetic moment
of the nucleon i. Here, we use the usual notation for the
four-vector potential of the electromagnetic field, A",
and the corresponding field tensor, F"'=8 A"—8"A'.
y„denotes the Dirac y matrix and o„„=i[y„,y„]/2.
denotes the nucleon charge (e; =e~ =e for protons and

e; =e„=0 for neutrons) and p, ; the anomalous nuclear
magnetic moment in units of nuclear magnetons (for pro-
tons p, ; =p =2.793 and for neutrons p, =p„=—0.913).

Then, working in the Coulomb gauge, the effective
electromagnetic transition operator in Eq. (2.2a) can be
expressed as the sum of four termsVem(p 1~ P2&pl&P2)

1/2 1/2

( u (p', ) I
V',"

I
u (p, ) )

( CP
Pl 1

' 1/2
+ (u(p,') I

O',"' Iu(p, ) )
E,

P

(2.4a)

1/2

(2.2a)
where, in the NN center-of-mass (c.m. ) frame,E,

P2

where P denotes the two-nucleon nonrelativistic unper-
turbed wave function; 9 is the energy denominator (or
nucleon Green's function) consistent with the approxima-
tion used for solving the T-matrix integral equation. T+
and T stand for the NN T matrices associated with the
outgoing (+) and incoming (

—
) waves, respectively.

The subscript i (f ) refers to the initial (final) two-nucleon
state.

V, in Eq. (2.1b) denotes the effective electromagnetic
transition operator to be used with nonrelativistic two-
component wave functions. It is defined as

Vconv
2'
k

1/2

e (p+p') [e, 5(p —p' —k/2) —e2+ 5(p —p'+k/2)],
2m

(2.4b)

~ 2~
mag

1/2

[p, e.(k h cr, )5(p —p' —k/2)+P~+e. (k h o 2)5(p —p'+k/2) ],2m
(2.4c)

2K
~rsc

1/2

[V, e.(p' h o) (5p
—p' —k/2) —Vz+e. (p' ho 2)5(p —p'+k/2)], (2.4d)

and

~ 2~
~rem =

1/2

I 'g) E (p' h k)o, .p5(p —p' —k/2)+ r)2 e (p' A k)o z.p5(p —p'+k/2) ]2m
(2.4e)
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In the above equations, p and p' denote the relative mo-

menta of the two interacting nucleons before and after
the emission of a photon with momentum k and polariza-
tion e. cr; stands for the Pauli spin matrix for nucleon i

( =1,2). The factors e,.*, lg, , v,. , and 2), are functions of
nucleon and photon momenta; they are given explicitly in

Appendix A. The leading terms in e; and p,
—
- are given

by e;
—=5, , and LM, =p; —5O, which give rise to the con-+ +

l

vection and magnetization current operators of the con-
ventional nonrelativistic approach. v; =(p; —1 )k /m
and 2), =(lu, ;

—1)/2m to leading orders.
In Eq. (2.4), the dominant RSC is denoted by V„,. It

results from taking the matrix element of the relativistic
four-component electromagnetic transition operator be-
tween the upper and lower components of the Dirac spi-
nors. Inclusion of V„, introduces a "composite" current
(convection spin) term into V, . The composite
currents also appears in other reactions such as (p,p')
when the spin-dependent part of the NN coupling is
momentum dependent [18], as arises from an analogous
two-component reduction [19] of the Dirac spinors, for
example. We note that in Eq. (2.4d) we have made use of
the fact that in the NN c.m. frame pl+pl =p+p' —k/2
in the first term and p2+ p2

= —( p+ p'+ k/2 ) in the
second term in brackets. Together with the restrictions
imposed by momentum conservation these terms reduce
to p, +p', =2p' and pz+pz= —2p'. The remaining rela-

tivistic correction, V„ in Eq. (2.4), has a different opera-
tor structure than the first three terms. Since

rl; =(p; —1)/2m to leading order, it is easily seen that
this term is of order 8((p/m ) ) while the dominant
RSC, V„, is of order 6(p lm). At intermediate nucleon

incident energies the contribution from V„ to the
bremsstrahlung reaction is negligible compared to those
from the other terms.

We note that in the present approach we do not intro-
duce an additional term due to the Lorentz boosting
effect [20—25] in the electromagnetic transition operator
V, given by Eq. (2.4a), since this operator is fully co-
variant apart from the factors &m /e. In Ref. [26] we ex-
panded the functions e;, p, , v, , and ri, of Eq. (2.4) in

powers of m ' keeping terms through m and there-
fore an additional term, hV, , due to Lorentz boosting
was, in principle, necessary. In the present work we use
the full expression for V,

In a consistent approach, the T matrix which describes
the interaction between the two nucleons should be ob-
tained from a relativistic integral equation, such as the
Bethe-Salpeter equation or some approximation to it, so
that the resulting Lorentz invariant T matrix T (see Ap-
pendix B) and the interaction T entering Eq. (2.lb) should
be related to each other by

T(Pl P2~ Pl P2) +e1s2T(PI ~ P2i Pl~ P2)+el s2 (2.5)

in order to yield a Lorentz invariant transition amplitude
M [Eq. (2.1a)]. Conversely, T should have a Lorentz
transformation property such that T given by Eq. (2.5) be
a Lorentz invariant. Unlike the description of the NN
elastic scattering process, this issue becomes important in
the description of a process, such as NN bremsstrahlung

at high incident energies, where the calculations are
based on NN potential models and one makes use of the
Lorentz invariant nature of the transition amplitude.
The approximations one makes to the relativistic integral
equation for obtaining the T matrix T are usually con-
sistent with the transformation property that T must
obey. A problem arises, however, when one uses a T ma-
trix obtained nonrelativistically in the relativistic scheme,
since in this case, the T matrix obeys the Lippmann-
Schwinger equation which preserves the Galilean invari-
ance and not the Lorentz invariance of the NN potential.
This is the case of T matrices based on phenomenological
NN potentials, such as the Hamada-Johnston [27], Reid
[28], or the Yukawa parametrized version of the Paris po-
tential [29]. Although in the present work we use a rela-
tivistic T-matrix interaction and, therefore, do not face
the problem mentioned above, we discuss for complete-
ness in Appendix B a procedure for constructing a
Lorentz invariant transition amplitude from such a non-
relativistic T matrix.

