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Relativistic Thomas-Fermi calculations of finite nuclei inclutbng quantum corrections
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Relativistic Thomas-Fermi calculations for finite nuclei including quantum corrections up to second

order in A, i.e., Wigner-Kirkwood and exchange corrections, have been performed. A linear o.-co model

is used, in case of exchange-corrected calculations extended by m.-nucleon and tensor p-nucleon contribu-

tions. A detailed discussion of the outcome shows that the inclusion of quantum corrections improves

the description of the nuclear surface and the classical forbidden region in comparison to the standard

relativistic Thomas-Fermi model. Furthermore, special attention is devoted to the investigation of the

spin-orbit interaction and the influence of the o-meson mass on nuclear properties.

PACS number(s): 21.60.—n, 21.10.Dr, 21.10.Ft, 21.10.Gv

I. INTRODUCTION

In recent years the interest in the investigation of nu-

clear systems has shifted strongly toward a relativistic ap-
proach (see, for instance, Refs. [1,2]). The Walecka mod-

el (for a review, see Ref. [1]) and its extension by Boguta
and Bodmer [3], who added nonlinear contributions
through cubic and quartic terms in the scalar field, have

been widely and successfully used to describe the
ground-state properties of finite systems within the Har-
tree approximation [1,4,5]. More elaborated and funda-
mental models, such as the Dirac-Hartree-Fock [6] or
Dirac-Brueckner-Hartree-Fock model [7,8], which, more-
over, use more sophisticated Lagrangians, have also been
investigated.

However, most of these applications are quite involved,
because the evaluation of energies and density distribu-
tions demands the knowledge of the wave functions of all
occupied single-particle states. This can be circumvented
by means of semiclassical methods. They allow the study
of average nuclear properties in a systematic and trans-
parent way, while the task of calculating the wave func-
tions is avoided, which simplifies the numerical treatment
enormously. Within the simplest semiclassical approach,
namely, the Thomas-Fermi approximation, the Walecka
model has been solved for finite nuclei by several authors
[1,9—11].

Semiclassical models including higher-order correc-
tions have been used with great success in nonrelativistic
nuclear physics (see, for instance, [12,13]). These models
are commonly based on the Wigner-Kirkwood (WK) A

expansion [14] of the phase-space density, whose lowest
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order corresponds to the Thomas-Fermi approximation.
Quite recently, several groups have begun to apply

semiclassical methods including WK corrections to rela-
tivistic problems. Because of the matrix structure of the
relativistic Hamiltonian, the task of performing the R ex-
pansion of the density matrix is much more involved
[15—19]. Using this scheme to describe nuclear systems
whose potentia1 has to be determined self-consistently,
e.g. , within the (non)linear o-to model, one faces two cru-
cial problems: First, the particle and energy densities in-

cluding WK corrections up to second order in fi are com-
plicated functionals of the meson fields, their first and
second derivatives, and the Fermi momenta. To our
knowledge, the problem of a self consisten-t WK approach
has not yet been solved in the nuclear context. The
second problem is the well-known fact that the WK
corrections in coordinate space diverge at the classical
turning point. Krivine, Casas, and Martorell [20] pointed
out that these are distributions rather than functions in
the mathematica1 sense and can only be used for the com-
putation of expectation values of one-body operators, but
not for the determination of r-space densities of any kind
to improve the shapes predicted by Thomas-Fermi calcu-
lations.

Both of these problems can be overcome by the
density-functional formalism, in which the scalar and
tirnelike potentials and their derivatives are eliminated in
favor of the corresponding densities and their derivatives.
The basic theorem of Hohenberg and Kohn was extended
to quantum hadrodynamics (QHD) for the Walecka La-
grangian by Speicher, Dreizler, and Engel [19], thus pro-
viding the theoretical foundation of the approach. Nu-
merical investigations within nonlinear o.-co models were
carried out by Centelles et al. [21,22].

However, the density-functional approach is not
equivalent to the WK approach, because they originate
from different arrangements of the fi expansion of the en-

ergy functional. This is illustrated in Ref. [22] for the
case of a given externa1 potential, namely, a relativistic
harmonic oscillator: While it can be numerically shown
that the WK results up to second order in A are
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equivalent to those obtained by the Strutinsky averaging
method, which uses single-particle occupation numbers
smoothed by some averaging function to separate the
smooth part of the energy from the fluctuating shell
corrections [23], the density-functional approach yields
different results. It has been shown in the nonrelativistic
case that these discrepancies increase within self-
consistent calculations [24]. Hence the rearrangement of
the A expansion causes some "loss of information, "which
in turn results in a not so proper estimation of the
smooth part of the energy by the density-functional ap-
proach. The specific nature of this "loss of information"
is one of the questions that we address in this paper.

Like the WK corrections, exchange (Fock) terms are
quantal corrections of the order fi [17]. Hence, dealing
with quantum corrections up to the second order, both
kinds of corrections have to be taken into account. Fur-
thermore, exchange corrections allow the study of ~-
meson and tensor p-nucleon contributions to nuclear
properties. A semiclassical treatment of such more real-
istic Lagrangians as used in relativistic Hartree-Fock
(RHF) or Brueckner-Hartree-Fock (RBHF) calculations
seems to be a meaningful task, since even the RBHF ap-
proach can be parametrized in a RHF structure by means
of density-dependent coupling constants [25,26].

For all these reasons, we considered it worthwhile to
perform semiclassical calculations of finite nuclei includ-
ing both quantum corrections up to second order in A.

They are taken into account in a kind of perturbative
treatment as outlined in Sec. III. Their impact on aver-
age nuclear properties is studied in a systematic way; spe-
cial attention is devoted to the strength of the spin-orbit
interaction, the description of the nuclear surface, and
the influence of the o.-meson mass on nuclear properties.

The paper is organized as follows. In Sec. II the ex-
pressions of the relativistic Thomas-Fermi approximation
(RTFA) within a Walecka model are recalled. The way
we incorporated the WK and exchange corrections in our
calculations is described in Sec. III. Section IV contains
the results and their discussion. Our conclusions are
drawn in Sec. V. To complete the paper we give in the
Appendix the explicit expressions for the second-order
WK corrections to the various densities.

X,=X~+
M =cr, co,p, A

[&M+&M~1 (2.1}

with the free nucleon and meson Lagrangians

(x)=P(x)(i y„d" M—)g(x),

~'.(x)=-,' [a„~(x)a~~(x)—m'. &'(x)],
X (x)=—,' m co„(xko"(x)—,'F„„(x—)F""(x),

X (x)= —,'m b„(x)b"(x)——,'G„„(x}G""(x),

and the free contribution of the electromagnetic field,

(2.2)

(2.3)

(2.4)

(2.5)

X„(x)= —
—,
' A„„(x)A"'(x), (2.6)

where the field tensors are given in the usual way:

F„„(x)=B„co„(x)—c)~„(x), (2.7)

A„(x}=c)„A (x)—c)„A„(x),

G„„(x)=ci„b„(x)—c)„b„(x) .

