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Radiative and ordinary muon capture are studied in medium heavy nuclei using a relativistic mean

field theory approach. A relativistic Fermi gas model is used to describe the nucleus and the local

density approximation, together with realistic density distributions, are used to relate the process

in infinite nuclear matter to finite nuclei. A number of density dependent effects not considered in

previous nonrelativistic calculations are considered, as, for example, the variation of the e8'ective

nucleon mass and of the Fermi momentum with the nuclear density. The photon spectrum and the

total experimentally accessible radiative rate (i.e., the part of the spectrum with photon momentum

h ) 57 MeV) are calculated for a variety of nuclei, along with the ordinary muon capture rate. The

aim is to understand the sensitivities to the various components and to assess the reliability of such

models for extracting the induced pseudosealar coupling constant gp &om the experimental data.

We find that the rates are quite dependent on the various inputs, which suggests that it will be

difBcult to extract g~ and casts some doubt on the validity of previous similar calculations. Some

interesting qualitative features emerge from a comparison with recent data, however. The absolute

rates are too high, which is consistent with other calculations. However, the model does reproduce

rather well the Z dependence of both relative and absolute radiative rates without requiring any

quenching of g„in heavy nuclei. Furthermore the model gives an enhancement in the spectrum

near the end point as compared to the uniform density model. Such an enhancement seems to be

suggested by the data.

PACS number(s): 23.40.Bw, 13.10.+q, 13.40.Ks

I. INTRODUCTION

The radiative muon capture (RMC) process, pp —+

nv&p, is a useful laboratory for the determination of the
induced pseudoscalar coupling constant of the weak in-
teraction, g~. Due to the very low rate for this process
as compared to ordinary, nonradiative, muon capture
(OMC) most recent experimental data available [1—7]
come from medium heavy nuclei, although the first exper-
iment measuring radiative muon capture on a free proton
is in progress at present [8]. Therefore calculations must
be extended to finite nuclei, with the additional theoret-
ical complexity which this entails. Potentially there may
also be some new physical effects such as renormaliza-
tion of the coupling constants in nuclear matter. Recent
calculations include those of Refs. [9—11] and a review of
theoretical and experimental work can be found in Ref.
[12].

From another point of view radiative muon capture was
used by Fearing and Walker [9] as a testing ground for
the relativistic mean fiel theories [13) which have gen-
erated so much interest in areas such as proton nucleus
scattering. There the RMC rate was calculated com-
pletely relativistically using the mean field theory and a
Fermi gas model for infinite nuclear matter and the re-
sults suggested the possibility of some interesting effects
appearing in finite nuclei.

Thus the aim of the present calculation is twofold. We
wish to extend to finite nuclei this relativistic mean field
theory approach to radiative muon capture. We also
want to see if such a model can adequately describe some
of the general trends of the experimental data.

Our general technique depends on the local density
approximation. We interpret the result of Ref. [9] in nu-
clear matter as giving the capture rate ss a function of
the density. This rate is then folded over a realistic nu-

clear density. Such an approach bypasses some of the
complications of a rigorous relativistic calculation. The
mean fields are still constants so that the states are still
plane waves and thus there will be no nuclear structure
effects arising from the wave functions. Also, the prob-
lems with gauge invariance generated by spatially varying
fields are avoided. Thus the nuclear model is somewhat
simplistic, but may be expected to provide at least qual-
itative information about the variation of the radiative
rate with atomic number Z, and with different values of
the coupling constant gp.

Section II gives a brief review of the methods used to
calculate ordinary and radiative capture rates on a free
proton and Sec. III reviews the application of the Fermi
gas model to infinite nuclear matter. The implications of
the local density approximation and details of the nuclear
model for finite nuclei are introduced in Sec. IV. Section
V gives results for the RMC rate and photon spectrum
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and for the OMC rate, using a variety of assumptions
about the various ingredients. A comparison with other,
mainly nonrelativistic, approaches to this problem is also
made.

In the final section, Sec. VI, some conclusions are
drawn about the quantitative accuracy of this and other
similar models, and about the implications for the ex-
traction of the induced pseudoscalar coupling constant
from radiative muon capture data.

II. RMC ON A PROTON

In this section and the next we review the ingredients
of the basic RMC process and of the relativistic mean
field theory —Fermi gas model used in Ref. [9] to get the
capture rates in infinite nuclear matter. Further details
and notation can be found in that reference.

As is usual in the theory of radiative muon capture, we
begin with a set of Feynman diagrams (shown in Fig. 1).
These are the standard diagrams for this process as used
in Ref. [14] and in most subsequent calculations, e.g. ,
Refs. [9, 15, 16]. Additional diagrams resulting from the
A(1232) resonance are not included, due to their small
contribution to the statistical rate [17,18). The included
diagrams give rise to an amplitude which is squared and
converted to a rate in the standard fashion. The ampli-
tude we use is given explicitly in Ref. [15].

The weak vertex factor of the nucleon is initially taken
to be of the general form

I (q)=gv'Y + & qp+ q +9~'Y 'Ys
2mp mp

greatly within the range of q2 available. Its dependence
upon q2 is taken to be

m2+ m2
gi (q ) = gi (—m„)m2 —q2 '

where

m„(m„+m„)
9'pL mp, ) =

m +mp

(2)

(3)

is the Goldberger-Treiman value [19].
Two momentum transfers enter the expression for the

amplitude of radiative muon capture. The first, ql. =
n —p (where n, p, p, v, and k represent the four-vectors
associated with the neutron, proton, muon, neutrino, and
photon), enters in Figs. 1(a), 1(d), and 1(e). It takes on a
value ql —m„in the region where the photon momen-
turn is large. This is the region of experimental interest
since the photon spectrum can only be measured experi-
mentally for A: greater than about 55—60 MeV. So we see
that gp(qlz ) remains near the Goldberger-Treiman value.
However, the other momentum transfer q~ =—n —p+ k
[appearing in Figs. 1(b), 1(c), and 1(d)] can take on a
value qN2 +ms for large k. This produces an enhance-

ment in g~(qN), greatly increasing the contribution of the
induced pseudoscalar coupling constant to the radiative
rate in the region of interest.

Due to the complexity of the problem, the squaring of
the matrix element and the summing over spins, which
are necessary to obtain the rates, are carried out entirely
numerically. More details of this procedure are given in
Ref. [15].

(b) n p (c)

]avvu$ y
I

I

n p

Fla. 1. Feynman diagrams contributing to radiative
muon capture on a proton.

mp, 2m@

We assume that the second class induced scalar and ten-
sor couplings gg and 97 are zero, and take the vector,
axial vector, and weak magnetism couplings to be inde-
pendent of the four-momentum transfer squared qz with
values gv = 1, gg = —1.25, and gM ——3.71.