When the electromagnetic coupling to a nucleon is tak-
en to first order the NN bremsstrahlung process involves
extra intermediate states [described by the propagators
9;f in Eq. (2.1b)] compared to the NN elastic scattering
process. Most of the existing NN bremsstrahlung calcu-
lations, within either the relativistic or nonrelativistic ap-
proaches, assume an expression of the form (in the NN
c.m. frame) [2,12,30]

(2.6)

for the energy denominators irrespective of the type of
propagator entering the T-matrix integral equation. In
the above equation, E, =2@, and Ef =2m .; the double
prime denotes intermediate states. In a consistent ap-
proach, however, the above propagator 9 should be of
the same type as that used for solving the T-matrix in-
tegral equation [31]. For example, for the bremsstrah-
lung transition amplitude based on the one-boson-
exchange potential (OBEPQ) T matrix used in the next
two sections, we have

4m
m E2f —(2s „)2

(2.7)

which is consistent with the Blankenbecler-Sugar (BbS)
choice of the two-nucleon propagator (see Appendix B)
[32]; an analogous observation holds for transition ampli-
tudes based on nonrelativistic T matrices as discussed in
Appendix B. The NN bremsstrahlung reaction, there-
fore, probes not the differences in the T-matrix interac-
tions used, but the composite differences in the T-matrix
interactions and the corresponding propagators 9' in Eq.
(2.1b).

We should stress, however, that within a complete rela-
tivistic formulation it is difficult to use consistently T-
matrix interactions which are obtained by treating the
two nucleons symmetrically, such as in the three-
dimensional BbS reduction of the Bethe-Salpeter equa-
tion. The reason is that in the NN bremsstrahlung pro-
cess one of the nucleons is necessarily off-shell while the
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other one is on-shell and, therefore, the nucleons cannot
be treated symmetrically.

III. RELATIVISTIC EFFECTS

To our knowledge, only the work by Liou and Sobel
[15] examines the physics behind the RSC to the ppy
process. These authors found that for proton incident en-
ergies up to T&,b =160 MeV and for proton scattering an-

gles around 30' relativistic effects are very small, contrary
to their expectation [15] that the RSC would be large
since, on kinematical grounds, one might expect it
to reduce the cross section by a factor of
(1 —[1—

—,'p~]p/m) . By more closely examining the
various spin matrix elements of the RSC term, the au-
thors of Ref. [15] found that these matrix elements are
approximately proportional to the sum of the momenta
of the interacting nucleons, p, +pz, and so are small in
the NN c.m. frame. The fact that this is not the complete
basis for the RSC effect becomes clear by considering the
case of two protons scattering at the smaller angles of
8&=15' and Oz-20' at an incident energy of T„b=156
MeV. In this kinematical regime relativistic corrections
have been shown [16] to be very important; in particular,
they reduce the cross section by -30% with respect to
the nonrelativistic results which is surprising in view of
the findings reported in Ref. [15]. One might argue that
this is due to much higher energy photons being pro-
duced in the geometry considered in Ref. [16] than in the
case of Ref. [15]; when the proton scattering angles are
decreased the photon energy increases. However, as
shown below, the dominant RSC term (V„„),unlike the
magnetization current V,g, varies slowly with photon
momentum, so that the large reduction of the cross sec-
tion observed in the calculation of Ref. [16] relative to
that of Ref. [15] is due to more than just the increase in

the photon energy. Also, in calculations accompanying
the recent coplanar geometry experiment by the
TRIUMF group [5] at an incident energy of Ti,b=280
MeV and proton scattering angles of 8& -Oz-12', relativ-

istic effects have been shown to reduce the cross section
by about 20—30% [ll]. In these calculations the in-

cident energy is much higher and the proton scattering
angles are smaller than in the calculations of Ref. [16].
Consequently, based on kinematical factors alone, one
would expect a larger reduction of the cross section than
was found in Ref. [16]. Therefore, the behavior of the
RSC to pp y reactions cannot be explained exclusively in

terms of the kinematics involved.
Before discussing the major results of the present sec-

tion, we note that a simple comparison of Eq. (2.4c) and

Eq. (2.4d), together with the fact that pi =Pz+=pz and

v, =V2 =(p, —1)k/m to leading order, reveal that it is

not sufficient to analyze the effect of the RSC in terms of
an overall reduction factor of the cross section. We also
note that while V, in Eq. (2.4c) contains an overall fac-
tor of k, V„, in Eq. (2.4d} contains an overall factor of p'.
Therefore, together with the leading term in v& and vz,
V„, is proportional to the product p'k/m while V, is
proportional to k. Due to energy-momentum conserva-
tion, when k increases (decreases) p' decreases (increases);

consequently, V„, varies slowly as the energy of the emit-

ted photon is varied.
As has been shown elsewhere [14], for energetic pho-

tons produced in the ppy process, the dominant current
is the magnetization current, V, . Moreover, among
the various ways in which a photon may be created in a
NNy reaction, the one in which the photon is emitted be-
fore the strong interaction takes place is favored due to
the larger NN coupling at lower NN c.m. energy. The
spin matrix element of V, is, then, proportional to [6]

(s'fv „is&

&s,ofis, o)[(—1)'Pi f(p' p —k/2)

+( —1)'P2'f(p' p+k/»], (3.1)