The interaction terms XM~(x) are given by

X ~(x)=g f(x)cp(x)P(x),

X ~(x)= gP(x)y"ei„—(x)P(x),

X ~(x)= gg(x)y—"r b„(x)P(x),

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

1+r,
X&~(x)= ef(x)y" —A„(x)f(x) . (2.13)

finite nuclei within a Walecka model [1]. The dynamics
of the nuclear system are governed by the following La-
grangian, including the electromagnetic field and p-
meson contributions to take proton-neutron asymmetry
effects into account (we use the units A =c = 1):

II. RELATIVISTIC THOMAS-FERMI
APPROXIMATION

For the sake of completeness, we recall briefly the ex-
pressions of the relativistic Thomas-Fermi description of

The Thomas-Fermi expression for the energy density can
be derived in a standard way from the Lagrangian. Ex-
panding the nucleon field operators locally into plane
waves, while the meson and electromagnetic field opera-
tors are replaced by their ground-state expectation
values, one gets in the static case

erF(r)= —,
' [[Vy(r)] +m cp (r) j

—
—,
' [[Vcoo(r)] +m coo(r) j

—
—,
' [[Vboo(r)] +m boo(r} j

—
—,'[VAO(r)] +g coo(r)bs(r)+gl p~(r)p3(r)+eAO(r)p (r)

pF(r)+cF(r)+ g pF(r)cF(r)+pF(r)c+(r) M' (r)ln-
; —p„8~ M'(r}

(2.14)
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with the efFective mass

M*(r)=M g—y(r},
the densities

lp;(r)= p~ (r), i =p, n,3''

(2.15}

(2.16)

hA (r)= —epp(r),

p, =g„co(r)+g b(r)+eA (r)+cF (r),

p„=g co(r) g—b(r)+c~ (r),

with the scalar densities

(2.23)

(2.24)

(2.25)

and

pz(r ) =p&(r)+p„(r),

p3(r) =p~(r) p„—(r),

(2.17}

(2.18)
(2m. ) ~0 [ +M' (r)]'~

cF(r)=[pF (r)+M' (r)]'~, i =p, n . (2.19)
ps(r)=ps (r)+ps (r)

i =p, n, (2.26)

(2.27)

i =p, n denotes the charge state of each nucleon. The as-
sumption of spherical symmetry leaves the timelike com-
ponents of the vector meson fields, while only the un-

charged component of the p meson contributes because
of charge conservation. We neglect any contribution of
antinucleons. In the following the indices of the co, b, and
electromagnetic fields are dropped for simplicity.

The variational principle applied to Eq. (2.14}yields

Equations (2.20)—(2.27) constitute a nonlinear system for
the nuclear densities, meson, and electromagnetic fields in
the RTFA, which has to be solved self-consistently. At
each iteration step, the chemical potentials can be adjust-
ed to the right number of protons and neutrons, Z and N,
respectively, by

(b, —m }p(r) = gp—s(r),
(b, —m „)a)(r)= gp~(r)—,

(b, —m )b(r) = gp3(r), —

(2.20)

(2.21)

(2.22)

Z for l=p
N for i=nV

(2.28)

For the kinetic-energy density, one obtains in the RTFA
the expression [16]

'rrp( r) = g 2 2pr( r)cr( r) —M' (r) 5 —4, pF( r)cF( r)
8m. M'(r)

+M' (r) 3 —4
M~(r)

pF(r)+cF(r)
ln

M'(r)
PF "

3 2
(2.29)

III. QUANTUM CORRECI'IONS

In the general Hartree-Fock scheme, the o. meson gives
the following contribution to the self-energy in the
phase-space representation:

X (r,p) = g f d r' v' '(r —r')ps(r')

+ig G(r, q)
2w 4

p —
q

' —m'+ig
=X (r)+X (r,p) . (3.1)

The expressions for the other mesons have a similar
structure [17]. v' '(r —r') represents the static meson
propagator (Yukawa potential), while G ( r, q) is the
Wigner transform of Careen's function, which obeys the
corresponding Dyson equation. The Wigner transforms
of the self-energy and the Dyson equation constitute the
relativistic Hartree-Fock approximation in phase space,
which is dif5cult to solve. For that reason we try an ap-
proximate solution by utilizing a A expansion. In the
next section, we discuss the Wigner-Kirkwood correc-
tions, while Sec. III B deals with the Fock terms.

A. Wigner-Kirkwood corrections

Xs(r)=g qr(r),

Xo (r)=g„co(r)+g b(r)+ed (r),
JP

Xo (r)=g co(r) gb(r), —

(3.2)

(3.3)

(3.4}

and the general expressions (A5) and (A6) are equivalent

In Ref. [16]we derived the WK corrections to the rela-
tivistic phase-space densities and densities up to second
order in A. The explicit expressions for the second-order
terms of the particle, scalar, energy, and kinetic-energy
densities of each kind of nucleons "feeling" the action of
a scalar and a timelike potential, Xz and Xo, respectively,
are given in the Appendix.

Equations (2.16},(2.26}, (2.14), and (2.29) represent the
corresponding zeroth-order expressions of the A expan-
sion of Ref. [16], with the energy density erF depending
on the definition of the interaction.

With the dynamics of the system specified by the I-a-
grangian (2.1), the scalar and timelike parts of the nu-
cleon self-energy are given in each order by



1800 D. VON-EIFF AND M. K. WEIGEL 46

and equal to Eqs. (2.24), (2.25), and (2.15), respectively.
The fi corrections to the meson and electromagnetic fields
are formally determined in each order by a set of equa-
tions that are an analog of the Thomas-Fermi equations
(2.20)—(2.23) [17]. For the second order, they are explic-
itly given in the Appendix.

Equations (2.14), (A3) and (2.16), (Al) constitute ex-
pressions up to second order in A' for the energy and par-
ticle density, respectively:

e =eT„+ y e,w",
i =p, n

(3.5)

(3 6)

At this point we remind the reader of the two crucial
problems we mentioned in the Introduction, namely, the
complicated functional dependence of expressions (3.5)
and (3.6) on the meson and electromagnetic fields, their
first and second derivatives, and the Fermi momenta and
second, the divergences of the WK corrections (Al) —(A4)
at the classical turning point.

As also mentioned in the Introduction, both of the
problems can be overcome by the density-functional for-
malism [19,21,22], which, on the other hand, "loses infor-
mation" with respect to the WK approach. To study the
impact of the "original" WK corrections, while the sim-
plicity and systematic structure of the semiclassical ap-
proach are retained, a kind of perturbative treatment
seems necessary.

For this purpose we rewrite Eq. (2.28) as

J d r p, (r)= J d r pF (r)+p, (r)
1

Z =ZTF+ZWK «« =p
N =NT„+NWK (3.7)

which takes terms of the order A into account. To con-
sider the WK corrections within our numerical iteration
scheme, we proceeded as follows: After a Thomas-Fermi
run of our code (see Sec. II), we used its outcome to cal-
culate the WK corrections to the nucleon densities given

by Eq. (A 1). Remembering the fact that only WK
corrections to expectation values of one-body operators
make sense, we integrate those expressions and obtain

Zw~ and NwK of (3.7). Before starting the next
Thomas-Fermi iteration step, the chemical potentials
have to be adjusted to the right particle numbers. But
now, instead of adjusting them to Z and N, as is done
within pure Thomas-Fermi calculations, we use
ZT„=Z —ZWK and NT„=N —NWK, respectively. This
procedure is repeated until convergence is reached. In
the final step of calculating the total energy, we include
the WK corrections to the energy density and to the
meson and electromagnetic fields, as determined by Eqs.
(A3) and (A8) —(Al 1), respectively.

This iteration scheme provides a perturbative con-
sideration of the WK corrections to the particle numbers,
while their given values Z and N are retained; i.e., com-
parisons with pure Thomas-Fermi calculations make
sense, because one is really looking at the same nucleus.

