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Isoscalar transition probabilities [ B (ISA)] have been obtained from the analysis of inelastic « scatter-
ing using double-folded optical a-nucleus potentials. The reliability of the proposed method was tested
by applying it to three nuclei representing limiting cases of nuclear structure models. Data on ***Pb have
been analyzed at E,=23.5, 79.1, 104, and 139 MeV using the hydrodynamical model. For '**Er
(E,=36 MeV) the model of the asymmetric rotor and for '®Pd (E,=30.5 MeV) the model of the har-
monic vibrator was considered. Excellent agreement of the extracted B(ISA) values with the corre-
sponding B(EA) values (obtained from electromagnetic probes) has been reached. The result of a life-
time measurement for the two-quadrupole-phonon 4™ state at 2055 keV in '%8Er has been confirmed.

PACS number(s): 23.20.Js, 25.55.Ci, 24.10.Eq

I. INTRODUCTION

A crucial test of the theoretical understanding of col-
lective low-lying nuclear excitations is whether the deex-
citation of these levels can be predicted correctly by the
model in question. Since low-lying states are considered,
one needs the experimental knowledge of the reduced
electromagnetic B(EA) or B(MA) values and therefore
one is normally restricted to multipoles with A<2. On
the other hand, most nuclear models have to incorporate
higher multipoles (octupole, hexadecapole, etc.) to suc-
cessfully describe even the lowest excited states in a nu-
cleus.

The use of inelastic scattering of hadronic probes to
gain information on surface vibrations or permanent de-
formation of the nuclear shape has a long history (see,
e.g., Bernstein [1]). Especially the analysis of inelastic a
scattering has widely been used to extract this informa-
tion, since the strong absorption of a particles in nuclear
matter restricts the interaction to the surface and thus to
the region where the effects of surface vibration and nu-
clear deformation are expected to be strongest. More-
over, the a particle interacts with protons and neutrons
yielding information on mass transition densities,
whereas Coulomb excitation and (e,e’) probe only the
charge distribution of the nucleus. The high binding en-
ergy and the zero spin and isospin of the a particle make
the interpretation rather uncomplicated, but restricts the
information to isoscalar properties of the nucleus. The
Satchler theorem [2] connects the multipole moments of
the optical potential to those of the matter distribution.
If one assumes that protons and neutrons move in phase
with the same amplitude, these moments are also con-
nected to the electromagnetic transition probabilities.
The use of the Satchler theorem is only justified if the op-
tical potentials have been obtained from a proper folding
procedure.

In a systematic investigation of elastic and inelastic a
scattering on p- and sd-shell nuclei [3-6] it has been
shown that the use of double-folded optical potentials in
optical model as well as in coupled channel calculations
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describes the experimental data very well. These poten-
tials are calculated from mass densities deduced from ex-
perimental charge distributions [7] and a density-
dependent M3Y effective nucleon-nucleon interaction [8].

From the deformation parameters of these deformed
optical potentials we calculated isoscalar transition
strength values which compare favorably with the results
from electromagnetic probes. In contrast to many inves-
tigations, which use a Woods-Saxon parametrization of
the optical potential, these folded potentials are appropri-
ate to the use of the Satchler theorem.

The success of these calculations motivated the present
investigation which applies this method to the heavy dou-
ble magic nucleus 2°®Pb, the deformed rare-earth nucleus
188Er, and the spherical nucleus '®Pd. Our main aim is
to show that the consistent treatment of the analysis of
inelastic a scattering allows us to extract reliable isoscal-
ar transition probabilities not only for transitions, which
can be compared to the values obtained from electromag-
netic probes, but also for higher multipole transitions not
accessible by other methods.

Many experimental and theoretical investigations have
been devoted to the elastic scattering of a particles on
208pp and to the inelastic scattering to the first excited
collective 3™ state at 2.6 MeV in this isotope [9-12]. We
include a reanalysis of these data to demonstrate the suc-
cess of our method in the description of both the elastic
scattering and the inelastic excitation of this highly col-
lective octupole vibrational state. It is beyond the scope
of the present contribution to discuss the subtle
differences of the proton and neutron mass and transition
densities, which could be extracted on the basis of the ex-
tensive data sets at E,=104 (Ref. [11]) and 139 MeV
(Ref. [12]) bombarding energy.

The level scheme and the transition probabilities of the
0%,2%,47 triplet in '%Pd exhibit the features of an al-
most unperturbed harmonic vibrator. The extensive data
set on elastic and inelastic scattering of a particle on this
nucleus of Riech et al. [13] allows a detailed test of our
method for spherical nuclei.

Besides the fact that '%®Er is one of the most extensive-
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ly studied deformed nuclei, the reanalysis of the !$®Er
data of Govil et al. [14] was further motivated by a re-
cent measurement of the lifetime of the 4;3, level at 2055
keV in this nucleus [I15]. The ratio R(4;)
=B(E2,4],—2)/B(E2,2] —0; ) obtained from the
lifetimes of the 47, and 2+ levels is quoted to be
0.52 <R(4; )<1.61 and estabhshed the existence of a
two-phonon K"=4" gamma vibration in '*®Er. This
state is also observed in the spectra of inelastic a scatter-
ing of Ref. [14], and was included in our analysis to test
whether the R (4+ ) value of Ref. [15] can be reproduced.
We also want to contnbute new information on the hexa-
decapole degree of freedom, which plays an important
role in some theoretical descriptions as, for example, the
sdg-interacting boson model [16].