—( —1) 72 g(p', p+k/2)], (3.2)

where g is a function common to v& and vz+. To leading
order, v, =72 =(p~ —1)k/m as mentioned before. The-+
two terms in brackets in the above matrix element [or al-

ternatively the transition operator V„, in Eq. (2.4d)]
differ by a minus sign relative to the magnetization
current contribution. These two terms correspond to con-
tributions from the interacting nucleons 1 and 2, respec-
tively. The origin of this relative sign is due to the fact
that V„, is proportional to terms involving the cross
product of the Pauli spin matrix with the sum of the nu-

cleon momenta in the initial and final states, i.e., p, +p'&

in the first term and pz+pz in the second term. In the
NN c.m. frame the two interacting nucleons have mo-

menta which differ by a minus sign. This relative minus

sign between the two terms does not occur in the case of
the magnetization current contribution, ~here the pho-
ton momentum appears in place of the nucleon momen-
tum in both terms (1 and 2). Due to this relative minus

sign, the contribution from singlet states in general, and
the strong 'So state in particular, will not be suppressed
as in the magnetization current term. Therefore, when

where S (S') denotes the NN total spin in the initial (final)
state and f is a function common to p, and p2+. The
first factor reflects the fact that the spin operator cannot
connect spin-singlet states. Moreover, for the range of
photon momentum k involved in most of the existing
NNy experiments, both f(p', p —k/2) and f(p', p+k/2)
have the same sign. Also, to leading order p& =pz+ for
identical particles so that the above matrix element will
be suppressed to a large extent if a spin-singlet state is
present in either the initial or final state as has been
pointed out in Ref. [6]. In particular, the strong 'So state
only contributes significantly to the ppy cross section for
those kinematical conditions where the cancellation in
Eq. (3.1) is mimmized.

It is now easy to understand the effect of the RSC.
Given the form of the spin matrix element of V,s [Eq.
(3.1}]and comparing Eq. (2.4c) and Eq. (2.4d), one finds
that the spin matrix element of V„, is proportional to

&s'I v„.ls &

(1 fis ofiso)[( 1) vi g(p' p k/2)
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the two nucleons interact after losing energy by emitting
energetic photons, the 'So state contribution becomes
significant, even though the matrix element contains the
relatively small factors p'v, and p'v2+ compared to kp,
and kp2+ in the magnetization current matrix element.
This occurs because the final state c.m. energy is small in
this case which favors scattering in the 'So state where
the T-matrix element is very large. We emphasize that
the contribution from V„, itself is much smaller than
that from V, but what makes the RSC term, V„„so
important is the interference between V„, and the dom-
inant magnetic current term V, . Whether the interfer-
ence is destructive or constructive depends on the relative
size of the first and second terms in Eq. (3.2). For most of
the kinematical conditions considered the interference be-
tween V„, and V,z is destructive.

The features just discussed above are illustrated in Fig.
1 where the ppy cross sections in the coplanar geometry
are shown at incident energies of T~,b =280 and 100 MeV
for proton scattering angles of 8&=12.4' and 82=12.0'
[Figs. 1(a) and 1(b)]. We calculate all bremsstrahlung am-
plitudes in the appropriate NN c.m. frame. In this work
the relativistic T-matrix interaction based on the one-
boson-exchange potential [33] (OBEPQ version) is used
and partial-wave states through total angular momentum
J= 11 are included. The data are from Ref. [5]. First, we
note that in the calculation which includes the RSC (solid
curves) the cross sections for forward and backward pho-
ton emission angles are reduced by -25'%%uo at T~,b =280
MeV and by -50% at Tt,b =100 MeV with respect to
the corresponding nonrelativistic results (dash-dotted
curves). The reason for relatively larger RSC effect at
T]+b = 100 MeV than at T]+b =280 MeV is due to the rela-
tively larger influence of the 'So state at lower incident
energy. The dashed curves are the results when the 'So
state contribution from V„, (and only from V, ) is
switched off. As discussed above, the RSC is dominated
by scattering in the 'So state; this is particularly clear at
T&,b =100 MeV where the RSC is almost entirely due to
the strong 'So state contribution. Figure 1(c) also illus-
trates the role of RSC for the inclusive cross section at an
incident energy of T&,b =280 MeV and for a fixed photon
energy of co=125 MeV which is only about 5 MeV less
than the maximum photon energy one can obtain at this
proton incident energy. Effects similar to those observed
in Fig. 1(b) at T&,&

= 100 MeV can be seen.
In a coplanar geometry experiment, the RSC becomes

more pronounced as the proton scattering angles de-
crease since the energy of the emitted photon increases as
these angles decrease so that the available c.m. energy of
the scattered protons decreases and the T matrix in the
So state becomes very large. This is illustrated in Fig.

2(a) where the ppy cross section at T„b=280 MeV is
shown as a function of symmetric proton scattering an-
gles, 8&=02, and for a fixed photon emission angle of
8=175 . We see that around 8&=82=5 the RSC (solid
curve) reduces the cross section by more than a factor of
2 compared to the nonrelativistic result (dash-dotted
curve). This is particularly relevant for experiments
currently being performed at Indiana University Cyclo-

tron Facility (IUCF) [34], where the ppy cross sections
are measured for proton scattering angles down to -5 .
We observe that most calculations in the past and, in par-
ticular, the calculation of Ref. [15], were for proton
scattering angles around -30' and, consequently, did not
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FIG. 1. ppy cross sections with (solid lines) and without

(dash-dotted lines) the RSC. Results with RSC when the contri-
bution from the 'So state in V, [see Eq. (2.4)] is switched off
are represented by dashed lines. The one-boson-exchange po-
tential of Ref. [33] has been used for generating the NN T ma-
trix. (a) Coplanar geometry cross section in the laboratory
frame as a function of photon emission angle at a proton in-
cident energy of T&,b =280 MeV and for proton scattering an-
gles of 8& = 12.4' and 8z = 12'. The data are from Ref. [5] and do
not contain the arbitrary normalization factor of 3. (b) Same as
(a) at T&,b=100 MeV. (c) Inclusive cross section in the initial
NN center-of-mass frame as a function of photon emission angle
8 at T„b=280 MeV for a fixed photon energy of co = 125 MeV.
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strongly sample the 'So state contribution at small c.m.
energies where it is very large. As we have shown in Fig.
1(b), for sufficiently small forward proton scattering an-
gles, the RSC is large even at T&,b =100 MeV. In Fig.
2(a), a nearly constant RSC effect for 8, =82& 10' where
the photon energy is rapidly decreasing is due to the fact
that in this region of proton scattering angles the T ma-
trix in the 'So state is much smaller and less energy
dependent than at smaller proton angles. In addition, the
decrease in the photon energy is to a large extent com-
pensated by the increase in the nucleon relative momen-
tum p' as discussed before.