The perturbative character of the approach ensures that
the consideration of the WK corrections is restricted to
the order A; i.e., only zeroth-order quantities are used to
calculate ZwK and NWK. In the following we refer to
this approximation scheme as RTFA-WK.

B. Exchange corrections

X~=X,+X +X ~+X"~"'. (3.8)

X, denotes the original Lagrangian (2.1), while the free
~-meson contribution is given by

X (x)= —,'[B„m(x) 8"m(x) —m n(x) n(x)] . (3.9)

For the m-nucleon interaction, we use the pseudovector
form [6]

(3.10)

while the tensor part of the p-nucleon coupling can be
written as

(3.1 1)

with

[r",r"l . —
2

(3.12)

The tensor part of the co-nucleon interaction is negligible

[6].

Exchange terms are typical quantum corrections. This
can be seen by looking at Eq. (3.1) in a system of units
with A'%1: The Fock terms are at least of the order fi
and hence of the same order as the WK corrections of
Eqs. (Al) —(A4) [17]. Therefore, dealing with quantum
corrections up to the second order, both kinds of correc-
tions have to be taken into account.

Another motivation to include exchange corrections is
the following: As is well known, in the original Walecka
(Hartree) model, the incompressibility K of nuclear
matter is considerably too large, while the nuclear matter
effective mass M*, which, for fixed saturation density and
binding energy determines completely the energy depen-
dence of the optical potential, is too small. A widely and
successfully used (see, for instance, Refs. [4,5,9,21,22])
approach to overcome these shortcomings was first pro-
posed by Boguta and Bodmer [3], who introduced two
additional free parameters through cubic and quartic
terms in the scalar field, which shift I( and M' to more
reasonable values compared with the experiment.

On the other hand, nuclear matter calculations within
the Hartree-Fock scheme showed [6,27] that to some ex-
tend these improvements can also be reached by inclusion
of the m. meson and an additional tensor coupling term to
the p-nucleon interaction, but without "paying" for it by
additional adjustable parameters.

Therefore and because of the arguments given in the
Introduction in favor of more sophisticated many-body
dynamics, we extend the Lagrangian to the standard
Hartree-Fock form (see, for instance, Refs.
[6,17,27,28,30])
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The full self-consistent treatment of the exchange
corrections up to second order in A' is a rather complicat-
ed task [17]. However, it has been shown in Refs. [28,29]
that within Hartree-Fock calculations for nuclear matter
there are only small deviations when the Fock terms are
determined perturbatively with the self-consistently cal-
culated Hartree results as an input, compared with the
fully self-consistent procedure. It is also known from nu-
clear matter Hartree-Fock calculations that X& and Xo,
the scalar and timelike components of the exchange part
of the nucleon self-energy, respectively, are reasonably in-
dependent of momentum and that the corresponding vec-
torlike component X~ is a small correction ( (5%) to the
total nucleon self-energy for the densities of interest in
the present study (see, for instance, [6,30)).

For these reasons we proceeded as follows: After a
Thomas-Fermi iteration, we used the resulting Fermi mo-
menta and eifective mass to calculate Xs(r,p) and

Xo(r,p); i.e., the scalar and timelike components of the
exchange corrections within a local-density approxima-
tion (LDA). To adjust the chemical potentials to the
right particle numbers by (2.28), we rewrite Eqs. (2.24}
and (2.25) as

p, = g„co(r)+g b(r}+eA (r)+Xo (r)
P

+Ipse (r)+[M'(r) —Xs (r)] )'

p„=g c0(r) gb(r)+—Xo (r)

(3.13)

+{pr (r)+[M'(r) —Xs (r)] }' (3.14)

IV. RESULTS AND DISCUSSION

In this section we present the results obtained within
the different approximations described in Secs. II and III.
For the pure Thomas-Fermi (RTFA) calculations, we
used the set of parameters Hl [27], displayed in Table I.

i.e., we treat the scalar and timelike exchange terms,
which are calculated within a LDA, like Thomas-Fermi
contributions to the nucleon self-energy. As is done in
Ref. [30], we take the Fock contributions at the corre-
sponding Fermi momentum. Then the next Thomas-
Fermi iteration starts until convergence is reached.

This iteration scheme considers the exchange correc-
tions in a simple way, which allows a systematic study of
their impact on the ground-state properties of a given nu-
cleus with mass number A =Z+N. In the final step of
calculating the total energy, the small corrections of Xv
are also taken into account, calculated with the final
Thomas-Fermi outcome in a pure perturbative manner.

Since the explicit expressions for X&, Xo, and Xz are
rather lengthy and given in several publications concern-
ing nuclear matter calculations (see, for instance, Refs.
[1,28,31)), we will not repeat them and refer in this
respect to the literature.

We denote the approach including the exchange
corrections RTFA-EX, while the approximation scheme
considering both quantum corrections up to the order fi,
WK corrections of Sec. III A, and exchange corrections
is referred to as RTFA-QC.

m (MeV)
C2
C2

H1

550
357.740
274.105

HF1

550
288.106
146.656

HF2

497
289.474
150.372

E/W (MeV)

pF (fm ')
E'(M.V)
M /M

—15.75
1.30

545
0.541

—15.75
1.30

394
0.599

—15.75
1.30

403
0.594

The same parameters are used for RTFA-WK calcula-
tions. For the models with exchange corrections, we
have chosen the sets HF1 [27] and HF2 [32], which are
also given in Table I. The meson masses are fixed to their
physical values m„=783 MeV, m =770 MeV, and
m =138 MeV, while the bare nucleon mass is taken as
M =939 MeV. In order not to use too many free param-
eters, the p-nucleon and, in the cases of HF1 and HF2,
the tensor p- and m.-nucleon coupling constants were also
fixed to their physical values, namely, g /4@=0. 55,
f /g =6.6, and f /4n. =0.08, known from scattering
data [6]. The mass of the o meson is supposed to
represent the exchange of a two-m. -resonance and should
lie between 400 and 600 MeV. Within Hartree calcula-
tions for nuclear matter, m is not an adjustable parame-
ter, because only the ratios of coupling constants to the
corresponding meson masses enter the expressions, but
by inclusion of Fock terms, the meson masses and hence
m occur separately.

Therefore, in the case of H1, there are only two adjust-
able parameters, the o.- and e-nucleon coupling con-
stants. Inclusion of exchange corrections (HF1 and HF2)
adds the o.-meson mass as free parameter. g and g are
chosen to reproduce the empirical saturation point of nu-
clear matter, E/A = —15.75 MeV and pF=1.30 fm
(p =0.1484 fm ). In HF1, we retain the value for m
from the Hl set (where it has no impact on the nuclear
matter results). In HF2, m is adjusted to get the experi-
mental charge rms radius for ' 0 within our RTFA-QC
approach and turns out to be m =497 MeV.

As already mentioned earlier, pure Walecka (Hartree)
calculations (Hl} yield a nuclear matter incompressibility
K, which is much too large, while, in view of the energy
dependence of the optical potential, the effective mass
M is too small. As shown in Table I, the consideration
of exchange terms shifts E and M* to not yet perfect but
more reasonable values compared with the experimental
data. The adjustment of m in HF2 afFects the nuclear
matter properties only slightly (the variation of K is

TABLE I. Parameters and nuclear matter properties (energy
per particle E/A, Fermi momentum pF, incompressibility E,
and effective mass M*/M at saturation) of the three forces con-
sidered in the text. Fixed input parameters are M =939 MeV,I =783 MeV, m =770 MeV, and m =138 MeV;

g p/4m =0.55, fq/go=6. 6, and f /4n =0.08. C; =g; {M/I; },
1 —CT ~ CO.
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smaller than 2.5%), but has significant infiuence on the
results for finite systems, as we will see later.

