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An expression, previously derived, which relates the energy-weighted sum rule for orbital mag-
netic dipole (M1) excitations to summed electric quadrupole (E2) strength, is further developed.
It is shown that with a quadrupole-quadrupole interaction, the energy-weighted M1 strength is
proportional to the difference in summed isoscalar and isovector E2 strengths.
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In the same issue of Physical Review C (Decem-
ber 1991) there are two articles that relate the energy-
weighted orbital M1 strength to the summed E2 strength
[1,2]. The current authors used a simple quadrupole-
quadrupole (@ - Q) interaction between nucleons; the re-
sults of Heyde and De Coster were obtained in the frame-
work of the interacting boson model (IBM-2). The corre-
lation between orbital M1 and E2 strengths in deformed
nuclei was first pointed out by Ziegler et al. [3] and Ran-
gacharyulu et al. [4]. Previous work on M1 sum rules
was reported by Halemane et al. [5] and by Zamick et al.
[6].

We now find that the main results of our previous work
[Egs. (3.9) and (3.11)] can be further developed to give
sharper expressions for the relation between summed or-
bital M1 and summed E2 strengths. Before proceeding
to this, let us first list some errata in the previous paper
[1):
(i) In Eq. (2.4), the minus sign should be removed.
Thus x=0.1324 following Eq. (2.5). (ii) In the right-
hand side of Eq. (3.7), the coefficient (6 + 2m?) of the
Y2,m(1)Y2,—m(j) term should be (12 + 2m?). (iii) In the
right-hand side of Eq. (3.8), the factor 18v/5 should be
24. (iv) In the right-hand side of Eq. (3.9), the factor 135
should be replaced by 36+/5. (v) In Eq. (3.10), a minus

J

sign should be added to the right-hand side.

All these changes do not affect any of the numerical
results presented in that paper [1].

We are now ready for the further developments. As in
the previous paper [1], we use a pure Q - Q interaction:

Ny Nv
Vo= —\/B_XerrJZ-[Y;z x YJ."’]LzO = *szq(i,j),
>3 i>j

(1)

where Ny represents the number of active nucleons. In
shell model calculations, Ny refers to the number of nu-
cleons in the model space used. The most realistic value
for Ny is A, the mass number of the nucleus under con-
sideration. We choose x to be 240/A4%3b% with b deter-
mined by hw = h%/mb® = 45A4~1/3 — 254-2/3_ In the
above equation, we have defined v,(3, j) as

vg(4,4) = VBriri[¥2 x Y770 (2)

The method of double commutators for evaluating the
energy-weighted sum rule for M1 excitations is amply
described in Ref. [1]. The value of the energy-weighted
sum rule for orbital M1 transitions is

S5¥ (orbital) = 9{%(03 D7 (tes — o) riri Y2 x YR 08)

2,7=1

_gx . .
= 76205 | D (1= 4ta it 5)ve(5,)I07)
ii=1

where t,; = +1.
The E2 strength for the transition from a ground state
|0F) to an excited state |2}) is given by
Ny
B(E2;ep,en)g—s = |25 | eiri Y2 105)1%, (4)
i=1
46

@)

where the double bars signify a reduced matrix element
d la Edmonds.

The quantities e, and e, are the probe-dependent
charges. For electroexcitation we have e,=1 and e,=0.
The value of the summed E2 strength can be obtained
from Eq. (4) by using closure:
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Sga2(ep,en) = Z B(E2;ep,en)g—s

f
Ny
= V5(0F| D eierir?[¥2 x YAE=0\07)
1,j=1
Ny
= (071 D eiejvg(4,5)[07). (5)
3,j=1

By comparing Egs. (3) and (5) we get the main result:

S371 (orbital) = 19_6);'[ Spa(ep=1,e,=1)
—SE‘Z(ep:laen:_l)]: (6)

where M1 strength is in units of u% and E2 strength
in units of e?fm?. We thus see that we have related the
energy-weighted sum rule for orbital M1 strength to the
difference of the summed isoscalar (e, = 1,e, = 1) and
summed isovector (e, =1, e, =-1) E2 strengths.