In Sec. IT we will outline the methods used to analyze
the experimental data of inelastic a scattering using a
double-folded a-nucleus optical potential on spherical
and on deformed nuclei. In Sec. III the results of the
coupled channel calculations will be presented and the
deduced isoscalar transition rates will be compared to
data obtained from electromagnetic probes. These results
will be summarized in Sec. IV which also concludes this
investigation.

II. COUPLED CHANNEL ANALYSIS

A. Double-folded optical potential

The calculations of the optical potentials were carried
out in the framework of the double-folding model. The
real part of the optical potential is described by

Up(t)=Ag [ dr, [ dr,pr(r))p,(r,)
XHUE,pr,pps=r+r,—1;), (1)

where r is the separation of the centers of mass of the col-
liding target nucleus and the a particle, p(r;) and p,(r,)
are the respective nucleon densities, and A £ is an overall
normalization factor. For the effective interaction ¢ the
density-dependent form of the M3Y nucleon-nucleon in-
teraction [8] has been chosen. For the density distribu-
tion of the target nucleus p, we used the experimental
charge distribution [7] obtained from electron scattering
and unfolded from the finite charge distribution of the
proton. Since to our knowledge no information about the
neutron distributions is available for the nuclei '*Pd and
168Er, it is assumed to be N /Z times the proton distribu-
tion. In the case of the nucleus 2%Pb, a neutron distribu-
tion from shell-model calculations [17] is added to the ex-
perimental charge distribution. For the density distribu-
tion of the a particle a Gaussian form was used [18]. De-
tails of the numerical computation of the potential Ug(r)
are described in Ref. [3]. In the coupled channel calcula-
tions within the rotor model the a-nucleus interaction is
described by a deformed optical potential ¥V (r,R). In or-
der to gain a properly deformed folding potential, in a
first step the potential calculated by the double-folding
procedure is expanded in a Fourier-Bessel series of 20
terms:

vr

Ryp

20
V(r,RFB)z 2 avj() N (2)

v=1

with a cutoff radius Rgg =12 fm.

Subsequently, in the second step, an angular depen-
dence of the cutoff radius Rgg is introduced as will be
outlined in Sec. IIB2. The radial dependence of the
imaginary potential was taken as a sum of a Woods-
Saxon volume and surface term. This parametrization
turned out to be more successful than the use of a
Fourier-Bessel series with the same number of adjustable
parameters. In all calculations the Coulomb potential is
deformed in the usual way [19].

B. The coupled channel formalism

Following Tamura [19] the coupling matrix elements
can be expressed in the general form

v, \rry= 2 ZUAK(r)(\P,||Q‘“’||\I/,,)A(II,I'I’,AJ) .

(3)

The factors A(II,1'I',AJ) are purely geometric and mod-
el independent. In contrast, the other two factors, name-
ly, the radial form factor v,,(r) and the reduced matrix
elements (¥, ||Q{"'||¥; ), are model dependent.

1. The vibrational and the hydrodynamical model

The vibrational model (HVM) describes the dynamical
deformation of the spherical surface of the nucleus by the
parametrization:

R(19,¢):R0 1+ zakKYAK(Q) . 4)
Ak

By expanding the potential in powers of Y;,({2) around
the equilibrium radius R, to first order, we obtain

dV
+2R0 dr

= Vdiag + ch . (5)

V(r—R)=V(r—R —Ry)a;, Y, (D)

Generally, the coupling potential ¥, can be expressed as

VCD= 2 V(7)Y () . ©)
Ak
Thus, the radial form factor is given as
dv
vk“(r):ROE-(r—RO) . (7)

In the case of the hydrodynamical model (HDM) of Tas-
sie [20] instead of this radial dependence we have

2av
ar (r). (8)

r

v lr)=r R
0

The transition operator Q,, =a,, can be decomposed in
the usual way into operators b,, and b}, which annihi-
late and create a phonon of vibration:
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By,
=——[b; +(—1)bpF__].
= Lba H (= 11, ] ©
Using these b}, and denoting the ground state by [0), a
one-phonon state with spin A and its projection k can be
written as

|1;W,,)=b%10) . (10)

The root mean square deformation parameter B, is
defined in such a way that B2 stands for the expectation
value of 3, |a;,|? in the nuclear ground state:

Bi=(0l 3 la,,|*0) . (11)

Using these dynamical deformation operators for the
wave functions, the results for those reduced matrix ele-
ments which were used in this work are summarized as
follows.