A. Energies and charge radii

Before discussing the results for the energies and
charge rms radii within the different approaches present-
ed in this paper, two remarks have to be made.

First, to obtain expectation values of one-body opera-
tors, such as the particle numbers Z and N or the total
and kinetic energies F. and Tk;„within the approxima-
tions including WK corrections (RTFA-WK and RTFA-
QC), one has to evaluate the volume integrals of expres-
sions (Al), (A3), and (A4), respectively. As already men-
tioned in Sec. I, these expressions are distributions in the
mathematical sense with divergences at the classica1 turn-
ing point. Because of this fact, it is not possible to deter-
mine r-space densities including WK corrections to im-
prove corresponding Thomas-Fermi predictions. This is
a fundamental theoretical restriction of the approaches
RTFA-WK and RTFA-QC. On the other hand, the
treatment of the divergences while evaluating volume in-

tegrals of WK corrections is a purely technical and nu-
merical problem. In the case of a given external poten-
tial, Krivine, Casas, and Martorell [20] showed a way to
calculate these integrals analytically. This is not possible
for a self-consistently determined potential, and thus a
numerical "solution" becomes necessary. Performing
volume integrals of WK corrections, we used a cutoff at
the classical turning point. A possible measure for the
quality of this procedure is the reproduction of the parti-
cle numbers by Eq. (3.7). The maximum relative error we
found is -0.6% for the neutron number N of ' 0 within
the RTFA-QC approach. In all the other cases, the rela-
tive errors for the particle numbers are smaller, for larger
nuclei roughly by an order of magnitude. Hence the re-
sults including WK corrections can be considered as
sufficiently reliable from the numerical point of view.

The second remark concerns center-of-mass correc-
tions to the total energy, I, It was explicitly shown
for the nonrelativistic case in Ref. [33] that on a
Thomas-Fermi level center-of-mass corrections to the to-
tal energy are absent. The inclusion of WK corrections
causes center-of-mass corrections. If one treats them in
the standard manner, they are overestimated by
—30—40%%uo for light and by a factor of -2—3 for heavy
nuclei [33]. Because of this reason, we have neglected

them in this study.
We turn now to the discussion of the total energies and

charge rms radii calculated within the different approxi-
mations described in Secs. II and III. For the charac-
teristic set of spherical nuclei ' 0, Ca, Zr, and Pb,
the results are displayed in Table II along with the exper-
imental values [6,34—36]. RTFA-EX1, RTFA-QC1 and
RTFA-EX2, RTFA-QC2 denote calculations with the set
of parameters HF1 and HF2 of Table I, respectively.

For all nuclei under consideration, the inclusion of
WK corrections (RTFA-WK) yields considerably
stronger bound systems compared with the pure
Thomas-Fermi calculations (RTFA). It is the nature of
WK corrections containing first and second derivatives of
the potentials to improve a Thomas-Fermi approach in
the surface region, where the RTFA assumption of locally
constant meson fields becomes less and less valid. Thus
the surface energy is a reasonable candidate when looking
for the reason for the stronger binding within the
RTFA-WK approach. A proper calculation of the sur-
face energy demands the investigation of a semi-infinite
system. In the present paper, we restrict ourselves to a
simple estimate. For this purpose we write the semi-
empirical mass formula as

—= —a +a —1/3
V S (4.1)

The volume energy coefficient az is given by the energy
per nucleon of saturated nuclear matter, namely,
a„=15.75 MeV (see Table I). az denotes the surface en-

ergy coefficient. We neglect the A term in the ener-

gy expansion (4.1), which is about one order of magnitude
smaller than the surface energy. The functional form of
the coefficients of the energy expansion up to the order
A follows the droplet-model theory of Myers and
Swiatecki [37]. Coulomb and asymmetry energy terms
are also omitted in Eq. (4.1), and therefore we recalculat-
ed the symmetric systems ' 0 and Ca with the elec-
tromagnetic field switched off. Inserting the resulting en-
ergies into the left-hand side of expression (4.1), we ob-
tained a decrease of the surface energy coefficient from
a&-24. 5 MeV within RTFA calculations to az —19.5
MeV for the RTFA-WK approach, while the experimen-
tal value of az for symmetric systems is around -20
MeV. Though this procedure gives only a rough estimate
of a&, it allows a qualitative understanding of the

TABLE II. Total energies (in MeV) and charge rms radii (in fm) of ' 0, Ca, Zr, and Pb calcu-

lated with the different approaches studied in this paper in comparison with the experimental values

[6,34—36].

16O "Ca "Zr 208Pb

RTFA
RTFA-WK
RTFA-EX1
RTFA-EX2
RTFA-QC1
RTFA-QC2
Expi.

—80.85
—105.51
—100.48
—79.87

—115.12
—85 ~ 82

—127.68

2.68
2.67
2.65
2.75
2.64
2.73
2.73

—260.28
—317.36
—315.05
—273.43
—367.04
—308.08
—342.00

3.42
3.43
3.36
3.43
3.36
3.43
3.48

—645.98
—747.85
—771.80
—703.01
—877.90
—780.44
—783.90

4.27
4.27
4.19
4.24
4.17
4.22
4.27

—1412.03
—1589.56
—1671.97
—1569.36
—1841.26
—1711.61
—1636.96

5.52
5.55
5.40
5.42
5.38
5.40
5.42
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stronger binding by inclusion of the WK corrections due
to a more realistic description of the surface energy.

Comparing RTFA calculations with the RTFA-EX1
approach, where exchange corrections are taken into ac-
count, a similar behavior, namely, a stronger binding for
all nuclei under consideration, can be observed. Apply-
ing the same procedure as described above, we find a de-
crease of the surface energy coefficient from a&-24. 5
MeV for the RTFA approach to a&-21 MeV within
RTFA-EX1 calculations. This can be understood in
terms of the nuclear matter incompressibility E: In-
clusion of exchange corrections along with m.-meson and
tensor p-nucleon contributions while the cr-meson mass
m remains fixed causes a significant lower and more
realistic value for E (see Hl and HF1 in Table I). A
lower incompressibility results in a smaller surface ener-
gy, which, in turn, gives a stronger bound system.

Finally, the RTFA-QC1 approach considers WK and
exchange corrections. Now both effects —the smaller nu-
clear matter incompressibility and the improvement of
the surface description by consideration of the spatial
dependence of the meson fields —operate together, result-
ing in a further decrease of the surface energy and
stronger bindings compared with the RTFA-WK and
RTFA-EX 1 approaches, where WK and exchange
corrections have been considered separately, respectively.

Compared with the experimental values, pure
Thomas-Fermi calculations (RTFA) give an underbind-
ing for all nuclei under consideration. Because of the
better description of the surface energy, inclusion of WK
or exchange corrections shifts the total energies E to
more reasonable values (RTFA-WK, RTFA-EX 1). Ex-
cept for the case of ' 0, the RTFA-QC1 approach, which
considers both quantum corrections, overestimates the
binding compared with the experiment. This might be
connected with the perturbative character of the approxi-
mations as described in Sec. III. Further improvement
may be achieved by the consideration of A corrections of
higher order.