Only the induced pseudoscalar coupling constant,
whose value we wish to determine, is thought to vary

III. RELATIVISTIC MEAN FIELD THEORY:
FERMI GAS MODEL

In the relativistic mean field theory approach [13] it is
supposed that a renormalization of the nucleon masses
occurs in the nuclear medium. In this model the effects
of the nuclear medium are described by large scalar and
vector mean fields. For infinite nuclear matter these fields
are constants. The presence of such constant fields in the
Dirac equation for a nucleon has an effect equivalent to
using the free Dirac equation with a renormalized nucleon
mass m* = m —Gsgp where, Pp is the mean scalar field
and G~ is a coupling. The effects of the mean vector
field appear only as a phase factor in the wave function
in this simple model. A typical value for the potential
due to the scalar field is Gggp = 400 MeV [13] leading
to a value for the effective nucleon mass of m' = 0.57m.

Thus for infinite nuclear matter the states are just the
free Dirac plane waves with m ~ m*, and with an ad-
ditional time dependent phase factor depending on the
vector potential which, however, cancels in all matrix el-
ements. Thus one can calculate the matrix elements by
simply replacing m with m* everywhere in the free pro-
ton expressions. This change from the free nucleon mass
to the renormalized mass m* was performed consistently
throughout this calculation, including the Goldberger-
Treiman relation for g~, Eq. (3), and the kinematics



46 RADIATIVE MUON CAPTURE IN MEDIUM HEAVY NUCLEI IN. . . 2079

defining the allowed phase space for the ordinary and
radiative capture rates. The free proton mass m„was re-
tained in the weak magnetism term gM/2m„of Eq. (1),
however, as there it simply defines the units.

Within the context of the simple model we use here
the replacement ni ~ rn' in Eq. (3) for gF follows di-
rectly and rigorously from the assumption of partially
conserved axial-vector current and the usual steps for de-
riving the Goldberger-Treiman relation for the free case.
In the derivation the only difference from the free case
is that now the nucleon states satisfy the Dirac equation
with rn ~ rn' and an extra term involving the mean vec-
tor field (Eq. (1) of Ref. [9]) rather than the free Dirac
equation. The vector terms cancel when this equation is
used to replace the derivatives by masses and one is left
with the same expression as the free case, except with
)Vi ~ m". This does not of course exhaust the possible
changes in gF induced by the nuclear medium. For ex-
ample, nothing is included to account for the pion prop-
agating in the medium. Such efFects could change the
effective value of gF and certainly should be considered

kF, „=(3n. p„,„)&. (4)

The capture rate on a single proton of momentum p
is then integrated over all p & kF, , with the constraint
n & kF„.The resulting expressions for the ordinary (non-
radiative) and radiative muon capture rates in infinite nu-
clear matter with density determined by kF„„astaken
directly from Ref. [9] are

in the next stage of calculations.
To apply this to infinite nuclear matter, and ultimately

finite nuclei, we assume a Fermi gas model. This model
supposes that in the initial state all of the nucleon mo-
mentum states up to a certain value (the Fermi momen-
tum, kF) are filled, and that no higher states are ex-
cited. Hence in muon capture the initial proton state
must have a momentum less than the proton Fermi mo-
mentum, and, due to the Pauli exclusion principle, the
final state neutron must have a momentum greater than
the neutron Fermi momentum. The Fermi momenta de-
pend on the proton and neutron densities p„and p„via

p Pmin fl spins

r„,=,',",„,"~p„(0)~ f'-deaf'"'"'-~. ..e, f""deaf" d.f*"sy-„'""*",'y ~Mi'~.

(6)

Here, GF = 1.137 x 10 ii MeV 2 is the Fermi constant,
and o. is the fine-structure constant. At this point, we
have introduced the muon density using the usual ap-
proximation for finite nuclei, that is, by extracting the
muon wave function from the matrix element and evalu-
ating it at the origin.

Note that these give the rate per proton so a sum over
initial proton states will introduce a factor Z into both
the ordinary and radiative capture rates.

IV. APPLICATION TO FINITE NUCLEI

To apply the above formalism to finite nuclei we use
the local density approximation. In this approach the
rates given above are considered to be functions of the
density, I'(p„,p„),via their dependence on kF, „which
are related to the densities by Eq. (4). We thus multiply
the rate per proton by the nuclear proton density, i.e., the
number of protons per unit volume, p~(r), and integrate
over the volume. Schematically

I'= d rI' p„,p„p„r.
This local density approximation is often used in a variety
of circumstances. A discussion of its validity for muon
capture is given in Ref. [20].

For the nuclear density we used a two-parameter
Fermi-Dirac density distribution,

po
( ) , („.

)Ap

(8)

with the half-density radius Ro and the skin thickness Ao
taken from electron scattering data [21] where available,
with the rest being computed using the fits to such data
given in Ref. [22]. The density function p(r) is normalimed
to one so that p„=Zp(r) and p„=(A —Z)p(r). We
also investigated the uniform nuclear charge distribution
which has often been used. It can be obtained as a special
case of Eq. (8) by letting Ao = 0. One must also replace
Rs by R,q, which is the equivalent radius for a spherical,
uniform density nucleus. The parameters used are given
in Table I.

The nuclear charge distribution was assumed to apply,
when suitably normalized, to both protons and neutrons,
thus allowing a calculation of kF, and kF„.

Some important caveats to this approach as applied to
finite nuclei should be mentioned. First the mean field
theory for infinite nuclear matter assumes an equal num-
ber of protons and neutrons. It is necessary to assume
here, as has been done in other applications of this ap-
proach, that no major change occurs in applying this to
finite nuclei with N g Z. Also the model does not include
effects of pion propagation. Such effects could affect g~
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TABLE I. Data used in the computation of ordinary and radiative capture rates. The radius
R,q is the equivalent radius of a spherical, uniform density nucleus. The muon binding energy E„z,
R q, and Z,s are taken from Refs. [23,24]. Ao and Ro come from Ref. [21] and the Coulomb energy
Ec comes from Eq. (11). b M is the energy difFerence between the ground states of the initial and
final nuclei. E„e,Ec, aud b M are in MeV while R,q, Ro, and Ao are in fm.