We can further relate the energy-weighted sum rule for
the orbital M1 strength to the ground state energy. To
this end, let us divide the summed E2 strength into two
terms (i # j and ¢ = j) as

Ny Ny
Spa(ep,en) = (07| Y eiejvg(i, 5) + ) _ €ieivg(4,4)[07)
i i=1

Ny
=2(0F1)_ eie;vq(i, 4)I0F)
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. 9
Sif(orbital) = 2 [S(1,1) = Spp(L, -1 (8)

It is easy to see that Sg,(1,1) is proportional to the
ground state potential energy for the Ny walence nucle-
ons:

Spa(1,1) = —%Eg )
with
By = (0 1%4105) = x(051 v (@, 0)l05).  (10)

To evaluate Sg,(1, —1), we introduce the following oper-
ator in isospin space:

0;},(1:2) = Z <1:m1v1’m2IA?u>tm1(1)tm2(2)v (11)

mi,m2

where the quantity with “( )” is a Clebsch-Gordan coef-
ficient, ti1=q:715ti and to=t,. For A=2, u=0 and \=0,
p=0, we have

03(1,2) = 22l ta(De-a(2) +26:(1)t:(2)
+t_1(1)t+1(2)], (12)

08(1,2) = %{ b1 (D)t-1(2) — t2(1)t2(2)

o1 (1)t41(2)]
i>j 1
= ——=t; - . 13
5 01X 2. i "
— (0t 2410+
+4ﬂ- (05l z; €;7i107) From the above two equations we have
1=
o " 1
= Sm2(€p:n) + 2. @) t(D6(2) = 5 [VBOR(1,2) - v30§(1,2)]
Clearly the second term S%, (with i=j5) is common to N3 1
the isoscalar and the isovector F2 strengths and does =—02+t; - ts. (14)
not contribute to the right-hand side of Eq. (6). We can 8 3
thus rewrite Eq. (6) as follows: Therefore we obtain
J
Nv
B2(L,—1) = (0F | D 4t (i)t (5)vq(4, 5)10F)
i#]
2 .. .
= 20071 [4V608(5,) + 4t - 5] vq i, 1)10F). (1)
i<j
[
The expectation of the O2 term in the above equation ~ So S}, (1, —1) is also proportional to E,:
vanishes for a ground state with isospin zero (e.g., 2°Ne). 9
However it has a nonzero value for a ground state with a oa(l,—1) = — E, (7)
nonzero isospin (e.g., 22Ne). 3x
In a system with two valence protons and two valence d Ea. (8) b
neutrons (e.g., 8Be, 2°Ne), we have and Eq. (8) becomes
. 9 2 3
(OF1 D" 4t - 50, )I0F) = —(0F1 3" vg (i, 9)10F) Sin (orbital) = — 7= [2E9 + gE] = “onle

1<J i<j

(for Ny =4, T, =0). (16)

(for Ny =4, T, =0). (18)
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As an application of the relation (18), we perform a
shell model calculation for the ground state in 2°Ne us-
ing the Q - Q interaction with x=0.1646 MeV/fm*. We
treat this nucleus as an inert 60 core plus four active
1s-0d nucleons (Ny=4). The calculated ground state en-
ergy is -19.0615 MeV. According to Eq. (18), the energy-
weighted sum rule for the orbital M1 strength (in this
case the spin M1 strength vanishes) is 9.101 MeVp%.
This is the same as the value given by the shell model
calculation in which we calculate the energy-weighted
M1 sum rule by explicitly summing up the contributions
(Ef — Eg)B(Ml)O;_'I? from all the final 17 states in

20Ne.
According to Egs. (9) and (17) we have

Sha(1,1) = 231.59 €*fm*, S, (1,—1) = —77.20 e*fm*.