For the transition with the multipolarity A from the
ground state to a one-phonon state we get

(1;¥,]|Q4110;0)=8,,(—1)B, . (12)
In the case of the transition from a one-quadrupole-

|

phonon state to a two-quadrupole-phonon state the re-
duced matrix elements are given by
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2(21+1)

5 (13)

(2;W1||Q2”1§‘I’2) =B,

In order to simulate anharmonicities, a mixing between
two-phonon amplitudes and one-phonon amplitudes can

be assumed in the construction of the triplet
(I=0%,2%,47) states [21]:
(W1 ) ripter = cos@y | ;W7 ) + sing, [2;%7) . (14)

The mixing allows a direct transition from the ground
state to each of the triplet states. The matrix elements
(12), (13) now have to be multiplied by cosg; in the case
of a one-phonon transition to the triplet state and by
sing; in the case of a two-phonon transition.

2. The extended asymmetric rotational model

In this section the same notation as in our previous
work [4] on 2*Mg will be used. In the asymmetric rotor
model (ARM) the shape of the nucleus is given in the
body-fixed system by expanding the radius parameter
Rgg up to A=38:

Rgp(Q')=Rgp 1+‘1on20(9')+L—azz[yzz(ﬂ')"’ YZ_Z(Q’)]+a4OY4O(Q’)+L_a42[Y42(Q')+Y4_2(Q’)]

V2

V2

1

+L—a44[Y44(Q')+ Y, 4(Q)]+agYe(Q)+ —=a6[Ye(Q)+ Y ,(Q)]+ag Ye(Q') (15)

V2

where the a;, are parametrized as follows:

Ay =PBrCOsY |, G40 =PB4COSY,, ap=PB,siny;, a;,=PB,siny,cosy;, a4 =P,siny;siny;,

and

ago=BsCcosys Qg =PBgsiny,, ag=Pg .

V2

(16a)

(16b)

In an extension of the well known model of Davydov and Filippov [22] the moments of inertia up to A=4 are given by
Baker et al. [23]. The rotational Hamiltonian H  can be expressed in terms of the moments of inertia of the deformed
nucleus [24]. The nuclear wave function ¥7,, of the nth rotational state with spin I may be written as a superposition of
the eigenfunctions of the symmetric rotor @,

Viu= X AP, (17)
K=0,2,4
with
12
PklE))= | —F— Dj(e;)+(—1)YDy,_g(e)], (18)
IMK 1672(1+ 8,g) [Dupk m—x(€)]

where D} (g;) are the Wigner rotation matrices and ¢; the Euler angles. Through the diagonalization of the collective
Hamiltonian H,,, in the ®,,,; basis, the energies of the states and the band mixing coefficients Ay are obtained [24].
In order to solve the coupled equations we have to calculate the coupling matrix elements

U V', >==<(Y1nX\I’;l)JMI]ch|(Y1'n,X‘I’?")JM1)

= X > Ak AIn”K'<(Y1"X(DI,,K)JM,‘ch|(Yl’n,xq)I'n,K’)JM,> ’ (19)
K =0,2,4 K'=0,2,4
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with

(Y, X @), = 2 iIImM|IM))Y,, (Q)® ik (20)
where Afy are the band-mixing coefficients of the wave
functions of the actual nth state with spin I, and ® ¢
are the eigenfunctions of the symmetric rotor given in
Eq. (18). The coupling potentials ¥, are derived from
the Legendre expansion of the deformed interaction po-
tential V(r,R(£’)) transformed from the body-fixed to
the space-fixed system:

V(r,R(Q))=V4iagt+Vep » 21)
Vo= 3 vlr) —\/I—E[D’};K(s,-)—i-Dﬁ_K(s,-)] Y (Q),
A, u(A0)
xk=0,2,4

(22)

|

(vilg vy = 3

K=0,2,4K'=0,2,4

C. Isoscalar transition rates and quadrupole moments

For a given mass distribution p(r) the normalized mul-
tipole moments are given in the body-fixed system as

= 1+5 [ p(Or Y, (@) + Y1 Q) ]dr

with
[ptndr=1. (26)

Expanding p(r) in spherical harmonics

p(0)="S py(F) Y} (Q) 27
Im

yields
el rdr . (28)

f k+
According to the theorem of Satchler [2,25,26] the nor-
malized mass distribution can be replaced by the normal-
ized potential, if the real part V of the effective scatter-
ing potential can be described by a folding ansatz with a
density-independent effective NN interaction (implicit
folding procedure). In this case we get

fv,m(r)r’szr .
9= _——JR——— ’
with the volume integral J; and with v,,(r) given in Eqgs.
(7), (8), or (23). In the case of the static deformation the
integral in Eq. (29) has to be calculated numerically. In
the case of the HVM or HDM the deformation is dynam-
ical and symmetrical, therefore the calculation of v,, is

with Q' referring to the body-fixed and  to the space-
fixed system.

The radial shape of the transition potential within the
ARM is given by the radial form factor v,,(r)

V. (r)= [ V(r, RGN Y, Q)+ Y3,(Q)]dQ

1
145,
(23)

with A=2,4,6,8 and k=0,2,4. Comparing Eq. (22) with
the general ansatz for the coupling potential V', given in
Eq. (6) we can see that the transition operators Q' are

just the rotation matrices:
o =—= ‘/2 (DL +D™_ ). (24)

The reduced matrix elements of the transition operator
(24) with respect to the target states (17) are therefore
given as

> AIKAIK (Pll—= ‘/ (D}‘ +D}” N ®rge) (25)

independent of the angles and of k. By partial integra-
tion, using Eq. (7), Eq. (29) reduces to

Ro(A+2) [ V(r)r*+ gy
g0~ 7 . (30)
R

In the case of the hydrodynamical model we get in an
analogous way

REMA+1) [ V(r)rPdr
9= . (31)
Ir

In reality the effective NN interaction is density depen-
dent and Eq. (28) has to be corrected accordingly.
Within the method of implicit folding these corrections
have been calculated [27,28] to be in the order of a few
percent for quadrupole excitations. Recent explicit fold-
ing calculations [29,30] for inelastic a scattering account-
ing also for dynamic density dependence give even small-
er corrections. Therefore we used Eq. (29) without any
corrections for the density dependence.