Since the strongest off-energy-shell dependence is in
the 'So state, off-shell effects on the ppy cross section are
large where the RSC is also large; this can be seen in
Figs. 2(a) and 2(b), where the on-shell results (dotted
curves) are shown for exclusive and inclusive cross sec-

U
L

C4L

N

[
s ~ ~ ~

12-.:
f

T...= 280 MeV

9 = 175

I

5 10 15 20 25 30 35 40 45
8, = 0, (deg)
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~ (
~ )

~
(

~ t I ( I } ~4.

T„b = 280 MeV

~ = 125 MeV

0 I I I

0 20 40 60 80 100 120 140 160 180

0 (deg)
FIG. 2. ppy cross sections with (solid lines) and without

(dash-dotted lines) the RSC. On-shell results according to Ref.

[6] with RSC are represented by dotted lines. The one-boson-

exchange potential of Ref. [33] has been used for generating the

NN T-matrix elements. (a) Coplanar geometry cross section in

the laboratory frame as a function of symmetric proton scatter-

ing angle 0& =Oz at a proton incident energy of T&,b
=280 MeV

and for a fixed photon emission angle of 0=175 . (b) Same as

Fig. 1(c).

tions. However, because of the destructive interference
between V„, and V, , off-shell effects on the ppy cross
section become less pronounced in an approach where
relativistic corrections to V, are included as compared
to an entirely nonrelativistic approach [6]. Nevertheless,
the sensitivity to off-shell effects is similar to that of a
nonrelativistic calculation and enough to be seen clearly,
especially for kinematical conditions where the photon
energy is near its end point as occurs in Fig. 2(b) or in
Fig. 2(a) for proton angles around 8, =8z-5 .

We mention that the analyzing power is relatively
weakly sensitive to the RSC compared to the correspond-
ing cross section. This is not surprising to the extent that
the dominant RSC effect is in the 'So state and that the
analyzing power is relatively insensitive to this state in

NNy reactions [6].

IV. RESCATTERING CONTRIBUTION AND
COMPARISON WITH THE DATA

It has been shown [35,36] that in order to preserve the
gauge invariance of the theory, both the one-body RES
term and the two-body current term should be included
to the same order in the photon momentum. However,
two-body currents are expected to contribute very weakly
to the ppy reaction. Accordingly, the violation of gauge
invariance in this reaction introduced by omitting the
two-body current term is not expected to be serious.
Moreover, a fully consistent treatment of the two-body
current within a realistic potential model calculation is
not yet available; see, however, Ref. [37] where consistent
two-body currents have been obtained for separable in-
teractions. We note that most modern meson-exchange
NN potentials are nonlocal potentials which generate
two-body currents. Keeping in mind the present uncer-
tainty in the theory, we investigate in this section the role
of the RES contribution in the ppy reaction within the
present approach and compare with the recent data of
the TRIUMF group [5]. To our knowledge, the present
calculation is the first NNy calculation which includes,
simultaneously, both the RSC and relativistic (one-body)
RES corrections.

The one-body RES bremsstrahlung amplitude is given

by the last term on the right-hand side of Eq. (2.1b). A
diagrammatic representation of the RES process is given
in Fig. 3. We should mention that our numerical calcula-
tions for both the single-scattering and RES (or double-
scattering) contributions to the NNy observables has
been checked in the nonrelativistic limit against existing
nonrelativistic calculations by a number of authors [12].
The single-scattering contribution calculated in the
present approach has been also compared with the calcu-
lation by the TRIUMF group [2,3,5]. Our results are in

excellent agreement with those of Ref. [12] and also agree
to within -3%%uo with those results obtained by the TRI-
UMF group [2,3,5] provided we use (apart from using the
same NN T matrix) the following: (i) the same propagator

[which appears in Eq. (2.1b)], and (ii) multiply the
bremsstrahlung amplitude of Refs. [2,3,12] by a factor of
&m /c &m /c which is required to satisfy the relativistic
unitarity condition of the nonrelativistically constructed
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FIG. 3. Diagrammatic representation of the one-body RES process.
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FIG. 4. Coplanar geometry ppy cross sections in the labora-
tory frame as a function of symmetric proton scattering angles
0& =82 at an incident energy of Tl,b =280 MeV and at a fixed
photon emission angle of 0=175'. The lower (upper) two
curves correspond to the calculation with (without) the RSC.
The results which include (do not include) the one-body RES
contribution are represented by the solid (dashed) lines.

S matrix; this factor is also required for constructing a
Lorentz invariant transition amplitude from a nonrela-
tivistic T matrix as discussed in Appendix B.