Looking at the charge rms radii r„one realizes that
the inclusion of WK corrections hardly affects their
values (unsystematic variations of less than 0.5%%uo) com-
pared with pure Thomas-Fermi calculations. The situa-
tion is different when exchange corrections are taken into
account. Comparing the charge rms radii calculated
within the RTFA-EX1 approach with the RTFA results,
they are systematically smaller by about 1-2%, con-
sistent with the larger binding energies provided by the
inclusion of exchange corrections. A corresponding
trend can be observed for the analog "transition" from
the RTFA-WK to the RTFA-QC1 approach, which also
differ through the consideration of exchange corrections
in the latter one. Compared with the experiments
[34—36], all the values for r, within the exchange-
corrected approaches RTFA-EX1 and RTFA-QC1 are
too small.

As already mentioned earlier, the inclusion of Fock
terms into nuclear matter calculations introduces the o.-
meson mass m as a third adjustable parameter. We now
want to study its impact on the properties of finite sys-
tems in a systematic way. In the set of parameters HF2

TABLE III. Contributions of the WK corrections to the ki-
netic ( Tk;„ /A ) and potential (E~„ /A ) energies per nucleon of
' 0, Ca, Zr, and 'Pb within the two approximations
RTFA-WK and RTFA-QC1. Tk;„/A and E~„/A denote the
remaining contributions to the total kinetic and potential ener-
gies per nucleon. All quantities are in MeV.

RTFA-WK 16O "Ca "Zr 208Pb

Tk;„/A
TwK /A

RTFA-QC1
Tk;„/A
TwK /A
E„/A

10.463
3.624

—18.050
—2.631

11.656
1.930

—19.291
—1.489

9.888
3.072

—18.663
—2.232

11~ 189
1.537

—20.500
—1.401

9.860
2.443

—18.896
—1.716

10.984
1.217

—20.802
—1 ~ 153

10.203
1.446

—18.133
—1.158

11.214
0.814

—19.990
—0.890

of Table I, m is adjusted to get the experimental charge
radius for ' 0 within our RTFA-QC approach. The re-
sulting decrease to m =497 MeV is not a surprise: The
o -meson contribution represents almost the entire attrac-
tive part of the nuclear potential, whose range is there-
fore determined by m . Thus, for a larger r„a smaller
m is necessary. As a consequence, for all nuclei under
consideration the values for r, increase within RTFA-
EX2 and RTFA-QC2 calculations compared with the
RTFA-EX1 and RTFA-QC1 results, respectively, giving
a better agreement with the experiments. In addition, the
impact of m weakens with increasing mass number A:
For ' 0, the variations of r, between HF1 and HF2 cal-
culations are about —3.5%, while for Pb those
differences go down to -0.04%. This is consistent with
the fact that with increasing A the nuclear-matter-like
bulk region becomes more and more dominant, and as we
mentioned earlier, the impact of m on nuclear matter
properties is small (see Table I).

Concerning the binding energies, the systems with
larger r„calculated with the HF2 set, are less bound
than the HF1 nuclei with their smaller charge rms radii.
Estimating the surface energy coefficient as described
above, the decrease of m from 550 to 497 MeV goes
along with an increase of a& by roughly 4-5 MeV, which
fixes it at about the same value as within pure RTFA cal-
culations. Furthermore, the nuclear matter incompressi-
bility rises slightly by 2.3%%uo for the smaller m (see Table
I). Thus, for the energy, the effects obtained by the in-
clusion of exchange corrections in comparison with
RTFA are counteracted when m is lowered. As for the
charge rms radii, the same trend of a weakening influence
of m with increasing mass number A can be observed
for the energies. The impact of m on density distribu-
tions will be discussed in the following section.

To ascertain the importance of the WK corrections to
the energies, it is useful to look at the different contribu-
tions in some detail. In Table III we display the WK
corrections to the kinetic ( Tk;„ /3 ) and potential

(E», /A) energies per nucleon along with the remaining
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TABLE IV. Analysis of the total energies of ' 0 and Ca within the different approximations studied in this paper: Tk;„and Ec,ul

denote the kinetic and Coulomb energies, respectively. E,E„,and E are the Thomas-Fermi contributions to the potential energies
coming from the exchange of o., co, and p rnesons, respectively. E ", i =o.,~,p, ~,Coul, denote the corresponding exchange correc-
tions (Fock terms), while E is the total WK correction to the energies. The sum of the terms in each column gives the correspond-
ing total energy listed in Table II. All quantities are in MeV.

RTFA
16O

RTFA-WK RTFA-EX 1 RTFA-QC1 RTFA
Ca

RTFA-WK RTFA-EX 1 RTFA-QC1

Tkin

E
E„

ECoul
Eex

o'

Eex
Eex

P
Eex

ECoul
EwK

180.94
—2001.68

1723.21
0.01

16.88

167.40
—2058.49

1752.20
0.02

16.71

15.89

187.82
—1662.15

945.29
0.00

17.07
386.86

—190.82
67.78

149.75
—1.95

186.49
—1711.60

963.35
0.01

17.21
395.78

—194.73
69.96

153.24
—1.96

7.05

438.32
—5786.36

5007.02
0.06

80.94

395.52
—5834.05

5009.59
0.15

78.04

33.63

462.63
—4903.21

2803.80
0.03

82.48
1109.13

—536.23
228.95
442.50
—5.05

447.55
—4969.13

2821.37
0.06

81.51
1113.35

—536.90
230.90
443.89
—4.97

5.42

contributions Tk;„/A and E „/A within the approaches
RTFA-WK and RTFA-QC1 for all nuclei under con-
sideration. Tk;„represents the volume integral of ex-

pression (A4), while E„„ is the difference of the volume

integral of Eq. (A3) and Tz;„. We present the energies

per nucleon to study their dependence on the mass num-

ber A. As one expects, the WK corrections decrease
with increasing particle number. The values for Tk;„ /A
and E „ /A for Pb are 40—60% smaller than the cor-
responding ones for ' 0, as a result of the greater
inAuence of the surface region in the latter case. A simi-

lar, though somewhat smaller, trend can be observed for
the WK contributions within the RTFA-WK approach
compared with those of RTFA-QC1 calculations: The
values in the latter case are significantly smaller, because,
as described above, the additionally considered exchange
corrections (included in T„;„/A and E~„/A) "help" the
WK corrections to improve the description of the sur-
face. Finally, in all the cases, the WK corrections mainly
"correct" the kinetic energies; their impact on the poten-
tial energies is clearly smaller.

The way the total energy is distributed among the vari-
ous contributions is displayed in Tables IV and V for all

nuclei and all approaches under consideration. The
upper index "ex" denotes exchange contributions, Tk;„ is,
as in Table III, the total kinetic energy without WK
corrections, while the total WK corrections are included
in E . In all cases the dominant contributions are the
Thomas-Fermi terms of the cr and co mesons, E and E,
respectively. The corresponding p-meson contribution
E is negligible for symmetric nuclei, but has to be con-
sidered for Pb.

While the nuclear saturation mechanism is almost en-
tirely based on the remarkably balanced cancellation be-
tween E and E within the RTFA and RTFA-WK ap-
proaches, the situation is modified by the inclusion of ex-
change corrections. There is a contribution to the attrac-
tive part of the nuclear potential by the co-exchange
correction E'" of —10%, while the terms E'", E'", and
E'„"are repulsive, "supporting" E„. The m. meson, which

appears only within the exchange-corrected approaches,
contributes 9—10% to the repulsive part of the nuclear
potential, while the p-meson exchange corrections E'" are
not negligible, independent of the proton-neutron asym-
metry of the system. The total sum of each column adds

up to the corresponding total energy in Table II.