The isoscalar moments mg;, can be expressed then by
the normalized potential moments g;, multiplied by the
nuclear charge Ze for easy comparison to the electromag-
netic moments:

mISkK:=ZquK . (32)

By multiplying ISA moments with the reduced ISA ma-
trix elements for a transition I' — I we get

M, (I'—1)= zm,ww,ngmnw.') , (33)

where in the case of the HVM and the HDM the sum
reduces to one term, and n denotes again the number of
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the state with spin /. The ISA isoscalar transition proba-
bility is then given by the B(ISA) value as

BUSAMI'>I)=Q2I'+1)"'MX, (I'>1) . (34)

Furthermore, the diagonal IS2 matrix elements from the
ARM are related to the spectroscopic quadrupole mo-
ments of the excited states by

172

16 121 —
=|-= @2r—1) M,(I—1) .

5 (I+1)2I+1)(2I+3)

eQ;
(35)

III. RESULTS

All calculations have been performed using a modified
version of the coupled channel code ECIS [31]. The shape
of the real part of the optical potential was determined
from the folding procedure and the deformation parame-
ters as outlined in Sec. II. Thus besides the deformation
parameters only the normalization factor A, was allowed
to vary during the search. We want to stress the fact that
in this way also the shape of the transition densities for
the different multipolarities is fixed. For the imaginary
part of the potential and the transition form factor the
same values for the deformation length as for the real
part have been used throughout.

A. The 2%Pb(a,a’) reaction

The first excited 3~ state at an excitation energy of 2.6
MeV in 2%Pb is maybe the best example of a collective
octupole vibration, and has prompted many experimental
and theoretical investigations. It is thus an ideal case to
study the validity of the proposed method to extract in-
formation on isoscalar transition strengths.

Detailed experimental investigations of the elastic and
inelastic scattering of a particles on 2°’Pb have been re-
ported by Lilley et al. [9] at 23.5 MeV, Rutledge and
Hiebert [10] at 79.1 MeV, Corcalciuc et al. [11] at
E, =104 MeV, and Goldberg et al. [12] at E, =139
MeV. The data near the Coulomb barrier have been ana-
lyzed with special emphasis on Coulomb effects. The
data of Rutledge and Hiebert are to our knowledge the
only published angular distribution of the first excited 2;°
at 4.08 MeV in 2%®Pb measured over a substantial angular
range. The 104 MeV data have been analyzed using a
model-independent transition density to investigate possi-
ble differences in the proton and neutron strength for this
transition.

Kobos et al. [8] used the 139 MeV data to test the
folding model using a density-dependent force and also
investigated differences in the proton and neutron matrix
elements in adjusting the proton part to the B(E3) value
from electromagnetic probes.

The present analysis of these excellent experimental
data does not aim to investigate fine details of the proton
or neutron transition density, but is intended to show
that isoscalar transition densities obtained from the fold-
ing optical potential result in a good description of the

elastic and inelastic scattering of a particles of this well-
studied collective transition for different energies of the
incident particle.

First the data have been analyzed using the standard
vibrational transition form factor. For the two lower in-
cident energies very good fits to the data could be ob-
tained. The data at 104 MeV and especially at 139 MeV
could not be reproduced as well as the low-energy data.
The calculation for the 139 MeV data [dotted line in Fig.
1(d)] overestimates the data points for the 3~ state for an-
gles ®_ , > 55° by a factor of 2, even though it underesti-
mates the experimental results for small scattering angles
(@ m <20°) by about 20%. Even more striking is the
fact that the extracted B(IS3) values are systematically
much higher than the values obtained from electromag-
netic probes [32], and moreover it was not possible to ob-
tain consistent B(IS3) values for the four energies con-
sidered. Using the expression

\/(2L+1)B(EL,L—>O)=%BCZeRL (36)

for the relation of the charge density deformation param-
eter B to the electromagnetic matrix element, one ob-
tains 9.1X 10*?fm® for the two lower incident energies,
which agrees very well with the adopted value of
8.74X 10%?fm® obtained from (e,e’) experiments,
whereas the extracted B(IS3) values exceed the adopted
value by a factor of approximately 1.7.