In Fig. 4 we illustrate the effect of the one-body RES
term in the coplanar geometry ppy cross section as a
function of symmetric proton scattering angles 8& =8z at
an incident energy of T&,& =280 MeV and at a fixed pho-
ton emission angle of 8=175. As can be seen, in the
present approach, the RES contribution (lower solid
curve) enhances the cross section by -20% with respect
to the result without the RES term (lower dashed curve)
for proton angles 8& =8z) 10. However, for proton an-
gles 8& =8z & 10', the RES contribution reduces the cross
section; moreover, its effect is more pronounced than at
larger proton scattering angles, especially for 8& =8z-5'
where the cross section is reduced by -2 pb/sr rad (or
-28%%uo). This is due, mainly, to the strong 'So state con-
tribution from the RSC term, V„„as has been pointed
out in the previous section. For very small proton
scattering angles, the emitted photon carries most of the
available kinetic energy and, consequently, the energy in
the c.m. of the two scattered protons is very small. The
NNy process, then, necessarily samples the 'So state
which is quite strong for such small energies. In Fig. 4
we also display the results with (upper solid curve) and

without (upper dashed curve) the RES contribution when
the RSC is omitted. Here, the larger enhancement of the
cross section (due to the RES term} compared to the cal-
culation which includes the RSC in the region of
8, =8z& 10' is due to the absence of the destructive in-

terference between V, and V,~. For proton scattering
angles 8& =8z & 10', the RES contribution without the
RSC is relatively small, in contrast to the case where the
RSC is included. From Fig. 4 it is clear that this is due to
the absence of V, in the entirely nonrelativistic ap-
proach. We emphasize that relativistic corrections, other
than that due to V, , are negligible for the kinematical
conditions considered here. It is interesting to note that,
for proton scattering angles between —15' and -35'
where most of the calculations have been made in the
past, the calculation with the RES+RSC contribution
yields practically the same results as the much simpler
calculation without the RES and RSC terms. At proton
angles around 8& =8z=5', however, inclusion of the RES
term further enhances the relativistic effects. An under-
standing of the effects of different terms on NNy reac-
tions at these small angles, in particular the effect of the
RES, is especially relevant for experiments currently be-
ing performed at IUCF [34].

Figure 5 shows a comparison of the present cross-
section calculations and the data of Ref. [5] in the copla-
nar geometry as a function of photon emission angle 8 at
an incident energy of T&,b=280 MeV and for various
asymmetric proton scattering angles. The solid and
dashed curves correspond to the calculations including
the RSC with and without the RES contribution, respec-
tively. The results without the RSC and RES terms are
also shown (dotted curves}. As we expect from the dis-
cussion of Fig. 4, the RES term enhances the cross sec-
tion for these proton scattering angles and for 8&-8z
reduces the discrepancy between the theory and experi-
ment significantly. However, the enhancement is not
large enough to remove the discrepancy completely. As
the proton angles increase, the results with the
RES+RSC contribution become very close to the results
without the RES and RSC terms as discussed before.

In Fig. 6 a comparison is made between the present re-
sults and the analyzing power data of Ref. [5] in the co-
planar geometry. Both calculations including the RSC,
with (solid) and without (dashed) the RES contribution,
and the calculation excluding the RSC (dotted) yield re-
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suits which show non-negligible differences from each
other. However, these differences are not large enough to
be disentangled by the data; i.e., they all reproduce the
data equally well.

V. CONCLUSIONS

Using the basic structure of the NNy amplitude, we
have shown that the RSC in ppy reactions is large when
the emitted photon has an energy in the region near the
maximum value allowed kinematically, even when the in-
cident energy is relatively low. This is due, primarily, to
the 'So state contribution which is large and strongly en-

ergy dependent compared to other states. By considering
this energy dependence we have sho~n how and under
what kinematic conditions this state gives rise to such a
strong RSC. Another aspect of the relativistic correction
is that, due to the destructive interference between the
RSC and magnetization current contributions, off-shell
effects on the ppy cross section are less striking in the
present approach than in the completely nonrelativistic
approach. The analyzing power is less affected by relativ-
istic corrections than the corresponding cross section
since this spin observable is not very sensitive to the So
state [6] where the dominant (and large) RSC occurs in
the cross section.

We have also investigated the role of the one-body
RES contribution to the ppy reaction within the present
approach. A significant difference in its role relative to
that in the completely nonrelativistic approach arises for
kinematical conditions where the photon energy is close
to its end-point energy. Under these conditions the So
state contribution from V„, becomes very important; we
note that V„, is absent in the nonrelativistic approach.
For these kinematical conditions the inclusion of the RES
term in the present approach further amplifies the relativ-
istic effects on the ppy cross section.

For the coplanar geometry experiment of the
TRIUMF group [5] at Ti» =280 MeV and proton
scattering angles larger than 10', the inclusion of the RES
term enhances the cross section. Although this enhance-
ment significantly reduces the difference observed be-
tween the data and theoretical calculations which only in-
clude the external current (or single scattering), the RES
correction is not large enough to completely resolve the

discrepancy. Therefore, if the normalization of the TRI-
UMF cross-section data is correct, the present finding
strongly indicates that modern potential models (at least
the standard models) are unable to describe ppy reactions
in which energetic photons are produced. It should be
mentioned that the Coulomb effect which has been ig-
nored in the present calculation is known to reduce the
cross section [13], so that its inclusion will further in-

crease the disagreement with the data. It is of crucial im-
portance to have more cross-section data with accurate
normalization under these kinematical conditions where
potential model calculations can be better tested. In this
connection, ppy experiments being performed at IUCF
[34] for very small proton scattering angles are of special
interest. The RES contribution to the analyzing power is
not negligible; however, the data are not sufficiently accu-
rate to disentangle such an effect.

Finally, no two-body current contribution has been in-
cluded in this work. A fully consistent treatment of the
two-body current contribution within a potential model
calculation is not yet available and is beyond the scope of
the present work.
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APPENDIX A

In Eq. (2.4), the quantities e;, p,. , v;, and rI; are given
by

1 mm
e,- =—

2 EpE,P q—

' 1/2

(A 1)

1 mm
Ps. =

q—

1/2 y+ Cp

5, , 2+(q —,p) —a, [P(q +—
,p) —2 (q*,p)]+(p; —1)

' 1/2
P

i E, ++P7lq—
(A2)

1 mm
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2 CpE,P q—

' 1/2

(q—,p) —«., [P(q*,p)+2+(q, p)]], (A3)
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and

+
Il

CpC +q—

1/2 p; —1

m +s ++m QE, +m
(A4)

The vector q
—+ is defined as

q
—=p'+k/2 . (A8)

where the auxiliary quantities are defined as
T

c. ++m
2+—

(q—,p) = +
c. ++m c +mq—

P(q —,p) = k

Qe ++m QE, +mq—

and

a; =(}Lt,—1)k/2m .

