
PHYSICAL REVIEW C VOLUME 46, NUMBER 5

Subbarrier fusion in the interacting boson model

NOVEMBER 1992

A. B. Balantekin, J. R. Bennett, and A. J. DeWeerd
Physics Department, University of Wisconsin, Madison, Wisconsin 68706

S. Kuyucak
Department of Theoretical Physics, Research School of Physical Sciences, Australian National University,

GPO Box g, Canberra, ACT M01, Australia
(Received 2 July 1992)

A method is given for calculating the heavy ion subbarrier fusion cross section for nuclei which are
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I. INTRODUCTION

In this paper we study the effects of nuclear structure
on heavy ion fusion near and below the Coulomb bar-
rier. Many researchers have established that although a
simple barrier penetration model of two colliding spher-
ical nuclei describes well the fusion of light nuclei, this
picture is insufBcient to explain the magnitude of the
fusion cross section for heavier nuclei at subbarrier en-
ergies [1]. Various studies [2-6] have argued that extra
degrees of freedom such as static deformation [2], zero-
point vibration [3], particle transfer [4], or neck formation
[5] efFectively lower the barrier and so enhance the cross
section below the barrier. All of these mechanisms have
previously been studied using the geometrical model of
Bohr and Mottelson [7) and numerically solving coupled
Schrodinger equations to take into account the different
nuclear structure effects. In our work, we choose to study
subbarrier fusion using instead the path integral formu-
lation of the coupled-channels problem developed by Bal-
antekin and Takigawa [8], taking into account the nuclear
structure using the interacting boson model (IBM) [9].
This approach has the advantage of avoiding the compli-
cations of directly solving the Schrodinger equation for
coupled channels. Also, the IBM can be applied to sys-
tems which are neither rotational nor vibrational, i.e.,
transitional nuclei between the SU(3) and SU(5) limits.

As many authors have shown [8, 10, ll], within the de-
generate or "adiabatic" limit in which the excitation en-
ergies of the internal degrees of freedom can be neglected,
the fusion probability can be written as a weighted
sum over penetration probabilities through a set of one-
dimensional barriers determined by diagonalization of
the coupled-channels Hamiltonian. We derive an expres-
sion of this form for the cross section and then calculate
the barrier transmission eoefBcients in a uniform WEB
approximation to the path integral valid for energies both
above and below the barrier [12, 13]. Throughout our cal-

culation we use the notation of Ginocchio et al. [14, 15]
and of Kuyucak and Morrison [16] to emphasize the sim-
ilarity of our approach to their application of the IBM to
proton scattering in the Glauber approximation.

Since several different mechanisms can account for the
observed fusion cross sections for a given system, data
on average angular momentum transfer provide a more
stringent test of a model. In an earlier study [17], we
outlined our method and compared our calculations with
cross section and spin distribution data for ~sO on the
deformed targets ~s4Sm and ~ssEr. Our previous work
included only the effects of quadrupole collectivity by as-
suming that the target nuclei are described by the SU(3)
limit of IBM. In this paper, we extend our formalism
to allow multipoles of any order and present results in-
cluding both quadrupole and hexadecapole couplings. In-
cluding the hexadecapole deformation increases the cross
section and the angular momentum transfer at subbar-
rier energies, giving better agreement with the data than
calculations including only quadrupole deformation.

Recently Rowley et aL [18] have suggested a method
for determining the distribution of barriers in subbar-
rier fusion directly from the fusion cross section. Using
their prescription we compare the barrier distribution ob-
tained from our calculations with that obtained from pre-
cise cross section measurements carried out recently [19]
for the system MO+~s4 Sm. We show directly the influ-
ences of quadrupole and hexadecapole couplings on the
distribution of barriers.

In Sec. II of this paper we review our formalism which
can be applied to any target describable by the IBM.
We restrict our discussion to IBM-l, the version of IBM
in which no distinction is made between neutrons and
protons. We derive in Sec. III an expression for the fusion
cross section for the case when the target or projectile is
deformed. In Sec. IV we compare the results of numerical
calculations with cross section, angular momentum, and
distribution of barriers data for 0+ Sm. Finally in
Sec. V we discuss our approximations and conclusions.
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II. APPLICATION OF IBM
TO SUBBARRIER FUSION

We take the Hamiltonian for the system to be

V() = V...()+V-..()
where the nuclear part is

v...(r) = v, (i+ a'."')