Transition potentials obtained from the HDM have al-
ready been successfully used by Bertrand et al. [33] in
the description of giant multipole resonances from inelas-
tic scattering of 152 MeV « particles. In this investiga-
tion the transition potential was obtained in folding the
charge transition density with a nucleon-a interaction
(single folding). In the present work the transition poten-
tial is assumed to be of the form given in Eq. (8) as de-
scribed in Sec. II. As can be seen from Figs. 1(a)-1(d)
this prescription results in very good fits for all incident
energies. The parameters for the optical potentials (listed
in Table I) are similar to those obtained in a detailed in-
vestigation of elastic a scattering on 2%Pb in the energy
range 19-139 MeV (Ref. [34]). They show a smooth en-
ergy dependence revealing the expected increase in the
volume integral of the imaginary and the decrease in the
real part of the optical potential. The shape of the opti-
cal potentials is illustrated in Fig. 2 for the four energies
investigated and compared to a Woods-Saxon potential
(dashed line) obtained by Goldberg et al. [12] from a fit
to the elastic scattering data at E,,;, =139 MeV.

It has been pointed out in Sec. II that only for lead a
correction for the difference between nuclear mass and
charge distribution has been taken into account. Calcula-
tions neglecting this correction gave poorer fits to the
data, but the resulting B(IS3) value differed by not more
than 10% from the best-fit results.

As shown by Lilley er al. [9] the data near the
Coulomb barrier are sensitive to the deformation of the
Coulomb potential. The deep minimum at around
®, . =80° for the 23 MeV data is due to a destructive in-
terference between the nuclear and the Coulomb contri-
butions to the transition strength. This is illustrated in
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TABLE L. Parameters of the optical potentials for 2Pb (R, =7.11 fm, R, =6.3 fm).

(MeV)

As

w
(MeV)

’
(fm)

a
(fm)

B;

235
79.1
104

1.300
1.356
1.352
1.355

6.77
14.85
16.53
19.59

1.639
1.560
1.549
1.480

0.269
0.602
0.617
0.755

0.0486
0.0548
0.0499
0.0546
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FIG. 1. Inelastic a scattering on 2%Pb at (a) 23.5 MeV (Ref.
[9]), (b) 79.1 MeV (Ref. [10]), (c) 104 MeV (Ref. [11]), and (d)
139 MeV (Ref. [12]). The solid lines show results of calculations
within the HDM. The dotted line in (d) is calculated within the
HVM.

Fig. 3 by the dashed (8;=0) and full (B-=0) lines. This
shows the importance of the effects due to Coulomb exci-
tation at very low energies. Using a Woods-Saxon pa-
rametrization, Lilley et al. [9] had to introduce a
different deformation for the two contributions to obtain
a good description of the inelastic scattering data. The
fits shown in Fig. 1 are all performed in deforming a
charged sphere with a reduced radius r-=1.2 fm, which
corresponds to the rms radius of the charge distribution.
The deformation parameter 3., =0.110 obtained from the
fit to the data results in a B(E3) value of 8.6X 10%?fm®,
which compares very well with the extracted B(IS3)
value of 8.0X 10%2 fm®.

The fit to the 2% data at 79 MeV, shown in Fig. 1(b),
was performed using the HVM. Here one can also ex-
tract a value for the dynamical quadrupole deformation
parameter. From the fitted value of 3,=0.056 one ob-
tains a B(IS2,21—0") value of 585¢%fm* (8 W.u,
where W.u. represents Weisskopf unit), which compares
very well with the adopted value given in Ref. [35]. The
introduction of a rearrangement term {37||Q,||37) did
not significantly improve the description of the experi-
mental data. Nevertheless, the fit gave a value for this
matrix element from which one obtains a quadrupole mo-
ment of approximately 30 fm2. The absolute value is at
variance with the value given in Ref. [36]. The value of
the quadrupole moment of the 3~ level is of importance

T
208pb(or,0r') 2%8Pb

real potentials
23.5 MeV

200

100

139 MeV = \\ imaginary

\ P tentials

depth (MeV)
o

10F
23.5 MeV

o

-
10 15
radius (fm)

FIG. 2. Real and imaginary potentials used in the analyses

(solid lines). The dashed line gives for comparison the Woods-
Saxon potential used by Goldberg et al. [12].
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T T T
10° +2%8Pb(a,a')2%%Pb  23.5MeV

do/dQ (mb/sr)
3

3
3

50 100 150
Ocm. (deg)

FIG. 3. Decomposition of the excitation of the 3~ state of
208pp at 23.5 MeV. The solid line shows the result of a pure nu-
clear excitation (8, =0) and the dashed line the result of a pure
Coulomb excitation (8;=0).

in the prediction of the possible splitting of the spin
(0-6)" two octupole phonon multiplet due to the quad-
rupole interaction.

The resulting B(IS3) values are also listed in Table II.
Using the transition potential from the HDM one obtains
consistent values for the reduced isoscalar transition
probability for the four incident energies considered,
which agree well with the adopted value for the elec-
tromagnetic E3 transition probability. At the level of
precision reached in this work no conclusion on
differences in the proton and neutron moments can be
made. It should be pointed out that the present investi-
gation has reached an unprecedented degree of agreement
between experimental data and calculation.

B. The '®Er(a,a’) reaction

We have chosen '®Er to illustrate the reliability of in-
elastic a scattering for the determination of B(ISA)
values for several reasons.