(A5)

(A6)

(A7)

APPENDIX B

In this appendix we discuss a procedure for construct-
ing a Lorentz invariant transition amplitude from a
Galilean invariant T matrix. Since it has been shown in
Ref. [14) that the NN bremsstrahlung amplitude will be
Lorentz invariant if the corresponding NN amplitude is
invariant, we will restrict our consideration to the
simpler NN scattering process.

Consider the NN cross section which can be expressed
in terms of invariant quantities as [38]

do =
d' ' d3 '

s E [(p —p )
—(p, Xp ) ]' E', (2m}' e2(2m. }

X [(2n ) 5(p, +p2 —p', —pz)5(E, + e2 —e', —sz) ] . (81)

In the above equation, p; and e; = e~
=Qp;+ m denote,

l

respectively, the momentum and energy (in an arbitrary
frame} of nucleon i in the initial state; P; =p;/e;. The
primed quantities refer to the final state. The NN transi-
tion amplitude T(p1, p2;p„p2) should be constructed
such that the quantity

(Pl~p2ipl~P2} +sls2 (P1~P2rP1~P2)+sls2 (82)

is a Lorentz invariant since each term in curly brackets
and each integral in Eq. (Bl) is an invariant.

The NN differential cross section in the NN c.m. sys-
tem is, then, given by

'2

I
T(p', p) I', (83)

with the final and initial relative momenta, p' and p,
obeying

I

p'
I

=
I p I.

Equations (81) and (83) are obtained only from
kinematical considerations for computing cross sections.
In this sense, we can regard Eq. (81) as being the
definition of the transition amplitude T. Now, one has to
compute either exact values or reliable approximations
for the necessary T from dynamical considerations. The
transition amplitude T is generally obtained from an in-
tegral equation of the form

(84)

In a relativistic approach, for example, the above equa-
tion may represent the Blankenbecler-Sugar (BbS) equa-
tion with JV denoting some NN potential and 0 the two-
nucleon BbS propagator. The T-matrix interaction based
on the OBEPQ potential [33] used in the present work,

for example, is obtained from such an equation with the
NN potential given by a one-boson-exchange (OBE) mod-
el for the nuclear force [33]. An important condition to
be satisfied here, for whatever approximation one uses, ei-
ther to the NN potential or to the integral equation [Eq.
(84)] itself, is that the resulting transition amplitude T to
be used in Eq. (Bl) should have the Lorentz transfortna-
tion property such that T as defined by Eq. (82) be
Lorentz invariant.

The nonrelativistic approximation to the NN cross sec-
tion can be obtained by expanding c; and keeping only
the lowest-order contribution in Eqs. (81)—(83). Of
course, in this case T in Eq. (82) (and consequently T}
should accordingly be invariant under the Galilean trans-
formation. Within the nonrelativistic approach, Eq. (84)
represents the Lippmann-Schwinger (LS) equation. In
this case, one usually assumes a phenomenological (or a
semiphenomenological) NN potential parametrized in
terms of simple functions such as the Yukawa
parametrized version of the Paris potential [29]. Again,
whatever approximation one makes for the NN potential,
that approximation should be consistent with the Galile-
an invariant nature of the transition amplitude given by
Eq. (Bl) in the nonrelativistic limit

The approximations one makes to obtain the transition
amplitude T are usually consistent with the transforma-
tion property that T must obey within either the relativis-
tic or the nonrelativistic approach. A problem arises,
however, when one uses a transition amplitude obtained
nonrelativistically in the relativistic scheme, since, in this
case, the corresponding T given by Eq. (82) should be a
Lorentz invariant and not a Galilean invariant amplitude.
The question, therefore, is how can one use nonrelativis-
tic transition amplitudes consistently in a relativistic ap-
proach. This appendix addresses this question.
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Before discussing this problem, we first consider a sim-

ple example of a transition amplitude which results from
two nucleons interacting by exchanging a meson and in-

clude terms only up to second order in the NN-meson
coupling constant. This example will illustrate explicitly
the Lorentz structure of the resulting transition ampli-
tude and its relationship to the invariant amplitude T.
We, then, discuss how the T-matrix interaction based on
the OBEPQ version of the Bonn potential [33] is related
to the transition amplitude T in Eq. (Bl). These exam-

ples will suggest how one can make nonrelativistic T ma-
trices consistent with relativistic kinematics.

NN cross section from a relativistic
one-meson-exchange interaction

Let us consider a simple case of two nucleons interact-
ing through the exchange of a meson up to order g in
the NN-meson coupling strength. The scattering matrix
S for such a process, then, can be written [17] (apart from
the nonscattering term}

S=g m
1/2

m

E,2

' 1/2 ' 1/2
m

' 1/2

(2~)'~'(p1+pz —pl —p2)

X, [u(p', , s', )I (1)u(p„s, )] [u(pz, sz)I (2)u(pz, sz)]
(P1 —P1}'—V'.

—[u(pz, sz)I (1)u(p1,s, )], .[u(p'„s', )I (2)u(pz, sz)]
(Pz —P1}'—i '.