(2a)

(2b)

This potential creates a barrier whose position, height,
and curvature depend on the two charges and on the
Woods-Saxon parameters Vo, Ao, and a, which will be
speciFied later. IBM is the Hamiltonian describing the
low-lying nuclear structure of the target (or projectile).
When we make the adiabatic approximation the internal
energies will be neglected and so the term Hi~M will be
dropped How. ever, the IBM Hamiltonian is important
as it distinguishes the various possible target structures
in a way we will see later.

Finally, H;„q represents the coupling to internal degrees
of freedom. In the interacting boson model, the collec-
tive motions of an even-even nucleus are described by
bosons representing correlated pairs of valence nucleons.
In general, these bosons can carry any even angular mo-
mentum, although in practice it is found that only a few
of the lowest angular momentum states need be included
in order to describe a given nucleus. Introducing the bo-
son operators be~)E Oy2, 4y &S~@x& we take Hj„g to
be of the form of the most general one-body transition
operator for IBM,

- {k)
Hine = ) .&~~~(&) &,4

kate

The k sum runs over k = 2, 4, . . . , 28~,„.Odd values of k
are excluded as a consequence of the refiection symmetry
of the nuclear shape; the k = 0 term is already included
in V(r) For now .we leave the form factors nyzg(r) un-
specified.

We would like to calculate the total fusion cross sec-
tion using the barrier pentration picture in which it is
assumed that once the projectile has tunnelled through
the barrier it always fuses with the target. Hence it would
be convenient to use the usual partial wave expansion

or„,(E) = vrA ) (2E+ 1)Tg(E) (4)
e=o

where T~ are the penetration probabilities for the differ-
ent partial waves. However, this expression is correct
only under the approximation that the angular depen-
dence of H can be ignored. Alternatively, we can per-
form a rotation at each instant to a kame in which the
z axis points along the direction of relative motion. Ne-
glecting the resulting centrifugal and Coriolis terms in
the rotating frame is equivalent to ignoring the angu-

H = ——7' + V(r) + HinM + H;„g,
2p

where r is the relative coordinate of the target and pro-
jectile. The internuclear potential V(r) is taken to be

(6c)

Note that H(„,l is diagonal in the magnetic quantum num-

ber of the IBM state. Next, we introduce the evolution
operator U for the system, which we write in terms of a
reduced operator U{ ~

U = R(b)U('l. (7)

Since U obeys the evolution equation

ih =HUBU

Ot
(»)

subject to the initial condition

U(5=0) =1, (sb)

we find using Eqs. (5), (7), and (8) that U(ol satisfies the
differential equation

gU(o)
ih

Ot
= H('l —'hR'(b)

Ot
(9a)

U('l(t = 0) =1. (9b)

Now making the rotating frame approximation, we drop
the last term in Eq. (9a). As we will see, the transition

probability can be expressed in terms of U{ ~ so that the
time-dependent rotation angle b does not appear. In this
approximation, we can apply a partial wave expansion in
the orbital angular momentum. We will first calculate
the transmission probability for the 8 = 0 partial wave.

lar dependence of the original H. This same "rotating
frame approximation" has been described by other au-
thors [20—22] and has been shown [17, 20] to have the
physical consequences that the coupling form factors be-
come independent of E and that only m = 0 magnetic
substates of the target are excited. For heavy systems the
neglected centrifugal and Coriolis forces are small. Hence
we will first derive the transition probability within the
rotating frame approximation. The result will be in gen-
eral too unwieldy to give useful information, but we will
see that in the semiclassical limit our formalism yields a
simple result.

