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We present initial results in the calculation of nuclear ground state properties in a relativistic Hartree
approximation. Our model consists of Skyrme-type interactions in four-, six-, and eight-fermion point
couplings in a manifestly nonrenormalizable Lagrangian, which also contains derivative terms to simu-
late the finite ranges of the mesonic interactions. A self-consistent procedure has been developed to
solve the model equations for several nuclei simultaneously by use of a generalized nonlinear least-
squares adjustment algorithm. With this procedure we determine the nine coupling constants of our
model so as to reproduce measured ground state binding energies, rms charge radii, and spin-orbit split-
tings of selected closed major shell and closed subshell nuclei in nondeformed regions. The coupling
constants obtained in this way predict these same observables for a much larger set of closed shell spher-
ical nuclei to good accuracy and also predict these quantities for similar nuclei far outside the valley of
beta stability. Finally, they yield properties of saturated nuclear matter in agreement with recent relativ-
istic mean meson field approaches.

PACS number(s): 21.60.Jz, 21.10.Dr, 21.10.Ft, 21.10.Gv

I. INTRODUCTION

Relativistic mean field models have been successful in
describing nuclear matter and ground state properties of
finite nuclei [1—12]. They describe the nucleus as a sys-
tem of Dirac nucleons that interact in a relativistic co-
variant manner via mean meson fields. Two important
results of these approaches are that the combined meson
fields account for the e8'ective central potential used so
successfully in Schrodinger approaches and that the
spin-orbit interaction occurs naturally, with a magnitude
comparable to the ad hoc spin-orbit interactions that are
required in the Schrodinger approaches.

However, due to the finite range of the mesons it is
very difficult to calculate the exchange terms in mean
meson field theories, although this has been achieved in
Refs. [8] and [9]. A relativistic Hartree-Fock model with
Skyrme-type interactions was therefore proposed by
Manakos and Mannel [13]. For their four-fermion point
coupling interaction, the exchange terms can be calculat-
ed via Fierz relations [14]. Although the model is mani-
festly nonrenormalizable, the question of renormalization
of special classes of diagrams and the consistency of the
four-fermion interaction is under study [15]. A second
concern about the mean meson field theories is that their
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parametrizations are in terms of mesonic coupling con-
stants and corresponding mesonic masses appearing in
the appropriate Klein-Gordon equations (sometimes with
additional parameters as coefficients of nonlinear densi-
ties). In particular, the Klein-Gordon equation is used to
mock-up the exchange of two pions as a (fictitious) stable
cr meson because two-pion exchange is believed responsi-
ble for the intermediate range attractive part of the
nucleon-nucleon interaction [13]. This approach, howev-
er, may overly constrain these theories when they are
developed at a phenomenological level with intentions of
achieving highly accurate predictive capability.

In this work we use an extended version of the relativ-
istic Hartree-Fock model of Manakos and Mannel [13]to
describe ground state properties of finite nuclei and nu-
clear matter. As in the original version, our model La-
grangian contains four-fermion point couplings consist-
ing of squares of scalar and vector densities, with both
isoscalar and isovector components. In addition, we in-
clude six- and eight-fermion point couplings in the scalar
and vector densities together with derivatives of these
densities to simulate the finite ranges of the mesonic in-
teractions. However, we have no explicit mean meson
fields. Instead, we have mean nucleon fields in a point
coupling Skyrme-type approximation. The resulting
isoscalar-scalar, isoscalar-vector, iso vector-scalar, and
isovector-vector potentials have, respectively, four, three,
one, and one coupling constants for a total of nine param-
eters. These potentials can be viewed as corresponding to
mean meson fields involving the exchange of o (fictitious),
co, 6, and p mesons, respectively, described by eight pa-
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rameters (four coupling constants and four meson
masses).

We determine the coupling constants of our model by
use of a self-consistent solver of the Hartree equations as
the function call in a generalized nonlinear least-squares
adjustment algorithm that acts on several nuclei simul-
taneously. The experimental ground state observables
appearing in the g are (1) the binding energy, (2) the rms
charge radius, (3) the spin-orbit energy splitting of the
least-bound neutron spin-orbit pair, and (4) the spin-orbit
energy splitting of the least-bound proton spin-orbit pair,
for each of the chosen nuclei. With the nine coupling
constants so determined, we are able to test the model by
predicting the same observables for other nuclei and by
calculating the properties of saturated nuclear matter.
Our early work on developing this approach has been re-
ported in Refs. [16]and [17].

The paper is structured as follows. A summary of the
relativistic point coupling model is given in Sec. II. In-
cluded are discussions of our approximations, and their
justification, together with explicit expressions for the
densities and potentials appearing as well as for the
ground state binding energy and rrns radii. In Sec. III we
discuss the method of determining the optimal values of
the nine coupling constants of the model. The choice of
nuclei, and the corresponding measured observables and
their weights, that are used in the generalized nonlinear
least-squares algorithm are given. Our results are
presented in Sec. IV. Here we tabulate our best set of
coupling constants to date determined in the nonlinear
least-squares analysis, and compare measured and calcu-
lated observables using these coupling constants. The
corresponding densities and potentials are also shown. In
Sec. V we turn to predictions using the same optimal set
of coupling constants and present comparisons of mea-
sured and predicted observables for a number of nuclei.
We also present predictions for these same observables,
together with corresponding densities and potentials, for
some exotic nuclei. Finally, our predictions for nuclear
matter are given. A discussion and our conclusions are
presented in Sec. VI.