TABLE V. Same as Table IV for Zr and 'Pb.

RTFA
90Zr

RTFA-WK RTFA-EX 1 RTFA-QC1 RTFA
208Pb

RTFA-WK RTFA-EX1 RTFA-QC1

Tkin

E
E„
E
ECoul
Eexa
Eex
Eex

P
Eex

ECoul
EwK

964.20
—14070.55

12200.23
4.58

255.80

887.36
—14157.92

12202.39
5.30

249.94

65.45

1022.46
—11993.47

6870.59
4.66

261.32
2688.08

—1284.52
592.53

1076.59
—10.08

988.54
—12086.91

6887.64
4.67

261.49
2683.34

—1279.74
593.23

1074.19
—10.06

5.74

2256.92
—33876.49

29342.46
40.67

824.65

2122.18
—33610.76

28996.24
43.16

799.31

59.88

2398.65
—28926.76

16545.90
42.09

843.49
6545.70

—3111.80
1447.94
2563.23
—20.51

2332.52
—28965.15

16519.32
39.67

851.58
6503.92

—3088.02
1446.51
2555.20
—20.69
—15.77
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FIG. 1. Charge-density distribution for ' 0: Calculated fold-
ed values ofp, [Eq. (4.2)] within the RTFA and RTFA-EX 1 are
compared with a three-parameter Fermi fit to the experimental
data [34].

FIG. 3. Same as Fig. 1 for Zr. The experimental values are
taken from [35].

B. Densities and spin-orbit interaction

1
p, (r)= Jd r' exp

(r0 m) Pp
p~ (r'), (4.2)

We now turn to the discussion of various nuclear den-
sities. In the previous sections, we have characterized the
WK corrections as distributions in the mathematical
sense. Therefore plots of r-space densities within the
RTFA-WK and RTFA-QC approaches display diver-
gences at the classical turning point. However, we have
the interesting possibility to study the impact of exchange
corrections by comparing RTFA with RTFA-EX calcu-
lations. We may obtain by this comparison essential
hints about the role of exchange corrections in a simple
manner. One further goal is to study the role of m

In Figs. 1 —4 we present the calculated charge-density
distributions p, for all nuclei under consideration within
the RTFA and RTFA-EX1 approximations along with
three-parameter Fermi fits to the experimental data from
Refs. [34-36]. The charge densities are calculated from
the proton densities p (2.16) by

with r0 =V2/3( r ), and the charge rms radius of the
proton taken as ( r~ ),m, =0.8 fm [6]. Compared with the
experiments, the calculated RTFA densities are systemat-
ically too small in the bulk. Furthermore, the experimen-
tal surface behavior (steepness) is not reproduced. Addi-
tionally, as expected, the quantal tails cannot be de-
scribed correctly in a Thomas-Fermi treatment.

By inclusion of exchange corrections through the
RTFA-EX1 approach, the bulk value of the charge densi-
ty increases considerably in all cases; for Pb, it is in
good agreement with the experiment. This corresponds
to the higher binding energies for RTFA-EX1 nuclei, as
discussed in the previous section (see Table II). Further-
more, the smaller sizes provided by RTFA-EX1 calcula-
tions compared with RTFA are rejected in the density

0.08

0.08
40'

Exp.
RTFA
RTFA-EX1

0.06—

208pb

Exp.

0.06

E 004—
O

CL

0.02

0.02

0.00
0.0 2.0 4.0

Radial distance, r [fm]

FIG. 2. Same as Fig. 1 for Ca.

6.0 8.0

0.00
0.0

I

2.0
I

4.0 6.0
Radial distance, r [fm]

8.0 10.0

FIG. 4. Same as Fig. 1 for Pb. The experimental values
are taken from [36].



1806 D. VON-EIFF AND M. K. WEIGEL 46

0.1 6

16O

RTFA
RTFA-EX1

TFA-EX2

0.12

E

0.08

0.04

0.00
0.0 2.0

Radial distance, r [fm]

4.0

FIG. 5. Baryon density for ' 0: Calculated point (unfolded)
values of ps [Eq. (2.17)] within the RTFA, RTFA-EX1, and
RTFA-EX2 approaches.

shapes: For ' 0, inclusion of exchange terms reduces r,
by 1.1%. This relative reduction increases with A and is
twice as large for Pb (see Table II). This A-dependent
effect is clearly visible comparing the long-dashed and
dot-dashed lines of Figs. 1 —4. Because the exchange
terms are treated like Thomas-Fermi contributions to the
nuclear potential —i.e. they are averaged in the same way
(see Sec. III B)—one cannot expect any improvement in
the quantal tails and, of course, no shell effects are ob-
tainable in both treatments.

As mentioned in the previous section, changes in m
influence mainly small systems, while their impact is
weakened for large nuclear-matter-like nuclei. To study
the m dependence of particle densities, we therefore
look at the baryon densities ps [see Eq. (2.17)] of the
small systems ' 0 and Ca. This is done in Figs. 5 and 6,
where we have plotted the RTFA, RTFA-EX1, and
RTFA-EX2 results. As for the charge densities of Figs.
1 —4, the bulk values of p~ are higher within the RTFA-
EX1 approximation compared with the RTFA. The
counteracting effect of a decreasing m we discussed in
the previous section and which leads to weaker bindings
in RTFA-EX2 compared with RTFA-EX1 (see Table II)
yields, in turn, reduced corresponding bulk values of p~.
The diffuseness of the RTFA-EX2 densities are larger
than the RTFA-EX1 ones. We observed similar trends
for the charge densities, indicating that the higher values
for the charge rms radii in RTFA-EX2 (see Table II) are
obtained by the longer tails of the charge densities rather
than by an actual increase of the systems sizes.
Confirming our previous statement concerning the depen-
dence of the impact of m on the mass number A, the
differences between the RTFA-EX 1 and RTFA-EX2
baryon densities are smaller for Ca than for ' O. We
found that for Zr and Pb this trend continues.

We now turn to the discussion of kinetic-energy densi-
ties. In Fig. 7 we present the proton kinetic-energy densi-
ties r for our set of spherical nuclei within the RTFA

0.1 6
40C

RTFA
A-EX1
A-EX2

0.12

E

0.08

0.04

o.oo i

0.0 2.0
Radial distance, r Ifm]

4.0 6.0

FIG. 6. Same as Fig. 5 for Ca.

(solid lines), RTFA-EX1 (long-dashed lines), and RTFA-
EX2 (dot-dashed lines) approximations. As for the
charge and baryon densities of Figs. 1 —6, the values in
the bulk are considerably higher when exchange terms
are included. Comparing the RTFA-EX 1 with the
RTFA-EX2 results, the impact of m in the bulk region
is not as systematic as discussed above. However, similar
to Figs. 5 and 6, a more diffuse falloff can be observed for
the RTFA-EX2 interaction compared with RTFA-EX1.
The peaks in the surface regions, even for the small nuclei
where no central depression caused by the electromagnet-
ic field occurs, reflect the dependence of the kinetic-
energy density on the effective mass [see Eq. (2.29) for the
RTFA], which approaches the bare nucleon mass at large
radial distances.