To simplify the calculation we first assume that the
internal energies are small so that the term HinM can
be neglected. We take the scattering to be in the x-y
plane. Now making a rotation through the Euler angles

[23] b = (P, vr/2, 0), we can write the Hamiltonian as the
rotation of a simpler Hamiltonian depending only on the
magnitude of r

H = R(f)H('l(r)Ri(i ).
H;„q is the only term whose form is affected by the trans-
formation. Hence we introduce the rotated interaction
Hamiltonian Hi„, (r), given by

H;„~ ——R(b) H(„,l (r)R~(b), (6a)

H,.(„,l(r) = ) P,g (r)b, bg (6b)
~em

2k+1
P~g (r) = (—1) ) (j mg —rn[k0)ni, ~z(r).
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Then in the spirit of the rotating frame approximation we
assume that the only angular momentum dependence of
the transmission probability for the higher partial waves
comes from the centrifugal potential, and we take the
coupling form factors to be independent of E.

Now we have simplified the problem to the calculation
of the transition amplitude for each partial wave. It is
convenient to formulate this problem using path integral
techniques [8] since then we can make use of the exten-
sive work already done on semiclassical approximation to
path integrals. Consider then a barrier in one dimension,
corresponding to the Coulomb, nuclear, and centrifugal
potentials for a given partial wave. In addition, the in-

teraction energy represented by H.,(„,) raises or lowers this
barrier slightly, depending on the internal state of the
target. The propagator to go from an initial state char-
acterized by relative radial coordinate (the magnitude of
r) r; and IBM quantum numbers n; to a final state rf
and nf may be written [11]

K(rt, nt, T; r, , n;, 0)
= f17

(r(t)) etet" ~ r„W„,(r(t), )T,

(10)

U(„t) satisfies the difFerential equation

.(o)
hBU,.„t H(o) U(o}

int int ~

U,.'„,)(t = 0) =1.
(12a)

(12b)

x d Te+' ~"K(rf, n~, T; r, , n, , 0),
0

(13)

where p; and py are the classical momenta associated
with r, and rf. In heavy ion fusion we are interested in
the transition probability in which the internal system
emerges in any final state. This is

We want to consider the case where r, and ry are on op-
posite sides of the barrier. In the limit when the initial
and final states are far away from the barrier, the transi-
tion amplitude is given by the S-matrix element, which
can be expressed in terms of the propagator [8]

1
1 . &p~pf&

~
S ~, , (E) = ——. lim

~

'z
~

exp (pfr—f pr)
f .:"E~')

where S(r, T) is the action for the translational motion
and W„~„,. is the propagator for the internal system:

Te = ):ISn, ,n, (&)l't (14a)

Wr„, (r, T) = (nt R(b)U;„e (r(t), T) n) . (11) which becomes, upon substituting Eqs. (10) and (13),

Tg = lim
~

'
~

dTes Te r 'D[r(t)] 'D[P(t)]exp'~ (Tt ) (Tt )Ip (MP(t), T;r(t), T).
0

(14b)

Here we have again assumed that the energy dissipated to the internal system is small compared to the total energy
and taken py outside the sum over final states. We identified the two-time influence functional as

pM(P(t), T; r(t)T) = ) W„' „,(P(t); T, 0)W„~,„,. (r(t); T, 0). (14c)

Using the completeness of final states one sees that the two-time influence functional simplifies to become the matrix
element of a unitary operator in the initial state of the internal system:

pM Aj ' t ) )~t ) T Ag (15)

The interaction Hamiltonian was chosen to be a linear combination of boson operators. From a group theoretical
point of view, these operators form an SU(n) algebra, where n = zl (E +3)+1. Hence the operator U(o) is
an element of the group SU(n). The boson states form a basis for the symmetric irreducible representation of SU(n)
of rank N, where N is the number of bosons in the target. If we assume now that the form factors o(Ieg(r) are all

proportional to the same function of r then the Hamiltonian H;„t commutes with itself at diferent times and hence
we can write

eg jo dtHt(„„)(T(t)) —g jo dtH)(„,)(T(t))
PM

— ~, g O it fo 0 it (16)

Furthermore, the exponents of the two operators in the influence functional commute and hence pM becomes the
matrix element of an SU(n) transformation between SU(n) basis states, in other words it is a representation matrix
element for the group. Now it is straightforward to calculate the necessary matrix element. We will calculate the
matrix element in the next section for the case when the target is a rotational nucleus. Here we give the rest of the
procedure for calculating the fusion cross section, assuming that the matrix element has been calculated.

