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Relation between E2 and orbital Ml transition strengths
using a Q ~ Q interaction: Further developments
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An expression, previously derived, which relates the energy-weighted sum rule for orbital mag-
netic dipole (Ml) excitations to summed electric quadrupole (E2) strength, is further developed.
It is shown that with a quadrupole-quadrupole interaction, the energy-weighted Ml strength is
proportional to the difFerence in summed isoscalar and isovector E2 strengths.

PACS number(s): 23.20.Js

In the same issue of Physical Review C (Decem-
ber 1991) there are two articles that relate the energy-
weighted orbital Ml strength to the summed E2 strength
[1, 2]. The current authors used a simple quadrupole-
quadrupole (Q Q) interaction between nucleons; the re-
sults of Heyde and De Coster were obtained in the frame-
work of the interacting boson model (IBM-2). The corre-
lation between orbital Ml and E2 strengths in deformed
nuclei was first pointed out by Ziegler et aL [3] and Ran-
gacharyulu et aL [4]. Previous work on M1 sum rules
was reported by Halemane et al. [5] and by Zamick et at.

We now find that the main results of our previous work
[Eqs. (3.9) and (3.11)] can be further developed to give
sharper expressions for the relation between summed or-
bital Ml and summed E2 strengths. Before proceeding
to this, let us first list some errata in the previous paper
[1]:

(i) In Eq. (2.4), the minus sign should be removed.
Thus y=0.1324 following Eq. (2.5). (ii) In the right-
hand side of Eq. (3.7), the coefficient (6+ 2rn2) of the
'Y2 (i)Y2 (j) term should be (12+2m ). (iii) In the
right-hand side of Eq. (3.8), the factor 18v 5 should be
24. (iv) In the right-hand side of Eq. (3.9), the factor 135
should be replaced by 36+5. (v) In Eq. (3.10), a minus

where N~ represents the number of active nucleons. In
shell model calculations, N~ refers to the number of nu-
cleons in the model space used. The most realistic value
for Nv is A, the mass number of the nucleus under con-
sideration. We choose y to be 240/Asfsb4 with b deter-
mined by hu = h /mb = 45A fs —25A 2fs. In the
above equation, we have defined vq(i,j ) as

vg(i, j) = V 5r, r [Y, x Y ] (2)

The method of double commutators for evaluating the
energy-weighted sum rule for M1 excitations is amply
described in Ref. [1]. The value of the energy-weighted
sum rule for orbital Ml transitions is

sign should be added to the right-hand side.
All these changes do not affect any of the numerical

results presented in that paper [1].
We are now ready for the further developments. As in

the previous paper [1], we use a pure Q Q interaction:

Nv Nv

V, =-v5~) r,'r,'[Y,'x Y,']'='—= -~) v, (i, j),
i&j i&j

(O+I ) (1 —4t, ,t, ,)v, (i, j)IO+),
.,j=1

(3)

where &, ,, = 6&.
The E2 strength for the transition from a ground state

Io+) to an excited state I2f ) is given by

Nv

+(E2i ep e )g f = l(2f II ):e'r,'Y'llo,+) I', (4)

where the double bars signify a reduced matrix element
a ta Edmonds.

The quantities e„and e„are the probe-dependent
charges. For electroexcitation we have e„=l and e„=o.
The value of the summed E2 strength can be obtained
from Eq. (4) by using closure:
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S@z(e„,e„):—) B(E2;e„,e„)g~f
f

S~&(orbital) = [Sz2(1,1) —S@z(1,—1)] .16' (8)

&v
= v5(0+I ) e,e~ r;r. [Y; x Y ]

=
IO+)

It is easy to see that S&s(1,1) is proportional to the
ground state potential energy for the Nv valence nucle-
ons:

Nv
= (o,+I ) . e*e&v.(i j)lo,+) (5) S@2(1,1) = E—g—/ 2

x '
with

By comparing Eqs. (3) and (5) we get the main result:

S~~(orbital) = [ S@z(e„=l,e„=1)
9y
16'

—S@z(e„=1,e„=—1)], (6)

Nv
= 2(0g+I ) e,e~vg(i, j)IOg+)

where Ml strength is in units of p& and E2 strength
in units of e2 fm . We thus see that we have related the
energy-weighted sum rule for orbital Ml strength to the
difference of the summed isoscalar (eg = 1,e„=1) and
summed isovector (e„=1, e„=—1) E2 strengths.