6C
so

g3Al

g4Si

2pCa
26Fe
28Ni

42Mo
5pSn
64ad
y4%7

82pb
83Bi
go~

0.10011
0.17779
0.4629
0.5345
1.0533
1.7158
1.9645
3.963
5.233
7.505
9.160

10.657
10.715
12.250

2.45
3.23
4.83
5.16
6.69
8.47
9.15

12.61
14.19
16.48
18.13
19.96
19.67
21.06

3.87
4.01
4.47
4.52
5.03
5.20
5.19
5.68
6.02
6.65
7.00
7.05
7.24
7.50

5.72
7.49

11.48
12.22
16.15
19.59
20.66
26.37
28.64
31.34
32.76
34.18
34.00
34.94

12
16
27
28
40
56
58
96

120
158
184
208
209
238

2.35
2.61
2.95
3.06
3.51
3.97
4.11
4.92
5.32
5.89
6.51
6.62
6.75
6.81

0.52
0.51
0.54
0.55
0.56
0.59
0.56
0.55
0.58
0.55
0.54
0.55
0.47
0.61

13.88
10.93
3.12
5.15
1.82
4.21
0.89
3.70
5.81
3 gg
3.38
5.51
1.15
4.12

and contribute to various exchange corrections. Finally,
it is becoming clear that higher order corrections to this
simple model are important, Despite these caveats, how-
ever, we expect the model to provide a simple approach,
consistent with other applications, which will give at least
qualitatively some of the general aspects of the process.

A number of other features become important when
one goes from infinite to finite nuclei. We list these here
with a description of our standard choice together with
some of the other options which will be investigated nu-
merically in the next section.

In first approximation the muon wave function evalu-
ated at the origin may now be replaced by an average
over the extent of the nucleus, as has been done in many
previous calculations:

where m'„ is the muon reduced mass. The extra factor
(Z,tr/Z) in this equation originates from the definition
of Z, ir, which includes the Z present in p„.The values
of the quantity Z, ir are taken from Ford and Wills [23],
and refiect their calculation of the overlap of a very accu-
rate muon wave function with the nuclear density. If the
rate I'(p„,p„)in Eq. (7) depends on r only via the muon
wave function, then the weighting of [P„(r)1 is the same
as that used for the calculation of Z, ir, namely, p„(r),
and we would expect this to be a good approximation.
However if I'(p„,p„)depends on r via a dependence on
A;~, for example, then the weighting is different and the
approximation may not be so good.

Within our calculation, however, it is very easy to put
the square of the muon wave function under the inte-
gral on r, i.e., to use [P„(r)[~instead of [P&(0)12 in Eqs.
(5)—(7) and thus bypass some of the approximations in-
volved in using Z,ir. As a simple test case, this was done
for Pb using a Bohr wave function to calculate Z,g
and compared to the result when this same simple wave

function is put under the integral. The two approaches
differed substantially. It thus appears that putting a rea-
sonably accurate muon wave function under the radial
integration is a necessity, at least when a nonuniform
nuclear distribution is used since in that case the ap-
proximation that the rate is nearly constant over the ex-
tent of the nucleus is not well justified. Consequently a
set of nonrelativistic 1S wave functions for the potential
corresponding to the Fermi charge distribution used for
each nucleus was calculated numerically by solving the
Schrodinger equation using a fourth order Runge-Kutta
integrator method. These wave functions, placed inside
the radial integration, were used in our final results.

Two other effects are quite important, those due to the
muon binding energy E„~and to the proton Coulomb en-

ergy Ec. Since Ec is released when the proton changes
into a neutron and E„~must be provided when the muon
is captured, it is the difference E~ —E„~which is impor-
tant. The results are sensitive to this quantity because it
affects the maximum energy available for the photon or
neutrino and both RMC and OMC are very sensitive to
this maximum energy.

In the phase space, the introduction of these two ener-
gies just changes the energy conserving delta function to
6(m„E„g+E„+Ec—E„vk), w—here E—„a—nd E„are
the on-shell energies (E2 = p2 + m~) of the proton and
neutron. Thus, for the phase space only, one can simply
replace m„~m'„=m„—E„g+ Eg.

However, this is not the correct replacement in the ma-
trix element, for rather subtle reasons. Within the con-
text of the relativistic mean field theory we can treat the
Coulomb energy for both muon and proton as an addi-
tional field, which we take as constant, appearing in the
Hamiltonian, in parallel with the treatment of the mean
vector field. Then using arguments [9] exactly analogous
to those showing that the vector field does not appear in
the propagators, one shows that the Coulomb fields also
do not appear in the propagators. Similarly E„~does
not appear in the muon propagator. The other factor
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which enters is q n —p, which appears in the weak ver-
tex function. In going from the coordinate space deriva-
tive represented by p to momentum space, one brings
down a factor involving E~. In the analogous case of the
strong vector field a similar factor coming from n cancels
that from p. Here, however, this second factor does not
arise and the E~ survives. One can now use the con-
servation of four-momentum to eliminate it in favor of
E„r3.The end result is that the matrix element is eval-
uated everywhere with physical masses and four-vector
momenta satisfying the conservation equations, that EQ
appears nowhere explicitly, and that E„~appears only
in the momentum transfers qL, ~ m„—E„~—A: —v and

q~ ~ m„—E„~—v.
In our calculations the 1S muon binding energy E„~

was taken from the relativistic solutions of Ford and Wills
[23]. Initially the proton Coulomb energy was taken as
a constant derived by assuming that the nucleus was a
sphere of radius R,q with an initially uniform charge den-

sity, becoming a final state which is identical except for a
missing spherical shell of charge representing the missing
proton. The Coulomb energy obtained by averaging over
all protons is then

3nZ f7
2R, 5 Zs&s ~-

)
(10)

This result is essentially identical to that obtained by
taking the difFerence in total Coulomb energies of uniform
spheres of charge Z and Z —1, i.e. ,

However because of the considerations of the next para-
graph, this would not change our results and so we used
only the constant value of EQ given by Eq. (11).

For realistic finite nuclei the Coulomb energy is not
the only energy which differs from initial to final state.
There are other isospin dependent pieces, one being the
so-called symmetry energy, which contribute to the difFer-
ence between the mass of initial nucleus M(Z) and that
of the ground state of the final one M(Z —1). It is impor-
tant that this mass difference b,M = M(Z —1) —M(Z)
be correct as this afFects the amount of energy available

Other choices, for example, taking the result from the
semiempirical mass formula or requiring, as suggested in
Ref. [25], that rn„—E„g+ rn„—rn„+EQ = 113 MeV,
gave very similar results.

It would perhaps be more consistent with the local
density approximation to use a Coulomb energy which
changes with r across the nucleus, as, for example,

Ec Ec(r) = Za f d r' (r')
]r —r'['

which can be calculated numerically for any assumed
charge distribution p(r). For the uniform distribution
this gives the familiar form

3Zn (', r'&
EQ(r) =

I R, 3)

and the phase space. It is not clear how to include such
energy consistently within the mean field theory so what
we did was simply replace EQ ~ EQ —6E in the en-

ergy conserving delta function which defines the phase
space and kinematic quantities. The quantity 4E was
fixed by the requirement that the energy difFerence be-
tween the initial state and the lowest final state be b M
which was taken from experimental information on nu-
clear masses and is given in Table I. Thus we require

aM = k& +~ ~ —gk' +~ & —Ec+aZ &or sn

values of r Fo.r most nuclei this is a relatively large efFect
and EE cancels a large portion of EQ Th.is procedure
does ensure that the overall maximum photon energy is
correct, which is very important given the sensitivity of
the rates to this energy. It also amounts to ensuring that
the Q value in our calculation is correct. Note that it is
b,M which fixes the energy available. Thus the specific
details of the choice of EQ or of m' do not matter for the
phase space, as 6E is always adjusted to give the correct
final Q value, i.e., of hM.

