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It is pointed out that strong mixing between proton two-particle two-hole (2p-2h) 0+, 2+, intruder
configurations, and the quadrupole phonon vibrational states modifies the original quadrupole vibration-

al intensity and selection rules. This approach explains the possibility for certain states to exhibit ap-

parently both intruder and vibrational characteristics and results mainly from strong mixing of the 0+
states. We present interacting boson model calculations and compare in detail, for "Cd, the quintuplet
of levels near E„=—1.2 MeV.

PACS number(s): 21.60.Ev, 21.60.Fw

In a recent study of even-even Cd nuclei, concentrating
in particular on the two-quadrupole phonon region with
its quintuplet of states [1,2], it was pointed out that even
though extra 0+ and 2+ states are present, a picture in-
cluding large mixing between the intruder 0+,2+ proton
2p-2h excitations and the 0+,2+,4+ two-phonon triplet
does not result in a consistent picture.

In the present Comment we point out that a descrip-
tion in which proton 2p-2h excitations across the Z =50
closed shell are incorporated [3,4] together with strong
mixing, in particular for the 0+ states, leads to a rather
good description of both energies, 8(E2) values, and
quadrupole moments. Moreover the observation of in-
truder 0+,2+, ... proton 2p-2h states is supported rather
strongly by the observation of similar intruder excitations
in the Sn region (In, Ag, Sb, I nuclei) and in other mass
regions and by two-proton transfer reactions as a general
phenomenon near (or at) closed shells [5,6].

Proton 2p-2h intruder excitations can be introduced in
the interacting boson model (IBM-2) by including both
N =1 and (N =2)+(N =1) states, where N (N„) de-
scribes the number of hole (particle) bosons, respectively,
in the Cd (Z =48) nuclei, which are then mixed through
the Hamiltonian [7]

H;„=a(s st+H. c. )+P[(d d )' '+H. c. ]+5, . (1)

A consistent approach, fixing the quantity 6 which
determines the unperturbed energy of the proton 2p-2h
excitations relative to the regular states, is given by the
expression

6=2(e~ —e„) AE „,+ICE—,„,„,=4 MeV, (2)

which is presented in Ref. [4]. In Eq. (2), the single-
particle energy is modified by pairing energy and mono-
pole energy corrections as discussed in detail in Ref. [3].
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FIG. 1. (a) The intruder c ((0,+;N =3) ) amplitude squared
in the Oz+ and 03+ states when mixing the intruder (N =3) and
regular (N„=1) vibrational configurations in "Cd, as a func-
tion of mixing strength a,P [see Eq. (1)] (in units Mev). (b) The
corresponding 23+-02+ energy separation.
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FIG. 2. (a) The " Cd intruder and quadru-
pole phonon B(E2) values. The widths are
normalized to the B(E2;2,+~0&+) value (=
1000 e fm ). Values between brackets give the

Q (2,+ ) and Q (4,+ ) quadrupole moments in

units e fm . Forbidden transitions also are in-

dicated [4]. (b) Analogous " Cd B(E2) values
and quadrupole moments for the case
a=P=0.08 and charges e„,e„as discussed in

the text [4].

The IBM-2 Hamiltonians in the N =1 and N =3 sub-

spaces contain parameters that are determined as closely
as possible by observed properties in adjacent even-even
nuclei [4]. We present some of the salient features
relevant for the present discussion in "Cd in pointing
out the modifications brought about by strong mixing, in
particular for the 0+ states.

The important mixing between the 0+ two-phonon and
0+ proton 2p-2h intruder states does not modify the 02+-

23+ intruder energy difference in an important way. This
observation is most dramatically illustrated in Fig. 1. In
a two-level mixing model, the residual interaction
strength (H;„) does not appear in the final energies in a
linear way since the eigenvalues are determined by the ex-
pression

TABLE I. Comparison of the theoretical B(E2) values
without coupling Hamiltonian (a=p=O MeV) and with the
coupling as indicated (a=P=O MeV). The experimental data
are taken from Ref. [9]. B(E2;J; ~J&) (e'Im ).

E+—
0,.

Co+ +Co+
+ Q(K—E)„„@+4(H m) (i =2,3),

(3)

where (b,E)„„~=!so~—E +!. Moreover, the 2&+ and 23+
2 3

are affected by mixing such that over a large interval of
a,P strengths 0 MeV&a, P&0. 1 MeV, the Oz+-23+ energy
difference changes only very smoothly.

The vibrational E2 intensity and selection rules of a
quadrupole two-phonon triplet are modified in a decisive
way through mixing with the intruder 02+, 23+ states (see
also [8]). In Fig. 2 we present the two-phonon and in-
truder unperturbed and mixed structures using effective
charges e„=e„(N =1)=0.086 eb and e (N =3)le„
(N =1)=1.2 and all IBM-2 parameters identical with
Ref. [4]. In the unmixed case, the two sets of subspaces
are disconnected while anharmonicities in the N = 1 sys-
tem are clearly indicated [E2 transitions inside the two-
phonon 03+, 22+, 4&+ multiplet, nonvanishing Q(2&+) mo-
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FIG. 3. The corresponding experimental B(E2) values and

quadrupole moments following the conventions discussed in the

caption to Fig. 2.
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ment]. The mixing, implied by the Hamiltonian (1)
modifies both the vibrational intensity and selection rules
and gives rise to important E2 transitions connecting the
original 02+ and 23+ states to the original two-phonon
03+, 2z+, 4&+ and one-phonon 2,+ states. Some dramatic (al-
most paradoxical) changes appear.