We can further relate the energy-weighted sum rule for
the orbital Ml strength to the ground state energy. To
this end, let us divide the summed E2 strength into two
terms (i g j and i = j) as

Nv Nv

S@s(e»e„)= (Og+I) e,e~vg(i, j) + ) e,e,vg(i, i)IOg+)
i=1

Eg = (og l&g log ) = x(Og I ) .vq(i j)log ).

To evaluate S&s(1,—1), we introduce the following oper-
ator in isospin space:

0„"(1,2) = ) (l, mq, l, m2I&, p)t, (1)t,(2),
mg )f6'

where the quantity with "( )" is a Clebsch-Gordan coef-
ficient, tyq=p~ty and ts=t, . For %=2, p=O and A=O,

p=0, we have

Oe(1, 2) = [ t+g(l)t g(2) + 2t, (1)t,(2)
1

6
+t-~(1)t+~(2)]

00(1,2) = [ t+y(1)t r(2) —tg(1)t, (2)
3

+t-~(1)t+~(2)]

Nv

+—(og I ) .e'&'IOg )
i=1

= S~,(e„,e„)+ Sg, .

From the above two equations we have

t, (1)t, (2) = — v 60s(1, 2) —v 30s (1,2)

(13)

Clearly the second term S&2 (with i=j) is common to
the isoscalar and the isovector E2 strengths and does
not contribute to the right-hand side of Eq. (6). We can
thus rewrite Eq. (6) as follows: Therefore we obtain

2 1
OO + -t1 t2. (14)

Nv

Sa2(l, —1) = (0+I ) 4tg(i)tg(j)vq(i, j)lo+)
ivy j

=-(0+I) 4v600(i, j)+4t; t v (i, j)IO+).
i&j

The expectation of the Oo2 term in the above equation
vanishes for a ground state with isospin zero (e.g. , ~ONe).
However it has a nonzero value for a ground state with a
nonzero isospin (e.g. , Ne).

In a system with two valence protons and two valence
neutrons (e.g. , sBe, 2ONe), we have

(Og I) 4t' t vq(' j)IO ) = (Og l).vg(' j)IOg)

So S&z(1, —1) is also proportional to Eg:

Sz2(1 —1) =
g

and Eq. (8) becomes

S~~(orbital) = — 2E + —E = E——9 2 3
16~ ' 3 '

(for Nv =4, Tg =0). (16) (for Nv = 4, Tg ——0). (18)
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As an application of the relation (18), we perform a
shell model calculation for the ground state in Ne us-
ing the Q Q interaction with y=0.1646 MeV/fm . We
treat this nucleus as an inert 0 core plus four active
1s-Od nucleons (N~=4). The calculated ground state en-
ergy is —19.0615 MeV. According to Eq. (18), the energy-
weighted sum rule for the orbital Ml strength (in this
case the spin Ml strength vanishes) is 9.101 MeVpz~.
This is the same as the value given by the shell model
calculation in which we calculate the energy-weighted
M1 sum rule by explicitly summing up the contributions
(Ey —Es)B(M1)o+ &+ from all the final 1+ states in

20Ne.

According to Eqs. (9) and (17) we have

S@2(1,1) = 231.59 e fm, Sz2(1, —1) = —77.20 e fm .

S@z(1, 1) = Szz (1, 1) + —x 667.13
4m

= 497.03 e fm, (19)

S@2(l,—1) = Szz(1, —1) + —x 667.134'
= 188.24 e2fm4. (20)

For a ground state with a nonzero isospin, the right-
hand side of Eq. (15) can be expressed as a product of
the two-body matrix elements (TBME) of the transition
operator and the two-body transition density (TBTD)
from the ground state to the ground state of the nucleus
considered. The TBTD can be obtained from the shell
model program.

A little thought on the matter shows that it is the-
oretically more satisfying to relate the energy-weighted
orbital Ml strength to a difference in summed E2
strengths (isovector-isoscalar) rather than to the summed
E2 strength itself. For example, either in the limit of no

Q Q interaction at all or in the case of the closed shell nu-

cleus, one can still have E2 transitions but not Ml tran-
sitions with DE=25~. Of course in the above limits, the
isoscalar and isovector E2 strengths are identical so the
difference is zero. Even in the OLu space, when one ap-
proaches the vibrational limit, although B(M1) vanishes,
B(E2) does not —the dominantly isoscalar transition to
the one-phonon 2+ state is rather large. One needs some
other term to make the vanishing of Ml strength consis-
tent with the nonvanishing of E2 strength. The isovector
strength plays this role.