Finally in principle m' has a dependence on the Fermi
momentum as calculated self-consistently in mean field
theory [13,26]. This is reflected in a dependence on nu-

cleon number density within the nucleus and thus on the
radius in the local density approximation.

Before looking at the results we summarize some of
the checks we performed to verify the correctness of the
numerical computations. As is usual checks were made
on the stability of the integrals by varying the number
of integration points. The kinematics were reworked in
several ways, and the resulting four-vectors were always
checked for four-momentum conservation. The ampli-
tudes were routinely checked for gauge invariance, and
this in fact proved a very useful tool in understanding
how to put EQ and E&B into the matrix elements. For
a uniform charge distribution with EQ = E„g= 0 the
results should reduce to those of Ref. [9], after proper
account is taken of the differences in Z,a and the rate is
converted to rate per proton. This was found to be the
case.

We also checked that in the limit kF„„~0, Z =
A = 1, and E„~= 0.00253 MeV, the results reduced
to those of Ref. [15] for muon capture on a free proton.
As an additional check, an exact analytic expression for
ordinary muon capture on a proton was computed (the
invariant amplitude squared being found to be the same
as that given by Ref. [20]) and this was compared with
the numerical calculation. The results were the same to
within 1.570.

V. RESULTS

The OMC rate I'oMC, the RMC photon spectrum
dl /dk, the radiative rate I'(& 57), which is defined as
the radiative spectrum integrated over photon energies
greater than 57 MeV, and the relative rates dR/dk =
(dI'/dk)/I'QMQ and R(& 57) = I'(& 57)/I'QMQ have
all been calculated for a variety of medium heavy nuclei
ranging from Ca to Pb. We first want to under-
stand the sensitivity to the various ingredients and ways
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TABLE II. Ordinary capture rates I'QMC in units of 10 s for a variety of nuclei. The numbered columns correspond to
the various options described in the text. Options 1—6 are independent of the form of the nuclear density, and 7—9 are given
for the two-parameter Fermi-Dirac density distribution. For a uniform distribution options 7 and 8 are not relevant and 9 is
the same as 6. Nuclei lighter than Ca are included for reference only, as our model is not expected to be applicable for such
nuclei.

6C
sO

g3A1

g4Si
2pCa
26Fe
gsNi

42Mo
5pSn
64Gd
74W
sgPb
s3Bi
9~U

0.0490
0.145
0.807
1.04
3.17
6.89
8.52

22.7
31.6
45.3
54.1
64.1
62.8
70.0

0.0380
0.113
0.626
0.804
2.46
5.34
6.61

17.6
24.5
35.1
42.0
49.7
48.7
54.3

0.0751
0.204
0.932
1.32
3.97
6.05
8.31

13.0
13.7
17.4
20.0
18.6
20.9
19.2

0.0749
0.203
0.919
1.30
3.85
5.73
7.83

11.3
11.1
12.5
13.1
10.8
12.4
9.85

0.0805
0.223
1.07
1.51
4.69
7.54

10.4
17.8
19.6
25.5
29.6
28.8
31.5
29.6

0.0492
0.147
0.900
1.13
3.72
5.83
8.29

13.8
14.5
19.3
21.6
18.8
24.4
19.8

0.0550
0.167
1.01
1.29
4.08
7.21

10.1
18.4
20.7
26.0
30.4
28.3
32.3
29.5

0.0613
0.184
1.08
1.40
4.39
7.71

10.8
19.4
21.9
27.1
32.2
29.7
33.6
30.9

0.0602
0.179
1.03
1.33
4.09
6.97
9.79

16.7
18.1
21.7
25.8
22.7
27.0
22.3

of including certain effects and so have given the OMC
rate and I'(& 57) for a number of different options. We
have considered the uniform nuclear charge distribution
and the radially varying Fermi-Dirac distribution form as
different models, though many of the effects are in fact
independent of the particular density chosen. Results for
the ordinary, nonradiative, capture rate are given in Ta-
ble II and those for the radiative rates in Tables III and
IV.

We describe below the various options which we con-
sidered. Each option builds on the preceding ones, with
only the changes noted. The intent is to start with the
simplest case and build towards our final result, adding
only one ingredient at a time, so as to understand the
sensitivities of the result to the various ingredients and

choices.
For options 1—6, I'(p„,p„)is independent of r so that

the result is independent of the nuclear density distri-
bution, as can be seen from Eq. (7). In option 9 an
explicit r dependence is introduced in I'(p„,p„)via the r
dependence of the muon wave function, so this option is
relevant for both the uniform and radially varying den-
sities. However for the uniform density, since there is no
other r dependence, option 9 will be the same as option
6, by virtue of the definition of Z,g. Options 7 and 8
generate an r dependence in I'(p&, p„)only via its de-
pendence on the neutron and proton densities, and thus
these options are relevant, and are calculated, only for
the radially varying density.

Optton I: Here m is taken as the free mass, Ec =

TABLE III. Radiative capture rates I'(& 57) in units of s for a variety of nuclei, assuming a
uniform nuclear density distribution. A cut has been performed to give photon energies above 57
MeV only. The numbered columns correspond to the various options described in the text. Option
9 is the same as 6 for a uniform density and so is not repeated. The last column gives the relative
rate R(& 57) in units of 10 for option 6 (or 9). Nuclei lighter than Ca are included for reference
only, as our model is not expected to be applicable for such nuclei.

R(& 57)

6C
sO

g3A1

g4Si
2pCa
26Fe
gsNi

42Mo
SpSn
64Gd
74W
s2Pb
s3Bi
gzU

2.15
6.36

35.4
45.5
139
302
374
995

1386
1988
2375
2815
2756
3074

1.30
3.86

21.5
27.6
84.5
183
227
604
841

1206
1440
1707
1672
1865

3.46
9.07

36.6
56.5
169
200
304
318
272
315
352
275
343
270

3.43
8.92

35.1
53.8
153
168
250
201
139
110
93.1
49.9
65.5
33.9

4.17
11.6
52.3
81.4
262
352
539
695
648
760
852
726
843

691

0.909
3.29

33.1
35.6
138
176
295
354
296
378
390
249
452
256

18.5
22.4
36.8
31.4
37.0
30.3
35.5
25.7
20.5
19.6
18.0
13.3
18.5
12.9
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TABLE IV. Radiative capture rates I'(& 57) in units of s for a variety of nuclei, assuming a
two-parameter Fermi-Dirac nuclear density distribution. A cut has been performed to give photon
energies above 57 MeV only. The numbered columns correspond to the various options described
in the text. The columns labeled by R(& 57) give the relative rates in units of 10 for options 7,
8, and 9. Nuclei lighter than Ca are included for reference only, as our model is not expected to
be applicable for such nuclei.