At all radial distances, r is positive. This is what one
expects for the semiclassical RTFA model as well as for
the RTFA-EX approaches, where exchange terms are
treated as Thomas-Fermi contributions to the nuclear po-
tential (see Sec. III B). These approximations are princi-
pally not able to describe the physics of the classically
forbidden region, where the quantal tails of the particles'
wave functions have negative kinetic energies, resulting
in a negative kinetic-energy density in the outer surface
region. However, improvement of this deficiency of stan-
dard Thomas-Fermi methods is one of the reasons for the
consideration of WK corrections. Hence we plotted in
Fig. 8 the Thomas-Fermi contribution wz" [see Eq. (2.29)]
and the total proton kinetic-energy density r =r "+r
of Pb within our RTFA-WK approach [~~ is given
by Eq. (A4)]. Of course, this is "illegitimate" in view of
the WK corrections being distributions in the mathemati-
cal sense (see Sec. III A), and the question concerning the
physical nature of such a plot, and especially of the diver-
gences, finally remains open to us (in this context, see also
Ref. [38]). However, considering the fact that the volume
integral of r is a reasonable physical quantity, it might
be of interest that, while r " stays positive at all radial
distances as expected, the inclusion of WK corrections
yields a negative kinetic-energy density in the surface re-
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FIG. 7. Proton kinetic-energy densities for
all nuclei under consideration obtained in the
RTFA (solid lines), RTFA-EX1 (long-dashed
lines), and RTFA-EX2 (dot-dashed lines) ap-
proximations.
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FIG. 8. RTFA contribution (solid line) and total (long-
dashed line) proton kinetic-energy "density" of Pb within the
RTFA-WK approach.

gion before it diverges at the classical turning point.
Referring to the vague "loss of information" along with
the reordering of the A expansion when going from the
WK approach to the density-functional formalism (see
Sec. I), this negative kinetic-energy density might be a
candidate: Looking at Fig. 5 of Ref. [21], the density-
functional formalism seems not to be able to provide neg-
ative values for rz at large radial distances (in a recent
paper, Swiatecki [39] studied an improved nonrelativistic
Thomas-Fermi method, in which the standard expression
for the kinetic-energy density is modified so that it be-
comes negative in the outer surface region).

Finally, we turn to the discussion of the spin-orbI't in-
teraction. It is automatically included in the single-
particle Dirac equation and can be identified by means of

a Foldy-Wouthuysen reduction. For a nucleon "feeling"
the action of a scalar and a timelike potential, Xz and X0,
respectively, one obtains an effective single-particle spin-
orbit interaction of the form [1,40]

V (r)= 1

2~ p

dX0(r) dXs(r)+ SL
dT dr

= —a(r)S.L . (4.3)

We calculated the quantity a for a proton in all nuclei
under consideration. Within the RTFA, Xz and X0 are
given by Eqs. (3.2) and (3.3), respectively. For RTFA-EX
calculations, we used, in accordance with Eq. (3.13),

Xs(r) =g y(r)+Xs (r),
P

Xo(r) =g co(r)+g b(r)+ e A (r)+ Xo (r),
P

(4.4)

(4.5)

with the Fock contributions evaluated at the correspond-
ing Fermi momentum. The results are presented in Fig.
9. While Xz and X0 are adding up in the spin-orbit in-
teraction of Eq. (4.3), we know that they tend to cancel in
the binding energy. Therefore we also plotted the
differences of the scalar and timelike components of the
RTFA proton self-energies, Xz —X0, in Fig. 9. These
differences become negative for large radial distances be-
cause of the long-range Coulomb field, which is included
in X0.

The interesting parts are the peaks of a in the surface
regions. It can be observed that the inclusion of ex-
change corrections (RTFA compared with RTFA-EX1
results) reduces the maximum value of a by roughly
9—12%%uo, while the lower m (RTFA-EX1 compared with
RTFA-EX2) causes an additional decrease of a,„of
about the same magnitude. This latter effect is consistent
with the larger diffuseness of RTFA-EX2 densities we
discussed above.

Furthermore, a,„depends strongly on the mass num-
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FIG. 9. Radial distribution of the quantity

10'(r) for a proton in all nuclei under con-

sideration obtained in the RTFA (dotted lines),

RTFA-EX1 (long-dashed lines), and RTFA-
EX2 (dot-dashed lines) approximations along

with the difference of the scalar and timelike

components (X&—Xo) of the RTFA proton
self-energy (solid lines) ~
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ber A. Within the RTFA we found a,„=3.08 MeV for
' 0, but a,„=1.19 MeV for Pb. This is clear in view
of the larger radial distances involved for larger systems
[see expression (4.3)] and means, in turn, that the
strength of the spin-orbit splitting decreases with increas-
ing orbital angular momentum. This trend agrees with
experimental data (see Ref. [41]). Finally, we compare
our results for a,„ in Ca with the experimental value
of the spin-orbit splitting for the odd proton in 'Sc:
within RTFA, RTFA-EX1, and RTFA-EX2 calcula-
tions, we obtained a,„=2.19, 1.99, and 1.78 MeV, re-
spectively, while the experiment yields a=1.80 MeV
[10]. Hence our exchange-corrected model is in rather
close agreement with the empirical data.

V. CONCLUDING REMARKS

In the present paper, we have carried out relativistic
Thomas-Fermi calculations including quantum correc-
tions for a set of spherical nuclei. There are two kinds of
quantum corrections up to the second order in A', which
we incorporated perturbatively in our code, while the
numbers of protons and neutrons are held fixed. First are
the WK corrections, which are supposed to improve the
expectation values of one-body operators compared with
pure Thomas-Fermi calculations. In this case we used a
linear o.-co model which reproduces the nuclear matter
saturation point, but yields a considerably too large nu-
clear matter incompressibility. The latter point causes a
surface energy, which is too high within Thomas-Fermi
calculations. Inclusion of WK corrections significantly
reduces the difference between the RTFA and experimen-
tal value of the surface energy coefficient, resulting in
more realistic binding energies. This improvement
within the RTFA-WK approximation is achieved by a
better description of the nuclear surface through con-
sideration of the spatial dependence of the meson and
electromagnetic fields and the possibility of a negative

kinetic-energy density in the surface region which
characterizes the physics of the classical forbidden re-
gion. The impact of the WK corrections decreases with
increasing mass number.

The second kind of quantum corrections of the order
are exchange corrections. Here we also considered m-

meson and tensor p-nucleon contributions. This shifts
the nuclear matter incompressibility to more reasonable
values. In turn, we found the nuclear surface energy
lowered by the exchange corrections by —14%, which
yields stronger bindings and smaller charge rms radii
compared with the RTFA approach. As a consequence,
the bulk values of the charge, particle, and kinetic-energy
densities are systematically higher within RTFA-EX cal-
culations.

Within nuclear rnatter Hartree-Fock calculations, m

constitutes an adjustable parameter. We calculated a set
of parameters with m adjusted to get the experimental
charge rms radius of ' 0 and studied its influence on
properties of nuclear matter and finite nuclei. While m

affects nuclear matter properties only slightly, it has
significant influence on those of finite systems. With the
0-meson contribution representing almost the entire at-
tractive part of the nuclear potential, m determines its
range. Hence we found that a lower m yields larger rms
radii, weaker bindings, and lower bulk values of the vari-
ous densities. The larger rms radii go along with a more
diffuse falloff in the surface regions of the densities we in-
vestigated. The impact of m weakens with increasing
mass number according to the nuclear matter limit,
where its influence is small.