Barrier penetration in the path integral formalism has been considered previously by Brink and Smilansky [12, 13].
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They derived a simple formula for the transmission probability using a uniform semiclassical approximation to the
path integral, void for energies both above and below the barrier. Their essential conclusion is that the penetration
probability, expressed as

P(E) = lim
i

'2
i

dTe~fk,k, &

.",':" ES') p
d Te r. ~[r (g)] ~[r (t)]e ~ [s(&,2') —s(~.f') [

can be evaluated to give

~(E) = (1+e2~)

2pQ= dr[V(r) —E]~.

(18a)

(18b)

~f„(E)= mX ) (28+1)) w;T~ (E —V~),
e=o

(19)

where the u; are the appropriate weight factors and the
effective potentials are a sum of the Coulomb, nuclear,
and centrifugal potentials, plus perturbations due to the
influence functional which are linear combinations of the
form factors ni,&4(r). The transmission coefficients are to
be evaluated using the WKB expressions Eqs. (19).

III. CALCULATION OF
THE INFLUENCE FUNCTIONAL

The needed matrix element has been calculated by
Kuyucak and Morrison [16] and for limiting cases by
Ginocchio et at. [14]. The matrix element depends on
the details of the IBM state of the target and hence on
the choice of IBM Hamiltonian. It is convenient here to
use the fact that the IBM state can be projected out from
an intrinsic state [24, 25]. Thus for the ground state band

This is the familiar WKB result, and ri and r2 are the
classical turning points of the motion. Our expression
(14b) for Tg is nearly the same as the one they derive,
except that they do not consider coupling to internal de-
grees of freedom and hence in their case the two-time in-
fluence functional reduces simply to unity. We can nev-
ertheless use their result, provided that we express the
two-time inHuence functional as an exponential or sum
of exponentials, for then the exponents can be combined
with the actions of the path integrals and regarded as ef-
fective potentials. The transmission coefficients can then
be evaluated numerically simply by solving the WKB in-
tegral in Eq. (18b). Hence, using Eqs. (17) and (18) in
Eq. (14b), and inserting this into Eq. (4), our formula for
the cross section takes the form

I

one can express the intrinsic state of the target as

(20a)

where we introduced an intrinsic boson operator for a
rotational nucleus given by,

bt = ) xgbqtp.

e

(20b)

pM = sin8d8dgsin8 d8'dP f (22a)

where f is a polynomial in trigonometric functions of 8,
O', P, and P' with coefficients which are exponentials of
the form factors. We can write

The intrinsic state depends on the IBM Hamiltonian by
way of the mean field amplitudes xp and x2. In practice
one must first choose a Hamiltonian which describes well
the low-lying levels of the target nucleus. Then the mean
field amplitudes can be gotten by minimizing the energy
in a variational calculation, for example.

The general result for the matrix element is rather
complicated, so here we give only the formula for the
case when /, „= 2 (s-d boson model). Then the
only possible transition operators that can be formed are

(bpb2~+b2 bp), [b2b2], and [b2b2]~ . For the first oper-
ator we have taken the Hermitian combination of bo and
b2 which yields real matrix elements. We again note the
assumption that all the form factors o),~q(r) are propor-
tional to the same function of r We den. ote this function
by g(r) and take

~2p2(r) = A22p(r) = 9(r),
a222(r) = xg(r), (»)
a422(r) = y9(r)

The constants x and y and the function g(r) will be spec-
ified later. We assume that the initial state of the target
is the ground state. Denoting the number of bosons in
the target by N, one finds that the matrix element can
be written [16]

f =4Ae'~[ *+ " sin 8sin 8'cos (P —P') —2Ae' *+ ") sin 8sin 8'

+8Ae ' *+ ") sin8cos8sin8'cos8'cos(p —p')+Be'~[ 5*+s"+")