(B5)

' 1/2

where p;=((po);, p;) and s; denote the four-momentum and spin of the ith nucleon, respectively, in the initial state.
The primed quantities refer to the final state. u(p;, s; } denotes the positive energy Dirac spinor which is normalized to
u(p;, s;)u(p;, s;)=1. The Bjorken and Drell [17] notation is adopted. I (i) denotes the NN-meson coupling at the ver-
tex i; the subscript a stands for the type of meson exchanged (scalar, pseudoscalar, vector, etc.). g denotes the corre-
sponding NN-meson coupling strength and p the mass of the exchanged meson. In Eq. (B5), the two terms in curly
brackets correspond to the direct and exchange terms, respectively.

We now define the NN potential V as

1/2 ' ' 1/2 1/2
I I ~

m
Va(P1~P2~pl~p2 }

E, )

m
I

E2

I I ~
m

Va (P 1 &P 2 &P 1 &P2 } (B6)

with

V (p'„pz,p„pz)=g . [u(p'„s', )I (1)u(p, ,s1)] .[u(pz, sz)I (2)u(pz, sz)]
(P1 P1 } Pa

—[u(pz, sz)I (1)u(p1,s, )], [u(p'„s', )I (2)u(pz, sz)] (B7)

We note that V is a Lorentz invariant.
In terms of the NN potential defined by Eq. (B6), the

scattering matrix Sbecomes

S=(2n) 5 (P1+Pz P1 Pz)Va(P1, P—z',P—1,Pz) . (B8)

It is easily shown that the NN cross section is given by
Eq. (Bl) with

( P» Pz~ P 1 ~ Pz) Va(pl ~ Pz~ P 1 & Pz) ' (B9)

T(p', ,p,';p, ,pz)=m V (p'„p', ;p„p, )

is a Lorentz invariant as it should be.

(B10)

Here, V depends only on the three-vector p; since the
nucleons are on the mass shell and consequently
(po); =E;=Qp, . +m .

In the above example, by substituting Eqs. (B6) and
(B9) into Eq. (B2) we can see explicitly that

NN cross section from a relativistic T matrix

Voa= X V (B1 1)

Actually, each V (a is a scalar, pseudoscalar, etc.) is
multiplied by a form factor which also has an invariant
structure [33]. We redefine V to incorporate this factor.
The T-matrix interaction based on the OBEPQ potential
obeys the relativistic BbS equation which is obtained
from the Bethe-Salpeter equation through a three-
dimensional reduction by putting the nucleons in the in-

We now turn to the consideration of how the T matrix
based on the OBEPQ version of the OBE model
developed by the Bonn group [33] is related to the transi-
tion amplitude T in Eq. (Bl). The OBEPQ potential is
obtained from a relativistic meson exchange theory and is
given by
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TQB(p p}
p /m —p" /m+ig

(B12)

The amplitude Tz~ in the above equation is a Lorentz in-
variant because VoB is an invariant and the BbS equation
preserves the Lorentz transformation property of VOB.

It is easy to see that the relationship between T in Eq.
(Bl) and TOB in Eq. (B12) is

1/2 ' ' 1/2 ' 1/2 1/2

ter mediate states also on the mass shell, i.e.,
(po ); =E; =Qp; +m . The resulting equation retains the
covariant form of the Bethe-Salpeter equation and the
corresponding T matrix satisfies the relativistic elastic un-
itarity relation. In the NN c.m. system, the equation
reads [39]

TQB(p p) VQB(p p}

d p"—+ VoB p' p"

by Eq. (B3) reads
'2

I TO B ( P', P ) I

', (B18)

which is the nonrelativistic expression for the NN cross
section.

T„,(p', p) = V„„(p',p)

+ J d'p" V„,(p', p")

X
2 2 T„,(p",p) .

p /m —p" /m+iq
(B19)

NN cross section from a nonrelativistic T matrix

The nonrelativistic T matrix, T„„obeys the LS equa-
tion which in momentum space reads (in the NN c.m.
frame)

T(p', p) =

since then we have

T(p', p)=m ToB(p', p),

TOB(P P}
E,

p

(B13)

(B14)

It is clear that in the above equation, if the NN poten-
tial V„, is Galilean invariant, then T„, will also be Galile-
an invariant. In other words, the LS equation preserves
the Galilean transformation property of the NN potential
V„,. With such a T matrix, the NN cross section can be
obtained trivially and consistently from Eq. (Bl) in the
nonrelativistic limit with

as it should be.
The consistency of Eqs. (B13) and (B14) with the sim-

ple example of the Born approximation as discussed in
the previous section is evident if we consider only the first
term on the right-hand side of Eq. (B12).

If we now multiply both sides of Eq. (B12) by the fac-
tor Qm /E~ Qm /E~ and define the quantities

' 1/2 1/2
m m

oB(P' P}= VQB(p ip) 7

Ep

1/2 ' 1/2

ToB(p p}= ToB(p p}
Ep

we get

TQB(p p} VoB(p p)

+f d p" VoB(P iP

X
2 ~ ToB(P iP)

p /m —p" /m+ig
(B16)

(B17}

and, consequently, the NN differential cross section given

which is formally identical to the nonrelativistic LS equa-
tion. It is, actually, this equation that we solve to obtain
the T matrix for the OBEPQ potential.

In terms of ToB, Eq. (B13)becomes
' 1/2 ' 1/2

m m
T(p' p)= TOB(P', P } 7

Cp

T(p', p)=T„,(p', p) . (B20)

In particular, for the NN differential cross section we
have

2
do. m

dQ 4~ I T.,(p', p) I', (B21)

which is the nonrelativistic expression used to fit the NN
cross-section data. The T matrix based on the Paris po-
tential [40] was, for example, constructed using Eqs.
(B19)and (B21).