The summed isoscalar and isovector E2 strengths
Sg2(1,1) and Sg2(1,—1) can be obtained by adding to
S%2(1,1) and Sg,(1,—1) the common term S%, which

appeared in Eq. (7). We have (Zﬁ"l rd) = 667 13 fm*.
Therefore

5
Sg2(1,1) = Sko(1,1) + 1o X 667.13
= 497.03 e*fm*, (19)

Sg2(1,—1) = Spo(

= 188.24 e*fm*. (20)

5
1,-1 — X 667.13
—D+ 4T X

For a ground state with a nonzero isospin, the right-
hand side of Eq. (15) can be expressed as a product of
the two-body matrix elements (TBME) of the transition
operator and the two-body transition density (TBTD)
from the ground state to the ground state of the nucleus
considered. The TBTD can be obtained from the shell
model program.

A little thought on the matter shows that it is the-
oretically more satisfying to relate the energy-weighted
orbital M1 strength to a difference in summed E2
strengths (isovector-isoscalar) rather than to the summed
E?2 strength itself. For example, either in the limit of no
Q-Q interaction at all or in the case of the closed shell nu-
cleus, one can still have E2 transitions but not M1 tran-
sitions with AE=2kw. Of course in the above limits, the
isoscalar and isovector E2 strengths are identical so the
difference is zero. Even in the Ohiw space, when one ap-
proaches the vibrational limit, although B(M1) vanishes,
B(FE2) does not—the dominantly isoscalar transition to
the one-phonon 21 state is rather large. One needs some
other term to make the vanishing of M1 strength consis-
tent with the nonvanishing of E2 strength. The isovector
strength plays this role.

It should be emphasized that the relation (6) is valid
as long as the left-hand side and the right-hand side are
treated on the same footing. For example, one can treat
20Ne as a system of 20 nucleons instead of only four
valence nucleons as we did in the shell model calcula-
tion. Omne would then introduce the multiple-particle,
multiple-hole configuration mixing to the ground state
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and both the left-hand side and the right-hand side of
Eq. (6) would have new values.

We now give a crude estimate of the effects of AN=2
mixing on the summed B(E2) strength. We first write
down the energy-weighted sum rule for the E2 strength.
With the simple interaction V; which contains no isospin
dependence, we have equal isoscalar and isovector sum
rules (A=2):

> (Ef — E;)B(E2;1,1)

f
_Z(Ef_

__)‘(2)“*‘1) 22-2y _
S om T a4 ArTT) =

)B(E2;1,-1)

h% 50, ,
amar AT (@
where (Ar?) is the mean square matter radius.

In the absence of correlations, the isoscalar and isovec-
tor particle-hole J™=2" states are at excitation energies
of 2hiw. However an isospin-independent Q - @ interac-
tion will bring the isoscalar quadrupole state down to
V2hw but leave the isovector state at 2hw. (With more
realistic interactions, as noted by Bohr and Mottelson
[7], the isovector quadrupole state goes up in energy to
about 3.1Aw. However in this work, we will carry through
with the consequences of our simpler model.) We get the
isoscalar and isovector strengths by dividing the energy-
weighted strength by /2hw and 2hw, respectlvely For
(Ar?) we take the oscillator result: (Ar2) = 3" b2, where
b is the oscillator length, 3 is the sum of (N + 3) over
occupied orbits with NV the number of quanta. We obtain

isoscalar strength = \/— Z b,

isovector strength = — Z b,

For 160, 3" is equal to 36 and b is taken to be 1. 726 fm.
We find the summed 2hw strength is 449.45 €2 fm* (this
is comparable to the Ofiw strength in 20Ne) and the corre-
sponding isovector strength is 317.81 €2 fm*. The change
in the right-hand side of Eq. (6) due to the AE=2kw E2
strengths is 2.914%.

The AN=2 contribution to the orbital M1 strength
has been considered in Refs. [8-11]. We wish to pursue
this point in the near future. We also intend to readdress
the sum rule technique with more realistic interactions.
Even for a @Q - Q interaction, one can make things more
realistic by introducing a t; - t5 term.

Note added in proof. In the SU(3) limit, the quantity
Sg2(1,1) in Eq. (6) consists of a single 2+ state. This
is the J = 2% member of the ground state rotational
band. Likewise, the sum Sgs(1,—1) involves only one
term which can be regarded as the J = 27 member of
the K =1 “scissors mode” rotational band.
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