+Ce'~~ + "+")cos g+ Ce' ( + "+"icos g'+De'~ + "+" cos gcos g'

+E' *+" "+/' +9"" g+P'' +" "cos g'+Ge'~ +" "cos gcos g (22b)
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where we defined

81 18
y = yy 14+ z~ + —y~ ——zy,

25 5

and the coefficients are

(22c)

(22d)

2~ 2m)

t ( )
Q~=b, b&~+b,~bo+y b,b&

- m
- (~)

L = v10 b2tb2

(23b)

(23c)

(23d)

3 2A= -x~,
8

2@+5x —9y 5~14 zg —5x+ Qy
Xp

27/ 2n
—XpX2 + X2

8g

15@14 zg —5x+ Qy= xoxg
4g 8g

—SX2

2g —5x+ Qy
(22

8g

sr' —5x+ 9y 5~14 2@+5x —9yE=Xp + XpX2 + X2
29 27/ 8g

15~14 2 g + 5x —9yF = XpX2 -3X2
4g 8g

~ri+ 5x —9yG- Qx~
8g

We can simplify the matrix element by expanding fN
in a multinomial series and integrating the trigonometric
functions term by term. Note that one of the integrals
over either P or P' is trivial and gives just 2vr. Since the
integrands are simply powers of sin e and other standard
functions, the other integrals can be carried out using
standard tables. We then obtain a linear combination of
exponentials, each of which provides an effective poten-
tial depending on the constants x and y and the function
g(r) Then in.serting the matrix element in Eq. (14), com-
bining the effective potentials with the actions and using
the semiclassical approximation to the path integrals de-
scribed in the previous section, we are finally faced only
with the numerical evaluation of the WKB integral Eq.
(18b) for each partial wave.

IV. RESULTS OF NUMERICAL
CALCULATIONS

We found e = 550 keV, e = —24 keV, e' = —3.5 keV, and

y = —1.15 to give an accurate representation of the low-

lying structure of ~s4Sm. Note that we work in the s-d
boson model. The mean fields were then calculated using
a code developed by Kuyucak [28] which minimizes the
energy in a variational calculation; we find xo = 0.742
and xq ——0.670.

We expect the matrix elements of the transition oper-
ators to scale with the number of bosons N in the target,
so in order to make the average interaction energy in-

dependent of N we choose the form factor g(r) to scale
inversely as the matrix element of the quadrupole tran-
sition operator. Hence we introduce the reduced form
factor f(r),

f(r)
&2i II @ II0i)

(24)

(2+x IIV 110+i) =Nl 2xox~— xx~ I

2 (25)

We take the reduced form factor to be proportional to
the quadrupole fields of the deformed target:

f(r) = fCoul(r) + fnuc(r)~

where the Coulomb part is [2]

fo,„((r)= PZgZge '(r & R, )
3 qR2

/20~ r
r2

PZgZ2e s(r & R, )
20vr

and the nuclear part is [11]

(26a)

(26b)

(26c)

The reduced quadrupole matrix element has been calcu-
lated as an expansion in powers of 1/N (N is the number
of bosons) and is given by [29]

HrBM = «g+~q + Ic'I', (23a)

where nq is the d-boson number operator, Q is the
quadrupole operator, and I is the angular momentum
operator of the IBM:

We have used Eq. (19) to consider the fusion of ~sO

with ~s4Sm. The Coulomb barrier for this system is
around 59.2 MeV, as determined from recent fusion data
at energies above the barrier [19]. The samarium nucleus
is highly deformed and hence one supposes the coupling
in this case could excite the low-lying rotational 2+ and
perhaps 4+ states at 82 and 267 keV for a projectile with
center-of-mass energy near or below the Coulomb bar-
rier. For the internal Hamiltonian we used an extension
[26] of the "consistent-Q" parametrization of Warner and
Casten [27],

d&nuc
fnuc(r) = PRv

4m dr (26d)

In our calculations we take R, = 1.2A& fm and R, =
1.2A& fm, where A is the mass number of the deformed
target. P is a parameter which measures the strength of
the coupling between the translational motion and the
internal states of the target.