Experimentally Govil et al. [14] have measured this
reaction with good energy resolution and have identified
many states with spin, parity, and rotational band assign-
ment known from other investigations. Especially from
thermal neutron capture experiments [37] a complete lev-
el scheme for all levels with spin less than 57 is known up
to an excitation energy of more than 2 MeV.

Recently the measurement [15] of the lifetimes of the
K =4" bandhead at 2055 keV and of the 5 member of
this band has for the first time evidenced the existence of
a collective two-phonon y-vibrational band as predicted,
for example, by the multiphonon model by Piepenbring
[38]. The 4" bandhead has also been observed in the
(a,a’) work of Ref. [14] and thus offers a unique possibil-
ity to compare our method with the results from lifetime
measurements for a two-phonon excitation. The
Coulomb excitation measurement of Kotlinsky et al. [39]

offers further the possibility to compare the results for
B(IS2) values from inelastic scattering with the B(E2)
values extracted from electromagnetic probes.

The extended asymmetric rotational model as detailed
in Sec. II B2 has been used to analyze the data. After the
determination of “reasonable” start values for the defor-
mation parameters obtained in an iterative procedure by
building up an increasingly complex coupling scheme a
search for best-fit parameters has been carried out using
the complete coupling scheme. It turned out that the
data are best reproduced with a very low volume integral
of the real optical potential (very small A). The extract-
ed transition strength values, however, are almost
unaffected by the variation of A £ since the moments of
the real optical potential are fixed by the folding pro-
cedure. To properly account for the Coulomb effects the
integration to determine the scattering amplitudes has
been extended out to 50 fm. The parameters of the opti-
cal potential are listed in Table III; the deformation pa-
rameters are given in Table IV. The resulting band-
mixing coefficients Ay for I,K =4 are given in Table V.
For the 6, , 6,7, and the 8 states no band mixing is as-
sumed. Table VI gives the integral values of the unde-
formed potential.

The quality obtained in this fit can be judged from Fig.
4, where the results for the elastic scattering and the exci-
tation of the 2;5_,2;,4;&,,4:, and the 4;3, states are
shown together with the experimental data from Ref.
[14]. The description of the 6, ,6,, and the 8" states,
which is not shown in this work, has reached the same
agreement.

The resulting B(ISA) values are listed in Table VII and
compared to the results from Coulomb excitation [39]. A
good agreement between the two data sets can be ob-
served. In order to compare our transition strengths to
the results obtained using a Woods-Saxon parametriza-
tion of the optical potential [14] we recalculated the re-
duced matrix elements also for transitions not quoted by
Govil et al. The most striking difference is the decrease
in hexadecapole strength of almost a factor of 2 in the re-
duced matrix elements to the 4;_ .. and the 4;7, state. The
B(IS4) value for the 4; to g.s. transition of
4.46X 10°¢? fm® is very similar to the result found in
(p,p’) (Ref. [40]), but for the transition 4; —O0; their
B(IS4) value is larger by a factor of 30 compared to our
value.

From Table VII one reads a value of about 1.5 for the
R(4;r7) value defined in the Introduction. This result
agrees very well with the result of the lifetime measure-
ment published in Ref. [15] and confirms the collective
nature of this bandhead of the first K"=4" band in '*®Er.

TABLE II. Integral values for 2*Pb.

E, Jr/44 (rg)'? J; /44 (r})'? B(IS3,3—0)

(MeV) (MeV fm?®) (fm) (MeV fm?) (fm) (10°¢2 fm®)
23.5 343.0 6.28 31.5 7.59 0.80
79.1 323.8 6.28 61.5 7.50 1.02

104 307.9 6.28 67.1 7.47 0.86

139 285.2 6.29 71.4 7.35 1.05
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TABLE III. Parameters of the optical potentials for '°Pd and '®Er (!®*Pd: R, =6.665 fm, R,=5.27

fm; '®Er: R, =8.39 fm, a, =0.487).

Nucleus As . % ry ay Wy rs ag
(MeV) (fm) (fm) (MeV) (fm) (fm)
108pq 1.296 19.40 1.374 0.484 1.19 1.652 0.507
168y 0.918 13.38 1.585 0.484 . cee ce

Since the experimental differential cross section of the 4;}
level has rather large errors, the fit of the data is only
weakly influenced by this cross section. In this sense the
calculated cross section is basically a prediction within
the ARM.

C. The '%*Pd(a, a’) reaction

The medium weight nuclei around 4 =100 are well
known to have an almost spherical shape. Proton
scattering experiments [41-43] and Coulomb excitation
measurements [44] confirm the vibrational character of
the low-lying natural parity states in 'Pd. In a recent
a-scattering experiment Riech et al. [13] obtained
differential cross sections for the lowest 01,2%,37, and
4" states with good energy resolution at E,=30.5 MeV.
In the analysis of these data we will show that also for the
excitation of two-phonon states the folding potential as
diagonal potential is adequate. First we fitted the data in
the pure harmonic vibrator model coupling the
0;"-2;7-2;F-4;7 -0 states where the members of the triplet
are assumed to be pure two-phonon states. As a result we
obtained a good description of the cross sections of the
ground state and the 2" state, but the cross section of the
2 state was underestimated in the whole angular range
by a factor of 2—5. On the other hand, it is known from
the literature [45] that there is a direct transition from
the ground state to the 2, state and that the B(E2)
values from the 2; to the members of the triplet are not
as strong as expected from the pure HVM. So we intro-
duced, similar to the analyses of the p scattering [41,42],
a mixing between the one- and the two-phonon ampli-
tudes for the triplet states according to Eq. (14). Howev-
er, since the experiment did not allow the separation of
the 0, and the 4 state, there was not enough informa-
tion to fit these mixing angles. Therefore we calculated
them from the ratio of existing B(E2) values according
to the formula