(i) The Oz+ final state collects the characteristics of both

an intruder and vibrational excitation since the 02+~2,+

E2 rates becomes almost as large as the original, unper-
turbed, two-phonon 03+ —+ one-phonon 2&+ E2 reduced
transition probability. Moreover, many E2 transitions
deexciting the 23+ state emerge in the mixed case. These
particular features compare quite well with the experi-
mental situation (Fig. 3).

(ii) The very strong 03+ ~2z+ and very weak 03+ —+2,+

E2 transitions, as observed experimentally, are a feature
fully at variance with coexisting intruder and two-phonon
vibrational structures, but are rather well obtained in the
mixed case. The difference is even more accentuated in
the data for " Cd. The interfering E2 components, giv-

I

10,'&= 10+;N.=l &+ 10~+;N.=3&,1 — 1

10+ &
= — 1oz+;N„= 1 &+ 10~+;N„=3&,

1 — 1
(4)

with the 2,+ wave function given as

12,
+

& —= 12,+;N = I &+812'+,'N„=3& .

This results in the following E2 matrix elements

ing rise to these B(E2) values, depend in a rather sensi-
tive way on some of the model parameters (b„.. . ), and it
is consistent that a further decrease in the
B (E2;23+~0z+) value will result in increasing

B(E2;03+~2z+) and decreasing B(E2;03 ~2&+) values.
These arguments are made more quantitative by making
some approximations to the realistic wave functions ob-
tained in the case of" Cd [4]. The Oz+ and 03+ wave func-
tions are almost equally mixed, i.e.,

&2,+11M(E2)110z+ & —= &2i+,N = 111M(E2)110z+;N =1&+ —&2i+,'N =311M(E2)110,+;N =3 &, (6)

&2;;N.= IIIM(E2)lloz', N. =»+ '
&2,+;N.=311M(E2)110,+;N. =3 &, (7)

with the "unperturbed" E2 matrix element & 2,+;N =111M(E2)110z+',N =1 &
= —0.33 eb and

& 2&+,N =311M(E2)110,+;N =3 &
= 1.26 eb having opposite sign and, with the numerical value of c.—= —0. 12 [4], the ma-

trix elements (6) and (7) result in constructive and destructive interfering parts, respectively. In the same spirit, the 2z+

(23+) wave functions can be approximated as

12z' & -=y 12z+;N. = »+SI2~+;N. =3 &,

123+ &
—= —fil2z+;N. = 1 &+y 12'+;N. =3 &,

with the 03+ ~22+ E2 matrix element

&22 IIM(E2)1103 &= —&2z 'N =111M(E2)1102 'N =1&+ —&21 'N =311M(E2)IIO;N =3& . (9)

Using the numerical values of y =——0.9, 5-=—0.3, and the two-phonon vibrational (N = 1) Oz+ —+Zz+ E2 matrix ele-
ment &2z ', N =111M(E2)110z ', N„= 1 &

= —0.28 eb [4], the matrix element (9) also gives rise to constructive interfer-
ence, even more strongly than in the case of the 02+ ~2&+ E2 matrix element.

In the same spirit, the analysis for the 23+, 22+ —+2&+ E2 transitions can be made using the 2+ wave functions as depict-
ed in Eqs. (5) and (8). The reduced E2 matrix elements become

&2i'IIM«»112z' & =—y&2i'». =111M(E»112z'».=1&+fis&»+ N-=311M(E2) 112+ N =3 &

&2,+11M(E2)1123+&
-=—5&2,+;N„=111M(E2)112z+;N =1&+ye&2,+;N„=311M(E2)112,+;N =3& .

(10)

Using the above numerical values of y, 6, and
c. and the separate reduced matrix element

& 2,+;N~ = IIIM(E2) II2 »z+= 1 &
= —0.83 eb,

&2i '» =311M(E2)112]+,'N =3&=0.90 eb,
constructive and destructive interference for the two
transitions in Eq. (10), respectively, occur. With small
changes to the numerical values obtained in [4], the des-
tructive interference can even give rise to an almost van-
ishing 23 ~2&+ E2 matrix element.

So, a number of specific effects at variance with the
simple quadrupole two-phonon picture can be understood
in a consistent way. This can be judged best by compar-
ing the mixing situation of Fig. 2 with the data, presented
in Fig. 3. Details of this comparison are presented in
Table I also.

In conclusion, we stress again that strong mixing be-
tween the low-lying intruder 0+, 2+ proton 2p-2h excita-
tions with the quadrupole two-phonon states modifies the
two unperturbed structures of Fig. 2(a) resulting in a to-
tally new picture. Thereby we are able to describe most
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aspects of a complicated system like the quintuplet of lev-
els in "Cd rather well. Moreover, this picture is not
only adjusted to this well-documented case but applies to
the other even-even Cd nuclei too, encompassing the
changes implied by the specific energy dependence of the
proton 2p-2h excitations near Z=50 as a function of
neutron number N. A more extensive study, using the
methods of Ref. [4] and applied to the larger set of even-
even Cd nuclei, is in progress.
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