It should be emphasized that the relation (6) is valid
as long as the left-hand side and the right-hand side are
treated on the same footing. For example, one can treat

Ne as a system of 20 nucleons instead of only four
valence nucleons as we did in the shell model calcula-
tion. One would then introduce the multiple-particle,
multiple-hole configuration mixing to the ground state

The summed isoscalar and isovector E2 strengths
Szz(1, 1) and S@z(1,—1) can be obtained by adding to
S@z(1,1) and Szz(1, —1) the common term S&z which

appeared in Eq. (7). We have {P,. ~
r4) = 667.13fm .

Therefore

and both the left-hand side and the right-hand side of
Eq. (6) would have new values.

We now give a crude estimate of the eKects of AN=2
mixing on the summed B(E2) strength. We first write
down the energy-weighted sum rule for the E2 strength.
With the simple interaction V~ which contains no isospin
dependence, we have equal isoscalar and isovector sum
rules (A=2):

) (Ey —Eg)B(E2; 1, 1)
f

= ) (Ey —Eg)B(E2;1,—1)
f

A(2A+ 1) (~~z„z) 5 50
(~r2)

2m 4m 2m 4m
(21)

where {Ar2) is the mean square matter radius.
In the absence of correlations, the isoscalar and isovec-

tor particle-hole J =2+ states are at excitation energies
of 2hu. However an isospin-independent Q Q interac-
tion will bring the isoscalar quadrupole state down to
~2hu but leave the isovector state at 2hu. (With more
realistic interactions, as noted by Bohr and Mottelson
[7], the isovector quadrupole state goes up in energy to
about 3.1hv. However in this work, we will carry through
with the consequences of our simpler model. ) We get the
isoscalar and isovector strengths by dividing the energy-
weighted strength by v 2hu and 2hcu, respectively. For
(Ar ) we take the oscillator result: (Arz) = P bz, where
b is the oscillator length, P is the sum of (N + z) over
occupied orbits with N the number of quanta. We obtain

25 4isoscalar strength = y 2—) b,8'
25 4isovector strength = —) b .8'

For ~ 0, Q is equal to 36 and b is taken to be 1.726 fm.
We find the summed 2hu strength is 449.45 e2 fm (this
is comparable to the Ohu strength in oNe) and the corre-
sponding isovector strength is 317.81 e2 fm . The change
in the right-hand side of Eq. (6) due to the b,E=25~ E2
strengths is 2.9lp~.

The AN=2 contribution to the orbital Ml strength
has been considered in Refs. [8—ll]. We wish to pursue
this point in the near future. We also intend to readdress
the sum rule technique with more realistic interactions.
Even for a Q Q interaction, one can make things more
realistic by introducing a tq t2 term.

Note added in proof In the SU(3) lim. it, the quantity
S~2(1,1) in Eq. (6) consists of a single 2+ state. This
is the J = 2+ member of the ground state rotational
band. Likewise, the sum S@q(1,—1) involves only one
term which can be regarded as the J = 2+ member of
the K = 1 "scissors mode" rotational band.

We thank Donald W. L. Sprung for a critical reading
of the manuscript and Elvira Moya de Guerra for use-
ful comments. One of us (L.Z.) was supported by the
U.S. Department of Energy under Contract No. DE-
FG05-86ER-40299. The other (D.C.Z.) was supported
by NSERC, Canada, under research Grant No. A-3198.



46 BRIEF REPORTS 2109

[1] L. Zamick and D.C. Zheng, Phys. Rev. C 44, 2522 (1991).
[2] K. Heyde and C. De Coster, Phys. Rev. C 44, R2262

(1991).
[3] W. Ziegler, C. Hangecharyulu, A. Richter, and C. Spieler,

Phys. Rev. Lett. 65, 2515 (1990).
[4] C. Rangacharyulu, A. Richter, H.J.Wortche, W. Ziegler,

and R.F. Casten, Phys. Rev. C 43, R949 (1991).
[5] T.R. Halemane, A. Abbas, and L. Zamick, J. Phys. G 7,

1639 (1981).
[6] L. Zamick, A. Abbas, and T.R. Halemane, Phys. Lett.

103B, 87 (1981).

[7] A. Bohr and B.R. Mottelson, Nuclear Structure (Ben-
jamin, New York, 1975), Vol. 2, pp. 508—513.

[8] E. Garrido, E. Moya de Guerra, P. Sarriguren, and J.M.
Udias, Phys. Rev. C 44, 1250 (1991).

[9] I. Hamamoto and C. Magnusson, Phys. Lett. B 260, 6
(1991).

[10] D. Zawischa, M. Macfarlane, and J. Speth, Phys. Rev. C
42, 1461 (1990).

[11] A. Faessler, R. Najarov, and F.G. Scholtz, Nucl. Phys.
A.515, 237 (1990).