@, =arcsin}/ B(E2,]1 2} )/2B(E2,2} —»07), 37

with 7=0,2;, and 4. We want to stress that, al-
though the ratio of the transition strengths is used as an
input, the absolute values result from the fit. Additional-
ly the strength of the one-phonon transitions is the result
of an independent search and therefore the analysis pre-
dicts the B(ISA) values to the ground state.

In a last step we took into account the nonvanishing
quadrupole moment of the 2;" state. We introduced a
rearrangement matrix element {2{||Q,|2;" ), which was
fitted in the coupling of the 0; -2{ -2 states. Finally the
resulting matrix element was introduced in the complete
coupling scheme and was kept fixed together with the
mixing angles during the search of the optical model and
deformation parameters. The use of the rearrangement
resulted in a slightly better agreement of the cross section
of the ground and the first 27 state.

The final results are shown in Fig. 5. The theoretical
description of all transitions, except the sum of 4; and
05", is very satisfactory. The obtained optical model pa-
rameters are listed in Table III. The integral values
(Table V) fit very nicely in the systematics known from
lighter nuclei at comparable energies [4]. Table IV gives
the deformation parameters. The mixing angles are
258 =60°, ¢ ot =170, Por = —40° and the fitted rearrange-

ment matrix element is (2{Q,|2{)=1.038. The
B(IS2) values are listed in Table VIII together with re-
sults from electromagnetic measurements. There is an
outstanding agreement, except the 2 —O0;" transition
probability, which is lower by a factor of 2. Even the
quadrupole moment Q21+ coincides nicely with a recalcu-

lated value from electron scattering [46]. In the case of
the A=4 transition from the g.s. to the 4; state no value
from electromagnetic measurements is known. Riech
et al. [43] give a value of 4.7X10%?fm® from (p,p’)
scattering. Similar to the observations from the
18Er(a,a’) reaction our value is much lower.

TABLE IV. Deformation parameters for 'Pd and '®Er.

Nucleus Deformation parameters
1%Pd B, By By B Bi
0.235 0.126 0.004 0.037 0.051
1%Er B, Y1 B Y2 Y3
0.216 10.3° —0.029 —44.8° 16.1°
Bs Y4 Bs
—0.00967 —24.9° 0.00549
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TABLE V. Band-mixing coefficients AJ% for the nth 2+ and
4% levels in '*Er resulting from the ARM.

K =0 K=2 K =4
Aly 0.99997 0.00812
A3g 0.00812 —0.99997 S
Alg 0.99951 0.03138 0.00009
Aig 0.03139 —0.99950 —0.00413
A 0.00003 —0.00419 0.99999

IVv. SUMMARY

The aim of the present investigation was to show that
the excitation of collective states by means of inelastic
scattering of a particles can be well described with the
use of double-folded optical potentials, calculated from
mass distributions deduced from experimental charge dis-
tributions and a density-dependent effective nucleon-
nucleon interaction, and that the extracted isoscalar tran-
sition probabilities compare favorably with results from
electromagnetic probes. To this end the inelastic scatter-
ing of a particles on three nuclei representing completely
different limiting cases of nuclear structure models has
been studied.

The excitation of the first excited state of the doubly
magic nucleus 208py_the 3~ state at 2.62 MeV excitation
energy, has been reanalyzed at four different incident en-
ergies. It has turned out that this highly collective state
(exhausting 17% of the strength given by the energy
weighted sum rule) can only be consistently reproduced if
the transition potential is taken to be of the form given by
the hydrodynamical model. In a recent investigation [47]
of the energy dependence of pion inelastic scattering from
208pp, the same behavior is shown: energy-independent
neutron and proton matrix elements for the first 3~ state
can be obtained only if the HDM is used. The extracted
B(IS3,3” —0") value of 0.093e2b3 compares well with
the result from inelastic electron scattering. At the level
of precision reached in this investigation no indication
for differences in the proton and neutron moments can be
found in 2%Pb. The inelastic scattering near the
Coulomb barrier can be very well reproduced using this
transition potential and a Coulomb radius parameter r¢
in connection with a charge density deformation parame-
ter B from which again a B(E3) value very close to the
adopted value can be extracted. An investigation on the
use of this transition potential for the inelastic a scatter-
ing on other magic nuclei is in preparation.

The nucleus '®Er was investigated as an example for a
good rotor. To describe not only the inelastic excitation
of the ground-state band, but also that of the y band and

TABLE VI. Volume integrals and rms radii for the optical
potentials of '*Pd and '*®Er.