6C
So

g3Al

g4Si
gpCa
g6Fe
gsNi
42Mo
5pSn
64ad
y4W
8gPb
83Bi
9~U

0.909
3.29

33.1
35.6
138
176
295
354
296
378
390
249
452
256

1.24
4.49

42.8
47.6
173
263
423
572
523
611
659
463
700
475

R(& 57)

22.6
27.0
42.5
36.9
42.5
36.5
42.1
31.1
25.2
23.5
21.6
16.4
21.7
16.1

1.57
5.51

48.6
55.7
198
296
476
630
577
666
730
512
756
525

R(& 57)

25.6
30.0
44.8
39.9
45.2
38.5
44.3
32.5
26.4
24.6
22.7
17.3
22.6
17.0

1.52
5.30

45.2
51.6
178
254
411
504
435
480
526
344
547
324

R(& 57)

25.3
29.5
43.8
38.8
43.5
36.5
42.0
30.2
24.1
22.1
20.4
15.1
20.3
14.5

E„g= 0 snd k~„=k~„=280 MeV. Under these cir-
cumstances I'(p„,p„)in Eq. (7) is a constant and hence
the result is independent of the nuclear density. The only
dependence on the nucleus is via the overall factor Z,ff,
except for a negligible dependence coming from slightly
different values of the muon reduced mass. This result
reduces to the infinite nuclear matter result of Ref. [9],
once account is taken of the appropriate Z,g and the fact
that rates were always quoted per proton in that refer-
ence.

For this situation both I'oMc and I'(& 57) decrease
as k~ gets larger, as was found in Ref. [9]. These rates
actually vary rather steeply with kF as can be seen from
Fig. 2, where we show this variation with kF, using for

simplicity Ca which has k~„=kF„.
Option 8: The mass is now replaced by m' = 0.57m,

taken as a constant calculated from the relativistic mean
field theory with Cyano = 400 MeV. This leads to a re-
duction in the calculated ordinary rate and in I'(& 57)
again in agreement with Ref. [9]. The radiative and or-
dinary rates as a function of m* are given in Fig. 3, and
from this we can see that the rates increase almost lin-

early with increasing m'. This result is still equivalent
to the corresponding infinite nuclear matter rate.

Option 8: k~„and kF„are now calculated from the
proton and neutron average densities, respectively, which
are taken to be the central densities for the uniform dis-
tribution. In light nuclei, kF, and k~„arevery similar

2.0 1.5

1.5
1.0

10

0.5
0.5

I I I I0.0
0 50 100 150 200 250 300

k (MeV)

FIG. 2. Variation of the radiative rate I'(& 57) in units
of 10 s and the ordinary rate I'QMQ in units of 10 s
with the Fermi momentum k~. The conditions of option 1 of
the text have been assumed, i.e., m = m, E„a= Eg = 0,
kz„——kz„. The numbers quoted are for Ca though are
proportional to the infinite nuclear matter result for any N =
Z nucleus.

0.0
0.0 0.2 0.4 0.6

m' m
0.8 1.0 1.2

FIG. 3. The radiative rate I'(& 57) in units of 102 s
and the ordinary rate I'QMC in units of 10 s ' shown as a
function of m for Ca. The parameters of option 2 of the
text, namely, E„z= Ep = 0 and k~„=kz„=280MeV, have
been assumed. As in Fig. 2 the results quoted for Ca are
proportional to the infinite nuclear matter rate for any N = Z
nucleus.



2084 HAROLD W. FEARING AND MARK S. WELSH

and significantly smaller than the 280 MeV used in the
previous options. Thus both ordinary and radiative rates
increase, because of the general increase in rates as k~ be-
comes smaller. For heavy nuclei however kF is substan-
tially greater than k~„.Since muon capture must occur
upon a proton with momentum p ( kF„and result in a
neutron with n & kF„,we find a substantial suppression
of both the ordinary and radiative muon capture rates in
heavy nuclei, amounting to a factor of more than 2.5 for
OMC and 6 for RMC for zosPb in the uniform density
model. In that case k~, = 233 MeV and k~ ——269 MeV.
This is due to the reduction in allowed phase space for
the interaction in these heavy nuclei and the fact that
both RMC and OMC are very sensitive to the amount of
energy available for the v and p.

Option g: The muon binding energy is included, lead-
ing to a reduction in the allowed phase space for the
interaction, and a resultant decrease in the rates. The
decrease is small for light nuclei where the binding en-
ergies are small. For heavy nuclei, however, the binding
energies are 10 MeV and the decrease is much larger.
This is particularly true for I'() 57) where a 10 MeV
shift in the available energy is significant relative to the
range of energies, 57 —+ 100 MeV which is relevant.

Option 5: The Coulomb energy E~ included, also as
a constant, calculated from Eq. (11). This enters in the
same fashion as the binding energy, but is of opposite
sign and generally larger. The rates are increased. What
is important is the combination E~ —E„~,which ranges
from about 5 MeV for 4oCa to about 10 MeV for 2ssU

and which corresponds to the additional energy available
for the nuclear process as compared to the free case. The
net effect of these two is to increase the ordinary rate by
50% or so for heavy nuclei and increase I'(& 57) by more
than a factor of 2.

Option 6: The additional isospin dependent energy
AE is included so that the ground state energy separa-
tion and the overall maximum photon or neutrino energy
are correct. AE works in the direction opposite to E~
and cancels typically half or more of the increase in rates
which was generated by E~. In fact the three ingredi-
ents, the muon binding energy, the Coulomb energy, and
hE cancel nearly completely as can be seen by compar-
ing options 3 and 6. This means that neglecting all three
is a significantly better approximation than keeping just
one or two.

Option 7: The Fermi momenta are made functions of r
according to the prescription of the local density approx-
iination, i.e. , k~ is calculated from p(r) via Eq. (4). This
means that for the Fermi-Dirac distribution k~ varies
across the nucleus from nearly nuclear matter values in
the center to nearly zero in the tail. The rates for heavy
nuclei increase dramatically, for reasons which will be
discussed below.

Option 8: m* is put in as a function of k~ and hence
as a function of r using a phenomenological fit to the
expression derived self-consistently in Ref. [26] from rel-
ativistic mean field theory and illustrated in Fig. 4. This
increases the rates by a few percent for OMC and roughly
10% for RMC.