For the Woods-Saxon parameters we chose values
which give a Coulomb barrier with a height of 58.3 MeV,
slightly less than that determined from the data. We
found Vo = 130.0 MeV, Ro = 7.5 fm, and a = 1.2 fm to
give a satisfactory barrier. The remaining free parame-
ters in our calculations were then the coupling strengths
P, x, and y. However, in the consistent-Q formalism one
takes the parameter x in the quadrupole transition op-
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erator to be the same as the g in the IBM Hamiltonian.
Hence we have already determined x to be —1.15, leav-
ing two free parameters, the overall coupling strength P,
and the hexadecapole strength y. In addition, we studied
the behavior of our results when the number of bosons
in the target was varied. For Sm, the actual number
of bosons is N = 11 and hence the maximum angular
momentum of the target state is 22 in our model which
includes only s (E = 0) and d (f = 2) bosons. However,
by setting N = 1 for example, we can study a hypotheti-
cal Sm nucleus in which there is only a single excited 2+
state in addition to the ground state, and thus by chang-
ing N we can see the importance of including the different
higher states in the ground state rotational band.

In Fig. 1 we compare results of our calculations to re-
cent data on the ~sO+ ' Sm fusion cross section taken
by Wei et al. [19]. The position of the barrier with no
coupling is indicated by the arrow. One sees that the cal-
culated cross section (solid curve) agrees with the data
quite well. For this calculation we found the couplings
P = 0.328, y = 2.15 to give the best fit. In our previ-
ous work, which included only quadrupole coupling, we
noted that the effect of the quadrupole coupling is to in-
crease the cross section dramatically for energies below
the barrier. As we will demonstrate below, the effect of
the hexadecapole coupling is to increase the cross section
below the barrier somewhat more.

The dotted curve represents the fusion cross section
calculated when all couplings are set equal to zero, or
equivalently when the number of bosons in the target is
set equal to zero. One sees there the huge effect which
the couplings have on the subbarrier fusion cross section.
Finally, the dashed curve shows the fusion cross section
calculated when the target boson number is set equal to
four. Here one observes the well known effect that the
cross section rapidly "saturates" as more channels are
added in a coupled-channels calculation, and there is lit-
tle difference between the calculations for N = 4 and

for higher numbers of bosons. In our previous work [17]
we showed how the cross section and angular momentum
remained unchanged when the number of bosons in the
target nucleus was increased beyond 1 or 2. In our cur-
rent calculations, we see that these quantities saturate
as the number of bosons reaches 4 or 5. It takes at least
2 bosons in the 8-d IBM in order for the target to have
an excited 4+ state. Hence the hexadecapole coupling
is only effective for N at least 2, and so we expect the
saturation to take place at a somewhat larger number of
bosons in our present calculations.

In Fig. 2 we show the average angular momentum as
a function of energy calculated using the same potential
and couplings as were used for the cross section. One
sees that the calculation using the IBM (solid curve)
gives good agreement with the data for energies near and
above the barrier but is too small for subbarrier energies.
This missing angular momentum could be a signal that
g bosons play an important role in the coupling of ~s4Sm

to the fusion channel. In our study we included hexade-
capole couplings through an E = 4 term in the transition
operator, but we did not include any additional hexade-
capole coupling arising from the presence of g bosons.
The large bump in the curve has been observed before
and has a simple explanation in terms of the barrier pen-
etration picture [32].

For comparison we show with the dashed curve the av-
erage angular momentum calculated using the coupled-
channels code CCDEF [33], including quadrupole, oc-
tupole and hexadecapole couplings [31]. The better
agreement of the coupled-channels calculation than the
IBM calculation with the data may be due to our neglect
of the octupole vibration state and of g bosons. The
dotted curve shows the predicted average angular mo-
mentum for a spherical potential (all couplings set equal
to zero).

As Rowley et al. [18]have pointed out, the distribution
of barriers in subbarrier fusion can be gotten from the
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FIG. 1. Comparison of predicted cross section using the
interacting boson model with experimental data from Wei et
al. [19] (open circles) and Stokstad [30] (dark circles). The
difI'erent curves correspond to including different numbers of
bosons in the calculation: N = 5 (solid curve), N = 4 (dashed
curve), and N = 0 (dotted curve).