Finally, we calculated the spin-orbit interaction. We
found that its strength decreases with both the inclusion
of exchange corrections and decreasing m . In agree-
ment with experimental data, a strong dependence of the
spin-orbit splitting on the mass number can be observed,
namely, smaller values with increasing A. The maximum
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value of the spin-orbit splitting we found within RTFA-
EX calculations for a proton in Ca is in good agreement
with the experiment.

In summary, by including quantum corrections in the
described approximate manner, our approach constitutes
a simple and transparent model to study their impact on
the properties of finite systems in a systematic way for
nontrivial Lagrangians along with a tractable numerical
e8'ort in comparison with lengthy wave-function calcula-
tions.
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I

In this appendix we give the explicit expressions for the
second-order WK corrections to the particle, scalar, ener-

gy, and kinetic-energy densities of each kind of nucleon
"feeling" the action of a scalar and a timelike potential
Xs and Xo, respectively (see Ref. [16]):

r

p (r)=WK i i 2 2 PF F F
(3—xF )(VXO) — 2xF +4 ln &Xo+2 (3—xF)VXO VM'

24 2 p M* M'

+ (2—xF)(VM') +2, (1—xF)EM'
PF

(A 1)

ps (r)=—,(1+xF)(VXO) +2 b,X&+ (2+xF)VXO VM + (2+xF)(VM')

PF+ ~F
(A2)

ewK(r) 1

24m.
xF(2 —xF)—21n (VX&) —2pF(1+xF)bX&+2 (1—x )VX VM'

PF+&F PF+ F+ x(1—x )
—lnF F M* ( VM ) —2M* x —ln M'

hM'

+ 1 ——Xop (r)+ —Xsps (r),WK ~ WK (A3)

wK( r)
1

24vr
3—(1+x ) x —(3—x ) —21n

M PF+~F
M* F M* (VX )0

PF

PF M PF+&F
+2M x — 2—(1—x ) +21n

M M M* hX

PF

PF
(2 —x ) — 3 —2 x + x +ln (VM')-F —

Me F Mo F n
M

PF M' PF+~F—2M xF+ (1—xF) — 3 —2 ln AM* (A4)

with eF given by (2.19) and the definitions

pF(r):=[[@—Xo(r)] —M* (r)]'i

M (r):=M —Xs(r),

(A5)

(A6)

and

sF(r)
XF(r):—

pF(r)
(A7)
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In Eq. (A3), A, =0 corresponds to a purely external poten-
tial, while A, =l describes the case of a self-consistent
two-particle interaction.

For the Lagrangian (2.1), the decomposition of Xs and
Xo is given in each order of R by Eqs. (3.2)—(3.4). The
second-order corrections to the meson and electromag-
netic fields are determined by [17]

2
) WK( ) ( WK( )+ WK( )]

( g m 2
)tv

w K
( r ) g [p

w K
( r ) +p

w K
( r ) ]

(b, —m )b (r) = g—(pp (r) p„—(r)),

ggWK( ) WK( )

(A9)

(A10)

(A 1 1)

[1]B. D. Serot and J. D. Walecka, in Advances in Nuclear
Physics, edited by J. W. Negele and E. Vogt (Plenum, New
York, 1986), Vol. 16, and references therein.

[2] L. S. Celenza and C. M. Shakin, in Relativistic Nuclear
Physics, Lecture Notes in Physics, Vol. 2 (World Scientific,
Singapore, 1986), and references therein.

[3]J. Boguta and A. R. Bodmer, Nucl. Phys. A292, 413
(1977).

[4] Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys.
(N.Y.) 198, 132 (1990).

[5] P.-G. Reinhard et al. , Z. Phys. A 323, 13 (1986).
[6] A. Bouyssy et a/. , Phys. Rev. C 36, 380 (1987).
[7] B. ter Haar and R. Malfliet, Phys. Rep. 149, 207 (1987).
[8] H. Miither, R. Machleidt, and R. Brockmann, Phys. Lett.

B 202, 483 (1988);Phys. Rev. C 42, 1981 (1990).
[9]J. Boguta and J. Rafelski, Phys. Lett. 71B, 22 (1977).

[10]F. E. Serr and J. D. Walecka, Phys. Lett. 79B, 10 (1978).
[11]B. D. Serot and J. D. Walecka, Phys. Lett. 87B, 172

(1979).
[12] P. Ring and P. Schuck, The Nuclear Many Body Probl-em

(Springer, Berlin, 1980).
[13]B.Grammaticos and A. Voros, Ann. Phys. (N.Y.) 123, 359

(1979); 129, 153 (1980).
[14] E. Wigner, Phys. Rev. 40, 749 (1932).
[15]D. Von-Eiff and M. K. Weigel, Z. Phys. A 339, 63 (1991).
[16]D. Von-Eiff, S. Haddad, and M. K. Weigel, Phys. Rev. C

46, 230 (1992).
[17]M. K. Weigel, S. Haddad, and F. Weber, J. Phys. G 17,

619 (1991).
[18) M. Centelles et al. , Nucl. Phys. A519, 73c (1990).
[19]C. Speicher, R. M. Dreizler, and E. Engel, Ann. Phys.

(N.Y.) 213, 312 (1992).
[20] H. Krivine, M. Casas, and J. Martorell, Ann. Phys. (N.Y.)

200, 304 (1990).
[21] M. Centelles et al. , Nucl. Phys. A537, 486 (1992).
[22] M. Centelles et ttl. , University of Barcelona report, 1992.
[23) V. M. Strutinsky, Nucl. Phys. A95, 420 (1967); A122, 1

(1968).
[24] M. Centelles et al. , Nucl. Phys. A510, 397 (1990).
[25] Hsiao-bai Ai et al. , Phys. Rev. C 39, 236 (1989).
[26] S. Marcos et al. , Phys. Rev. C 39, 1134 (1989).
[27] M. Jetter, F. Weber, and M. K. Weigel, Europhys. Lett.

14, 633 (1991).
[28) F. Weber and M. K. Weigel, Z. Phys. A 330, 249 (1988).
[29] A. Bouyssy et al. , Phys. Rev. Lett. 55, 1731 (1985).
[30] C. J. Horowitz and B. D. Serot, Nucl. Phys. A464, 613

(1987)~

[31]F. Weber and M. K. Weigel, Nucl. Phys. A493, 549 (1989).
[32] J. Ramschiitz (private communication).
[33] M. Brack, C. Guet, and H.-B. HLkansson, Phys. Rep. 123,

275 (1985).
[34] H. de Vries, C. W. de Jager, and C. de Vries, At. Data

Nucl. Data Tables 36, 495 (1987).
[35] P. X. Ho et ttl. , Nucl. Phys. A179, 529 (1972).
[36]J. Heisenberg et al. , Phys. Rev. Lett. 23, 1402 (1969).
[37] W. D. Myers and W. J. Swiatecki, Ann. Phys. (N.Y.) 55,

395 (1969).
[38] M. Durand, P. Schuck, and X. Viiias, Institut des Sciences

Nucleaires de Grenoble report, 1991.
[39] W. J. Swiatecki, Nucl. Phys. A542, 195 (1992).
[40] W. A. Barker and Z. V. Chraplyvy, Phys. Rev. 89, 446

(1953).
[41]J. M. Eisenberg and W. Greiner, in Nuclear Models, Nu-

clear Theory (North-Holland, Amsterdam, 1975), Vol. 1, p.
196.