Option 9: The muon wave function, calculated by in-

1.0

0.8

0.2

0.0 I

100
I I

200 300
k (MeV)

I

400 500

FIG. 4. Dependence of m' upon the nucleon Fermi mo-
mentum k~, as calculated in mean field theory [26] using the
standard Serot-Walecka [13] parameter set.

tegrating the Schrodinger equation for the Fermi-Dirac
p(r) as described above, is kept under the radial integra-
tion in Eq. (7), and Z,a is replaced by Z. The value of
Z,g we calculate &om our wave function solutions dif-
fers from the more accurate value obtained by Ford and
Wills [23] by solving the Dirac equation by at most 2%.
However since the rates depend on Z4&, this leads to a
small mismatch between this option and the others. To
correct for this we have renormalized our results by the
ratio of Z,& from Ref. [23] to that we calculated. This
changes the rates in the worst case by 10%, but of course
does not affect the ratio of RMC to OMC, which is the
experimentally relevant quantity.

The introduction of the muon wave function under
the integral for the nonuniform density case leads to a
rather significant reduction in the rates, for the reasons
discussed below.

As one can see from considering these various options
there are really two kinds of effects which have strong
inHuence on the results for the final rates. The first type
are those effects which change the phase space. This is
important because of the well known sensitivity of both
OMC and RMC to the end point of the spectrum, i.e.,

sensitivity essentially to the energy available for the pro-
cess. These effects include the muon binding energy and
the energy b,E which reduce and the Coulomb energy
which increases the amount of energy available for the
final particles. This also includes the effects of calculat-
ing kF„and k~„separately. As the nucleus gets heavier
N —Z gets larger and k~„becomes significantly larger
than k~„.This means more and more momentum is re-
quired just to get the neutron above the Fermi sea and
that less and less is available for the phase space. The
rates for heavy nuclei are therefore strongly suppressed.

The second major effect arises because of the variation
of I'(p„,p ) with the radius r. The integrand in Eq. (7)
is strongly peaked at the surface of the nucleus because
of the r factor. Figure 5 shows 4wr2p&(r) as a function
of r. As we add effects which make I'(p„,p„)no longer
constant across the nucleus, we change the weighting of
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FIG. 5. Components of the integrand of Eq. (7) vs r
Shown is 4mr p„(r)and p„(r),together with I'(p„,p„)and
the full integrand aT(r)/dr for RMC. The plotted results cor-
respond to option 9 for Pb, using a Fermi-Dirac distribu-
tion. The corresponding quantities for OMC are qualitatively
similar.

the integral and can change the rates. For example, mak-
ing m* a function of r enhances the rates slightly since
I'(p„,p„)increases with rn as in Fig. 3 and since m ~ rn
in the more highly weighted surface region.

The really dramatic effect comes, however, when we
take k~ as a function of density and allow it to vary
with the density across the nucleus. This is relevant
only for the Fermi-Dirac distribution, but there kF ranges
from nuclear matter values in the center of the nucleus
to nearly zero in the surface tail. This becomes impor-
tant because of the rapid variation of F(p&, p„)with k~
(see Fig. 2). I'(p„,p„)is then much enhanced in the sur-
face region and this leads, because of the heavy weighting
of this region in the integral, to much enhanced overall
rates.

It is just this effect, however, which makes it important
to put the muon wave function under the integral rather
than use Z,g in these circumstances. Z,p is calculated
assuming a constant weighting by the I'(p„,p„)factor.
If this rate is significantly enhanced in the low density
surface region, then the whole integral is weighted toward
regions where ~P„(r)~z is small and the result is smaller
than one would get using Z,p.

Some of these considerations are illustrated in Fig. 5
which shows I'(p„,p„),the phase space 47rr p(r), and the
complete integrand as a function of r. The RMC rate falls
off gradually with r near the center of the nucleus as a
consequence of the decreasing ~P„~ . Near the surface,
as the density begins to decrease rn' ~ rn and k~ ~
0, and the rates increase dramatically. Then for large
r, ~P„(r)~z takes over and I'(p„,p„)~ 0. The phase
space also peaks at the surface, and thus the integrand
of Eq. (7) is dominated by the surface region. Similar
considerations apply to the OMC rates.

It should be clear from this discussion that there are a
number of competing effects which combine to give the
final result. Some of these effects change the overall rates
by factors of 2 or 3 or more. In option 9 we make what
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FIG. 6. Photon spectrum dI'/dk for Ca, Sn, and
Pb in the experimentally accessible region. We have as-

sumed a Fermi-Dirac distribution, all of the dependences of
option 9, and the Goldberger-Treiman value for g~. The dot-
ted curves are the same quantities calculated using a uniform
distribution and normalized to the solid curves at 60 MeV,
so as to emphasize the difference in shape near the end point
caused by the various density dependent effects we have in-
cluded.

we feel to be the most appropriate and complete choices.
However other choices might be possible and could affect
the results. Thus it may be very difBcult to predict either
radiative or ordinary rates with confidence. If one is will-
ing to treat some of the ingredients as free parameters, as
has been done in some previous calculations, then it may
be very easy to fit any data that becomes available. Such
fitting is, however, not an approach we would advocate.

In Fig. 6 are plots of the experimentally accessible pho-
ton spectra in the 6nal version of our model (option 9 of
Table IV) for a small selection of the studied nuclei-
4oCa Sn and aosPb. The end point of the photon
spectra varies among the nuclei depending on the muon
binding energy and AM. The shape of the photon spec-
trum near the end point depends on the details of the
calculation and in particular on how the various ingre-
dients are weighted. Figure 6 also shows spectra using
the uniform density distribution, normalized to the same
value at 60 MeV. One can see that the various r depen-
dent effects we have included and the Fermi-Dirac density
distribution give a spectrum which is enhanced near the
end point relative to the usual uniform density model.
In principle this will affect the extraction of gp from the
experimental data, since it is normally necessary to fold
the theoretical spe"trum with various experimental reso-
lutions in order to compare with the actual measurements
of events.

Examples of the complete photon spectra for Pb
with differing values of the pseudoscalar coupling con-
stant g~ are shown in Fig. 7.

It is interesting now to compare our results with those
of other groups. We are aware of two calculations, those
of Chiang et aL [20] and of Christillin et at. [25], which
overlap ours to some extent. In both cases much of the
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FIG. 7. Relative photon spectra dR/dk, in units of 10
s ', for Pb as function of g~. A Fermi-Dirac distribution
is assumed and all of the dependences of option 9 of the text.
The curves correspond to values of g~ which are 2, 1, 0, and
-1 times the Goldberger-Treiman value.

physics motivation and details are quite different. How-
ever there are some limiting situations which provide a
point of contact and a completely independent check of
our results. More importantly, now that we have dis-
cussed the dependence of the results on the various in-
gredients, we are in a position to try to understand the
reasons for differences in the final results.