Nucleus Jr/44 (r3 )2 J; /44 (rt?
(MeV fm?) (fm) (MeV fm?) (fm)
108pg 346.6 5.27 59.9 5.62
168 2433 5.95 57.4 7.01
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FIG. 4. Inelastic a scattering on '®*Er at 36 MeV. The exper-
imental data are taken from Govil et al. [14]. The solid lines
give the result of the analysis performed within the ARM.

the bandhead of the two quadrupole phonon yy band,
the model of the asymmetric rotor was used. In this way
many reduced quadrupole transition probabilities and
moments could be extracted and compared to recent ex-
tensive Coulomb excitation work [39]. The value of the
asymmetry angle ¥, obtained from the fit, does not repro-
duce the energy ratio of the 2; bandhead to the first ex-
cited 2% of the g.s. band and represents thus only an
effective y degree of freedom. This is due to the fact that
168F T is not a triaxial rotor, but a well-deformed nucleus,
showing a collective y vibration and even a two quadru-
pole phonon excitation, leading to the 4;; bandhead at

T
30.5MeV |

T
10® b ePdla,a) ®Pd

1
0 50 100 150
O.m (deg)

FIG. 5. Inelastic a scattering on '®Pd at 30.5 MeV. The ex-
perimental data are taken from Riech et al. [13]. The solid
lines give the result of the analysis performed in the HVM. The
dotted (dashed) line gives the differential cross section of the 05
(4)) state.
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2055 keV excitation energy. Again the agreement be-
tween isoscalar and electromagnetic transition strength is
very good.

The results can be used to independently deduce the
decay properties of the 4% double y vibration in '®®Er.
The B(IS2,4;,—2;) value of 315¢2fm* compares very
well with the result of 120e’fm*<B(E2,4) —2")
<410e*fm* obtained from a lifetime measurement of this
level. The low hexadecapole transition probabilities
found in this investigation for '®Er are not in disagree-
ment with results of Coulomb excitation experiments and

point to a reduced importance of this degree of freedom
in 18Er.

The low-lying states in the even-even Pd nuclei are
considered as good examples for vibrational modes in nu-
clei, therefore the nucleus '°Pd was treated as a vibrator
and the standard Bohr-Mottelson prescription was used
for the transition potential. The energy splitting and the
decay characteristics of the two-phonon triplet show the
necessity to account for small anharmonicities in the
description of these states. This was accomplished in
representing the members of the two-phonon triplet as a

TABLE VII. Isoscalar transition probabilities B(ISA) for '®Er obtained from inelastic a scattering

compared to results from Coulomb excitation.

A LI, B(ISA)* B(EA)®
(ermZA) (ermzk)
In-band transitions ground-state band
2 2,—0,; 9220 11 800(700)
2 4,—2, 13200 17 100(1000)
2 6,—4, 14 600 22 800(1300)
2 8,—6, 15400 19700(1200)
In-band transitions y band
2 4,2, 5460 9220(580)
2 6,—4, 10 600 15200(900)
Y to ground transitions
2 2,—0, 210 230(10)
2 2,—2, 410 440(40)
2 2,—4, 40 24(2)
2 4,—2, 80 110(10)
2 4,4, 500 580(30)
2 4,—6, 30 49(23)
2 6,—4, 10 48(3)
2 6,—6, 740 420(50)
2 6,—38, 30 110(70)
Two-phonon to ground transitions
2 4,2, 0.01
2 4,4, 0.03
Two-phonon to ¥ transitions
2 4,2, 320
2 4;4, 80
Hexadecapole transitions to ground state
4 4,0, 11 800
4 4,—0, 446 000
4 4,—0, 11200
Q,° Q,°
I,—I, (e fm?) (e fm?)
Quadrupole moments ground-state band
2,—2, —190 —250(20)
4,—4, —240 —240(30)
Quadrupole moments ¥ band
2,2, 190 216(7)
4,4, —100 —140(10)
Quadrupole moment two-phonon band
4;—4, 350

2This work.
®Reference [39].
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TABLE VIII. Isoscalar transition probabilities B(ISA) for
108pd obtained from inelastic @ scattering compared to results
from e.m. probes.

A IL—I; B(ISA)* B(ELA)
(e fm?*) (e?fm?*)
2 2,—0, 1630 1560(40)
2 2,—0, 10 25(3)
2 2,—2, 2440 2380(210)
2 4,2, 2870 2810(370)
2 0,—2, 1340 1.340(300)
3 3,0, 16 300 14 900(4300)°
4 4,0, 12 800
Q,° ¢
IL—I, (e fm?) (e fm?)
2,—2, —71 —70(27)
#This work.

"Reference [45].
‘Reference [32].
dReference [46).

mixture of two-phonon and one-phonon states. The mix-
ing was fixed by the known ratio of the B(E2) values
from the triplet states to the one-phonon 2% state and
from this state to the ground state. The resulting reduced

B(ISA) values and the quadrupole moment correspond
extremely well with the results from electromagnetic
probes.

The excellent agreement of the isoscalar transition
probabilities obtained from the present analysis of inelas-
tic a-scattering data on three different nuclei with results
from other experiments shows that reliable values can be
extracted using the method outlined in this work and in-
dicates that this method allows us to also obtain transi-
tion probabilities for higher multipolarities unaccessible
with electromagnetic probes.
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