We now ask whether it is possible to use consistently
such a nonrelativistic T matrix within a relativistic ap-
proach. In other words, we seek a relationship between
the transition amplitude T in Eq. (Bl) and the T matrix
T„, in Eq. (B19) such that T given by Eq. (B2) is a
Lorentz invariant. This is not a trivial question. First of
all, most nonrelativistic T matrices are based on phenom-
enological NN potentials whose Lorentz structures are
undefined. Second, even if we knew them, the resulting T
matrices might (and probably would) have quite different
Lorentz structures from the associated potentials, for the
LS equation does not preserve the Lorentz transforma-
tion property of the NN potential. Despite these facts,
we shall show in the following that a simple relationship
between T in Eq. (Bl) and T„, in Eq. (B20) can be ob-
tained which satisfies the requirement that T in Eq. (B2)
be a Lorentz invariant and yet reproduce the NN cross-
section data according to Eq. (B21).

The LS equation can be cast into a covariant BbS equa-
tion type if we define the quantities
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T„,(p', p) =

1/2 1/2

m

1/2 1/2 (822)

tion and retains the Lorentz transformation property of
V„,. Therefore, if V„,= V„, is Lorentz invariant, T„, will

also be Lorentz invariant (=T„,) and the relation be-
tween the transition amplitude T in Eq. (Bl) and

T„,=T„,will be the same as that between T and To& in
the previous section [Eq. (813)],i.e.,

In terms of the above quantities Eq. (821) becomes

T„,(p', p) = V„,(p', p)

p+ V„, p', p"

T(p' p)
1/2 1/2

T„,(p', p)
1/2 1/2

(824)

X T„,(p",p),
p /m —p" /m+i2)

(823)

which is formally identical to the relativistic BbS equa-
tion. We, therefore, see that, with the introduction of a
minimal degree of relativity [the factor Qs~ /m Qs~ /m
in Eq. (822)] in the nonrelativistic NN potential, it is pos-
sible to convert the nonrelativistic LS equation into a rel-
ativistic BbS equation. In fact, this way of converting the
LS equation has been a common procedure [41] in order
to satisfy the relativistic elastic unitarity relation.

Unlike in the previous section, where the BbS equation
has been cast into the LS equation, the conversion of the
LS equation into a relativistic integral equation, as given
in Eq. (823), is by no means unique. However, the above
procedure allows us, with the introduction of a minimal
degree of relativity, to assure us that the resulting in-
teraction T„, obeys the relativistic elastic unitarity rela-

V„,(p', p) = A

(P' —P)'+1 '
We, then, have

' 1/2 ' 1/2

(825)

V„,(p', p) = A &p

(p' —p) +p m
(826)

Now, this can be written as an invariant

The only question now is whether V„, given by Eq.
(822) can be a Lorentz invariant quantity for a given non-
relativistic NN potential V„, whose explicit Lorentz
structure is unspecified. We argue that it is possible to
write V„, as an invariant such that in the NN c.m. frame
with the nucleons on the mass shell it will be consistent
with its definition given by Eq. (822). For example, sup-
pose that we have chosen a simple Yukawa form for V„„
1.e.,

' 1/2
(/(P 1+P2 ) }/(P 1 +P2)

nr(P 1 «P 2 «P 1 «P2 )
2m 2m

Vnr(P 1 «P 2 «P 1 «P2 ) ~

—A

(P1 —P1)'—1M' —[V (P1+P2 )' —V (P1+P2)']'/4

(827)

In the NN c.m. system with the nucleons on the mass
shell we have

P1+P2=P1+P2=O

(po); = s; =Qp;+ m
(828)

It is, then, easy to verify that Eq. (827) reduces to Eq.
(826).

We, therefore, have

T„,(p', p)=T„,(p', p) . (829)

In terms of the original nonrelativistic T matrix, T„„
which obeys the LS equation, Eq. (824) becomes

1/2 ' 1/2

T(p', p) = T„,(p', p)
E,p

(830)

which is the relation used in Ref. [14]. As has been
shown [14], this relation yields the correct result on the

energy shell for it reproduces the nonrelativistic NN
cross-section formula [substituting Eq. (830) into Eq.
(83)] as given by Eq. (821).

We observe that, although V„, can be put in an invari-
ant form (= V„,), knowledge of its explicit form is not re-
quired, since we still solve the LS equation for T„, with
the NN potential V„,. All we do, then, is use Eq. (830) to
obtain T.

We should also mention that when we refer to the on-
and off-shell behaviors of the T-matrix interaction, we are
always referring to the on- and off-shell behaviors of the
transition amplitude T which enters Eq. (Bl). Of course,
this transition amplitude has a different off-shell behavior
than, for example, the T-matrix interaction T„,. Howev-
er, if it is desired, one can always invert Eq. (830) to ob-
tain T„, and, consequently, the on- and off-shell behav-
iors of T„,.

At this point, it should be noted that the TRIUMF
group [2,3] has used the relation between the transition
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amplitude T and the Paris potential based T matrix ( T„,)

given by Eq. (B20) instead of Eq. (B30) within a relativis-
tic approach [11]. Therefore, their transition amplitudes
based on the Paris potential are larger than ours by a fac-
tor of 1/ E~./m QE&/m . This seems also to be the case
of the transition amplitudes based on the Hamada-
Johnston potential used in Refs. [12,42] as has been found
empirically in Ref. [14]. Using Eq. (B20) in a relativistic
approach is inconsistent with the way in which the non-
relativistic NN potentials were constructed. In addition,
even if we argue that the nonrelativistic potential V„, has
a Lorentz transformation property consistent with Eqs.
(Bl), (B2), and (B20), the associated T matrix T„„may

(and probably will) be inconsistent with those equations,
for the LS equation does not preserve the Lorentz trans-
formation property of the NN potential V„,.

In summary, we have shown a simple procedure for
constructing a Lorentz invariant amplitude from a non-
relativistic T matrix which obeys the LS equation. Al-
though this procedure is not unique it allows us to con-
vert the nonrelativistic LS equation into a relativistic in-
tegral equation by introducing a minimal degree of rela-
tivity in the nonrelativistic NN potential. The resulting
interaction retains the Lorentz transformation property
of the minimally modified NN potential and the NN cross
section is reproduced in a consistent way.
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