Chiang et al. [20] look just at ordinary muon capture
and are interested primarily in calculating strong renor-
malization effects due to particle-hole excitations in the
nuclear medium. Their calculation is relativistic and they
use the local density approximation, with a Fermi-Dirac
charge distribution and a Fermi gas model, just as we
do. The muon binding energy is included but Ec, and
the AE correction are not. The muon wave function,
calculated nonrelativisticly, is put under the integral. Al-

though not specifically noted, their renormalization ef-
fects are almost exactly just an overall constant, 0.54,
over the whole range of nuclei considered. Their results
agree rather well with a large number of ordinary muon
capture rates,

They do, however, give a no renormalization limit of
their calculation which can be compared with our no
renormalization results, i.e. , with our calculation for the
Fermi-Dirac distribution, with the muon wave function
under the integral and using m* = m, E~ = 0, and
AE = 0. For nuclei over the whole range Ca to Pb
we agree at the 10—20%%uo level. Our results are a bit lower
for the heavy and light nuclei and a bit higher in the rnid-
dle region. They state that dropping E&~ gives a 35%%uo

effect in Pb, which we find as well. Given that some
of the parameters may differ somewhat, we interpret this
as quite good agreement which gives confidence in the
numerical correctness of both calculations.

Their full calculation, as opposed to this limiting case,
differs from our full calculation in two major physics re-
spects. First the method of renormalization to account
for medium effect"- is different and produces a reduction

of the rates by a factor 0.54, whereas replacing m by m*

in our calculation leads to a reduction of only 20—35'Fo.

Secondly they do not include the Coulomb energy or the
AE correction, which in principle should be there. In-
cluding Ec increases the rates by 20%%uo for 4oCa up to
a factor of nearly 2.5 for Pb. Including DE cancels
part of this, as they realized [27], but not all of it as
we noted in the discussion of option 6 earlier. Thus one
must conclude that the good agreement with experiment
which they find must be somewhat fortuitous, especially
for heavy nuclei, and would be not as impressive when
Ec and AE are included. Our best results in this model
then are significantly larger than theirs, because of the
lesser renormalization and because we have included both
the Coulomb energy and AE which they have not.

A second calculation by Christillin et al. [25] deals with
both RMC and OMC in much the same spirit we have
done, in that the calculation is based on a Fermi gas
model of the nucleus and the local density approxima-
tion. It differs however both technically and philosoph-
ically in several important aspects. Their calculation is
purely nonrelativistic, and even some of the leading p/m
corrections have been dropped from the radiative matrix
element. They consider only a uniform charge distribu-
tion, so that none of the r dependent effects we have dis-
cussed are considered. The effective mass m* is treated
as a free parameter and varied in order to fit the OMC
data rather than obtained consistently from the relativis-
tic mean field theory as we do. They include E„Band
in some fashion E~, but presumedly only in the phase
space, whereas in our calculation a consistent applica-
tion of the relativistic mean field theory (and of gauge
invariance) requires some dependence also of the matrix
element on these quantities. Apparently the AE cor-
rection is not included. They include a modification of
the Coulomb propagator of the muon, which we do not,
but that is supposed to be only a few percent effect [28].
Roughly speaking then their model corresponds to our
option 5 for the uniform density model, with a number
of relativistic and other corrections dropped and with a
different set of parameters, notably m* = 0.5m.

When we compare our results for OMC with theirs, us-

ing a uniform density and as near as we can tell the same
parameters they used, but keeping all of the relativis-
tic effects, which we cannot separate out, we find results
which are higher than theirs by factors ranging from 1.6
for Ca to 2.0 for Pb. This is rather puzzling in view
of our relatively good agreement with Chiang et aL [20].
We did find empirically that multiplying our results by
the factor 1 —2.5(N —Z)/A, which was obtained in Ref.
[25] as an approximate overall factor for a simple calcula-
tion, does give much better agreement, but see no reason
why this should be done.

For RMC the disagreement is even worse as dI'/dk is
always larger than theirs by factors of 2—3 at 60 MeV and

by as much as a factor of 5 at 75 MeV. We also seem to
have (for AE = 0) a significantly higher maximum pho-
ton energy, and thus a spectrum shape which is enhanced
at the upper end as compared to theirs. This latter effect
is actually desirable as there appear to be indications in
new TRIUMF data on a variety of nuclei [2, 3] of signif-
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icantly more events at high energies than predicted by
the spectra of Christillin et aL [25].

Again we found empirically that if we arbitrarily mod-
ify the relation between k~ and p, which is given in Eq.
(4) by replacing the 3 by 3P where P —

s
—vr j2 is a

free parameter, then we agree with the OMC results of
Ref. [25] to about 10% and with the RMC results over
the range 60—75 MeV to about 25'%%uo. This also makes the
end point of the spectrum in better agreement. However
there is no indication that the authors of Ref. [25] ac-
tually made such a replacement and in fact it is clearly
incorrect to do so within the context of the Fermi gas
model.

Another possibility is that something analogous to our
b,E was included. One of the figures in Ref. [25] does
show AM explicitly, but the formulas do not include
such effects. In any case we tried including 6E, basi-
cally trying option 6 with the other parameters changed
to agree with those of Ref. [25]. This does reduce the rate
and make the spectrum end points more similar, but still
gives OMC rates 25—50% higher and RMC rates up to a
factor of 2 higher than those of Christillin et at. [25].

Thus it would appear that our results differ somewhat
from those of Ref. [25], even in the limit in which they
should be approximately the same, for reasons which are
not understood. It is possible that these difFerences may
still be due to unresolved difFerences in some of the pa-
rameters or to the fact that we cannot compare here with
quite all of the same approximations. It is also barely
conceivable that relativistic effects could be responsible.
The p/m effects in the matrix elements are known to be
small, say of the order of 10'%%uo or less [16]. However rel-
ativistic effects in the phase space could affect the max-
imum photon energy, and thus the rate, because of the
extreme sensitivity of the rate to this maximum energy.

Further physics differences arise when we consider our
best model, rather than the limiting comparison case,
in accordance with the discussions accompanying Tables
II and IV, as a result of the r dependent effects and
nonuniform density effects which were not included by
Christillin et at. [25].

VI. DISCUSSION

In this paper we have examined radiative muon capture
for a variety of nuclei in a relativistic mean field theory,
using the local density approximation and a Fermi gas
model for the nucleus. The aim has been to explore the
sensitivities to the various ingredients and to get some
idea of the reliability of this approach for extracting the
value of the induced pseudoscalar coupling g~ from the
data.

Perhaps the most important observation is that the re-
sults are very sensitive to the various ingredients, even at
the factor of 2 level. Two kinds of things are important.
Effects which change the phase space, such as Coulomb
and nuclear force corrections, the muon binding energy,
and the value of m', all affect the maximum energy avail-
able to the photon and, as is well known, the rates are
quite sensitive to this energy. The other important class
of effects are those which depend on the density or lead

to a radial dependence of the rates. Thus a Fermi-Dirac
density gave quite different results from a uniform den-

sity. Putting the muon wave function under the integral
was also quite important for the nonuniform density.