FIG. 2. Comparison of predicted average angular momen-
tum using the interacting boson model (solid curve) with that
using the geometrical model (dashed curve) and with the case
of a spherical potential and no coupling (dotted curve). Ex-
perimental data from Gil et al. [31].
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fusion cross section by considering the quantity 1000.:

100.:

To calculate the second derivative requires accurate
knowledge of the cross section for many closely spaced
energies. The measurements of Wei et aL [19] allow such
a determination to be made and in Fig. 3 we compare the
predictions of the IBM calculation (solid curve) to their
measurements of the barrier distribution. Again the po-
tential and couplings are the same as for the calculations
in Figs. 1 and 2. The width of the distribution is about
10 MeV, and the maximum occurs near the energy of
the barrier (indicated by the arrow in Fig. 1). Evidently
the couplings can raise or lower the barrier by several
MeV. In calculating the distribution of barriers we used
the simple approximation

ds f(E+ 6E) —2f(E) + f(E —bE)
dE2 bE2

where bE is some suitable small energy interval. We
chose bE = 2 MeV, corresponding to the value used by
Wei et al. [19) in reporting their data.

To understand better the effects of the various cou-
plings in our calculations, we examined the cross section,
angular momentum, and barrier distribution as the cou-
plings were varied. In Figs. 4, 5, and 6 we show how
changing the magnitude of the hexadecapole coupling

y while keeping the quadrupole couplings fixed affects
the calculations. In Figs. 4 and 5, we see that both the
cross section and the angular momentum increase below
the barrier with increasing y; the behavior is opposite
slightly above the barrier, and the calculations remain
unchanged well above the barrier. Previous studies [34]
have noted that the magnitude of the subbarrier cross
section enhancement can be quite different depending on
the sign of the hexadecapole coupling. Arguments have
been made to show that either positive or negative hex-
adecapole moments are more effective at increasing the
cross section [34]. Figure 4 indicates that positive hex-
adecapole coupling gives a larger subbarrier fusion cross
section by about a factor of 2 for the case of sO+ ~s Sm.
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FIG. 4. The effect of changing hexadecapole coupling y
on cross section is shown. Solid curve is y = 2.15, dotted
curve y = 0.0, and dashed curve y = —2.15. The quadrupole
coupling is fixed (x = —1.15, P = 0.328).

14-

A

V

rt~m~'SOS~'III

I

57

Energy (MeV)

I

62

FIG. 5. Effect of changing hexadecapole coupling on av-
erage angular momentum for fixed quadrupole coupling (2: =
—1.15,P = 0.328). Solid curve is y = 2.15, dotted curve

y = 0.0, and dashed curve y = —2.15.
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FIG. 6. EfFect of changing hexadecapole coupling on dis-
tribution of barriers for fixed quadrupole coupling (all param-
eters same as in Figs. 4 and 5).
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FIG. 7. Effect of changing quadrupole coupling on fusion
cross section for zero hexadecapole coupling (y = 0.0). Solid
curve for z = —1.15, dotted curve for x = 0.0, and dashed
curve for z = 1.15. In all cases, P = 0.328.
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FIG. 9. Effect of changing quadrupole coupling on distri-
bution of barriers for zero hexadecapole coupling (y = 0.0).
Quadrupole parameters are the same as in Figs. 7 and 8.

FIG. 8. Effect of changing quadrupole coupling on average
angular momentum for zero hexadecapole coupling (y = 0.0).
The quadrupole parameters are the same as in Fig. 7.

The main point, however, is that adding a positive hex-
adecapole coupling improves the agreement of the cal-
culation with the cross section and angular momentum
data.

In Fig. 6 we see how the hexadecapole coupling can
dramatically affect the distribution of barriers. The dis-
tribution is skewed to higher or lower energies depending
on whether the coupling is positive or negative. Thus ex-
amination of the fusion barrier distribution gives directly
the sign of the hexadecapole coupling.