This extreme sensitivity to the ingredients has a num-
ber of practical consequences. First one is led to view
with some suspicion calculations which leave out one or
more of these ingredients, as has been the case with most
previous calculations, though of course one may leave out
ingredients which fortuitously cancel. Second it is clear
that if one is willing to treat one or more of the ingredi-
ents as free parameters, then it should be possible to fit
a given set of data. For example, in Ref. [25] the authors
got a good fit to a large number of ordinary muon capture
data by varying rn'. Finally it should be clear that it is
going to be very difficult to extract gp from experimental
data on the rates because of this sensitivity.

Nevertheless it is of some interest to compare our re-
sults with the existing data [1—7], bearing in mind that
we have no free parameters, but have in each case chosen
what seems to be the most correct choice of ingredients.

We see first that our results for both OMC and RMC
rates are significantly higher than the data, when the
Goldberger-Treiman value of g„is used. This is consis-
tent with the results of the authors of Ref. [25] who found
relative rates too high even when the OMC rates were fit-
ted to the data by varying rn'. In our case it does not
seem possible to reduce the rates sufficiently by varying

g~ alone. Something else would have to be varied as well.
Thus we have to conclude that this model does not do
a very good job reproducing the absolute values of the
rates.

It is worth noting that there have been theoretical cal-
culations suggesting renormalization of the coupling g~
in nuclear matter. To test the effects of such a renor-
malization upon our calculated rates, the final version of
the model was run for a range of nuclei with g~ = —1.00
instead of the usual gg = —1.25. Both the RMC and
OMC rates were found to decrease by 30'%%uo for the nu-
clei tested, with the ratio of RMC to OMC rate being
almost unchanged. Clearly this is not a sufficient reduc-
tion to provide a good fit to data.

It is interesting to see if any of the other qualitative
features of the data are reproduced. As noted above and
illustrated in Fig. 6, the various density dependent effects
we have introduced do seem to enhance the spectrum
in the end point region relative to the uniform density
calculation. This seems to be an effect seen in the recent
TRIUMF data [2, 3].

We can also look at the trend of the radiative rates with
Z. The relative rate is plotted versus Z in Fig. 8 where
we have renormalized by a factor of approximately 0.4 to
fit the data. The data show a steady decrease with Z of
the relative rate R(& 57) which is reproduced rather well

by the theory for nuclei above Ca, the major exception
being Bi, which is too high. Figure 9 shows the radia-
tive rate I'(& 5?) plotted versus Z. The data points are
obtained by multiplying the measured relative radiative
rates by the nonradiative muon capture rates obtained in
separate experiments [24]. Again the theoretical calcu-
lation does a good job of reproducing the Z dependence
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FIG. 8. The relative rate R(& 57) as calculated using the
dependences of option 9, a Fermi-Dirac distribution, and the
Goldberger-neiman value of g~ plotted vs Z. The overall
normalization has been adjusted to fit the data which comes
from Refs. [1—7]. The small open circles are estimates for
the rates in the natural isotopic mixtures actually measured.
Results for nuclei lighter than Ca have been included for
reference only, as our model is not expected to be applicable
to such light nuclei.

of the data (except for 2csBi) once one adjusts the nor-
malization, this time by a factor of approximately 0.2. It
should be emphasized that the various ingredients of our
best approach, option 9, have been used without modi-
fication to get these results. Only the normalization has
been varied.

It is interesting to note that even in a model such as the
Fermi gas model which essentially averages over almost
all properties of the nucleus, some evidence of nuclear
structure remains. The difference in the theoretical rates
for 2cs Pb and sssBi is due almost entirely to the difference
in 6M. In fact using the hM for asPb in the csBi cal-
culation gives results almost identical to those for Pb.
This results because Pb is particularly tightly bound
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FIG. 9. Same as Fig. 8 except that the rates plotted are
the absolute radiative rates. The experimental data are ob-
tained by multiplying the quoted relative rates by ordinary
capture rates obtained in separate experiments [24].

so that the energy gap to the ground state of the neigh-
boring nucleus, AM, is larger than average for Pb and
smaller than average for scsBi. This makes more (less)
phase space available for csBi (2 sPb) and so enhances
(suppresses) the rates. The differences between ssNi and

Fe appear to come from the same effect.
Note also that this sensitivity to LM may affect our

comparison with experiment to some extent as we have
calculated rates for pure isotopes, whereas some of the
experimental data is for the naturally occurring mixture
of isotopes. The small open circles in Fig. 8 and Fig. 9
show our estimate of the rates for the natural mixtures
which were actually measured. The effect is small for all
but Pb.

Another effect should be considered for precise com-
parisons with experiment. In heavy nuclei of nonzero
spin there is a very rapid transition to the lower hyper-
fine state [24], so that the measured transition is prob-
ably predominately from that state rather than from a
statistical mixture of spin states as was assumed in our
calculations.

One of the interesting physical questions deals with
the possible quenching of gp in heavy nuclei. This could
show up in data which fell with increasing Z significantly
faster than theoretical calculations would predict using a
fixed value of gp. It has been diKcult to address this
question in the past because it was necessary to compare
data with different calculations, having different inherent
normalization uncertainties, for the light nuclei and for
the heavier nuclei. Ours is the first that spans the whole
Z range, though admittedly some of the approximations
are much better for the heavier nuclei. As is clear from
Fig. 8 our results show no real evidence for such quench-
ing as a function of Z. It should be emphasized that by
quenching we mean some effect which leads to a depar-
ture from the form of the Goldberger-Treiman relation.
As we use m' in Eq. (3) the effective numerical value of
g~ is reduced from the usual value quoted, g„=7g~, even
though the form and physics of the Goldberger-Treiman
relation are preserved. Quenching effects which are more
or less the same for all nuclei above Ca and which thus
could affect the overall normalization are of course not
ruled out. In our opinion, because of the sensitivity of
the model to the ingredients, any real conclusion about
quenching is premature.

Thus, to summarize the important points of this dis-
cussion, we note that we have used the relativistic mean
field theory in a very simple form to calculate RMC in nu-
clei. We find sensitivity to a large number of effects, par-
ticularly those which change the phase space or depend
on the density and conclude from this that one should
interpret with some care results for RMC or OMC in
variants of this model which do not include all of these in-
gredients. The complete model was then applied to RMC
and results compared with recent experiments. The abso-
lute values of the rates are not well reproduced. However
the Z dependence seems to be qualitatively correct over a
wide range of Z. This suggests that further Z dependent
quenching effects, which had been suggested to explain
the falloff of the rates with Z, are not necessary. Finally
it is clear that to make further quantitative progress and
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in particular to extract accurate values of g~ from exist-
ing data one will have look at more sophisticated models.
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