In Figs. 7, 8, and 9 we study the effect of changing the
parameter y. In the IBM, y ) 0 indicates oblate defor-
mation, y ( 0 prolate, and y = 0 the gamma-unstable
limit. Although Sm is prolate, it is nevertheless in-

teresting to see how the calculations change as one goes
from one limit to another.

V. CONCLUSIONS

Our calculations using the interacting boson model
agree reasonably well with data on the subbarrier fu-
sion of iso with is4Sm. This is not surprising since the
IBM is known to describe well the collective properties of
heavy ions. From these studies one would like to be able
to draw conclusions about the physical processes which
take place during heavy ion fusion. However as Krappe et
at. [5] have pointed out, even though a model for subbar-
rier fusion predicts correctly the experimental data it is
not easy to identify the underlying physical mechanisms
which are being modelled. This ambiguity arises because
essentially any coupling introduced between the transla-
tional motion and other degrees of freedom will increase
the subbarrier fusion cross section.

In our study it would seem that the couplings intro-
duced are modelling several things. Firstly, the spatial
dependence of the form factors was chosen to correspond
to the quadrupole Coulomb and nuclear fields of a de-
formed nucleus. As is well known, the potential barrier
depends on the orientation of the deformed target and
by including more rotational states in a coupled-channels
analysis one is essentially performing a weighted average
of the cross section over a distribution of barriers cor-
responding to the different orientations [35]. Hence in
our study we include the effect of the different orienta-
tions through the form chosen for the coupling functions.
The different effective potentials all contain a coupling
proportional to the same radial function, with various
weights corresponding to the different orientations of the
deformed nucleus. The couplings were also chosen to be
proportional to the most general E2 and E4 transition
operator in the s-d boson model. This choice represents
the assumption that the couplings can induce such tran-
sitions. The parameter y then represents the relative
importance of hexadecapole to quadrupole transitions, x
represents the relative importance of seniority-conserving
to seniority-breaking quadrupole transitions, and P is an
overall multiplicative factor which represents both the
amount of target deformation and the strength of the
transition operator. Note that the way in which we in-
clude hexadecapole transitions, through the term [d d]~ ~

in the interaction Hamiltonian, accounts only for part of
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the E4 transitions. To fully model these transitions re-
quires introducing g bosons. This representation of the
hexadecapole transitions may be the reason for the seem-

ingly large value of y we have found to fit the data best.
From these considerations we might conclude that the

enhanced subbarrier fusion cross section is due to the
ability of the projectile to exploit the lower barriers for
certain target orientations and to the presence of extra
channels corresponding to the target's low-lying excited
states. The agreement of this model with the angular
momentum and barrier distribution data gives further
confidence that this is the case. According to a study of
Pacheco et al. [36], neutron transfer does not seem to
be the mechanism responsible for the subbarrier fusion
enhancement of 0+ Sm, although it may well play
a role in other systems.

The interacting boson model and geometrical model
give equivalent results for the subbarrier fusion cross sec-
tion in the case of the rather "clean" system we have
studied, where the target is well deformed and the pro-
jectile spherical and basically structureless in the con-
text of low-energy fusion. In this case it seems arguable
that the fusion enhancement is due to the deformation
of the target and to excitation of its low-lying rotational
states. Surely, though, the fusion process is more com-
plex than our simple barrier penetration picture even for

this case, and for more complicated systems the com-
peting channels such as transfer and dynamical neck for-
mation may be important in determining the outcome
of the collision. To describe such a situation seems a
formidable task. One advantage of the IBM approach
is that it avoids the numerical complications of solving
coupled differential equations for the different channels.
In addition, although both the IBM and the geometri-
cal model can describe well the low-energy properties of
rotational and vibrational nuclei, the IBM can also suc-
cessfully describe many properties of transitional nuclei
which do not fall into one of these limiting cases and for
which a geometrical picture in terms of shape variables
is somewhat difFicult to implement. Especially in these
cases the IBM may provide a convenient way to describe
nuclear structure effects in subbarrier fusion.
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