II. SUMMARY OF MODEL

In this section we present a description of the relativis-
tic point coupling model introduced by Manakos and
Mannel [13,15]. We use units in which fi=c = l.

A. Relativistic Lagrangian

The model is defined by a relativistic Lagrangian densi-
ty in the nucleon fields and does not contain any meson
fields. The Lagrangian is given by

X=:[X„„+X4f+X„„+X„,„+X,

where

X&„,=g(iy„B"—m) t/f/,

(A }(A}
—,' —(6„4)(4y"0)

—,'a—rs(Prg) (P. rQ)

QTV(1l/7y '/t/} (0 y '/t/)

,
—'n—(A)' .—'y—(A')

,'y——[(4y„4)(0y"0)]'

Z„,= —,S,(agq)(a"q 1()

, fi, (—ag y„q)(a"qy~g),

(2)

and

1//(x)=y u/, (x)a/„1/l( }=xy u/, (x)a/, ,
k k

where a/, is the annihilation operator for a nucleon in

state k, uk(x) is the corresponding single-particle Dirac
four-spinor wave function with upper and lower com-

= —ed„f[(1 r3) l2—]y"g ,'F„,F—"—".

In these equations, tr/ is the nucleon field, m is the nu-

cleon mass, the subscripts "S"and "V' refer to the scalar
and vector nucleon fields, respectively, the subscript "T"
refers to isovector fields containing the nucleon isospin v,
and A„and F„arethe four-vector potential and field

strength tensor, respectively, of the electromagnetic field.
[Note that throughout this paper, the magnitude of r is
twice the nucleon isospin. ] Furthermore, the physical
makeup of X is that Xr„,is the kinetic term of the nu-

cleons and X« is a four-fermion interaction, while X„„
and Xd„contain higher-order terms and derivatives in

the nucleon densities, respectively. Finally, L, is re-
sponsible for the coupling of the nucleons to the elec-
tromagnetic field and contains its kinetic term.

The four-fermion interaction and the higher-order
terms are point coupling interactions made up of the
operators of the scalar and vector (both isoscalar and iso-
vector) nucleon densities. The isoscalar operators are
1(/(x)g(x ) for the scalar case and 1(/(x)y„g(x) for the vec-
tor case. The corresponding isovector operators are
P(x)rP(x) and g(x)ry„P(x). As can be seen from the
coupling to the electromagnetic field, we use the nuclear
physics convention for the isospin, i.e., the neutron has
isospin "up, " ~3 = + 1, and the proton has isospin
"down, " ~3= —1. Thus, all spinors are to be understood
as having first the neutron part and then the proton part.
The colons in Eq. (1} denote a normal ordering with
respect to the vacuum state

~
0 ) . That is, in all expres-

sions between the colons, creation operators are written
on the left and destruction operators are written on the
right (including a minus sign for each transposition of
fermion operators).

In the following, the Lagrangian Eq. (1) is treated in a
no-sea approximation, which means that we consider
only positive energy states. In other words, the field

operator g(x) contains only nucleon annihilation opera-
tors and no antinucleon creation operators:
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ponents g (x) and f (x), and the bar indicates the Dirac
adjoint u(x) =u (x)yo.

The field theory defined by Eq. (1) is nonrenormaliz-
able. However, it is possible to treat it in Hartree-Pock
(HF) approximation.

B. Relativistic Hartree-Fock
and Hartree approximations

k=1
(4)

Hartree-Fock approximation means that the expecta-
tion value & /IHIP& of the Hamiltonian H is to be mini-
mized in the space of Slater determinants

where A is the nuclear mass number.
The Hamiltonian can be calculated from the relativis-

tic Lagrangian by

H= f d x&(x),

where

%(x)= . f(x)+ . A„(x)—X(x) .az . ax
aj(x) aA„(x)

Inserting the Lagrangian, one obtains

H= Jd x:[%r„,(x)+&4f(x)+%i,„(x)
+Ad„(x)+%,(x)I:,

where

%r„,=P(iy 8+m)P,

~4f 2 mrs ( it& )( itit ) + ,' cl v ( gr—„it)(4r "ill) + ,' el rs ( g-rill) ( ii rg ) + ,' el rv( P r—r„ill)(f rr "it )

~h.i= ,'&s(-A')'+ ,'r s(-A')'+ .'r v[-(4r„4)(4r"4)]'

~d-= ,' fis[—(do—ee)'+(~e e)'] ,'fiv[—(~—oerpe)'+(de rpe ')1

=eA„Q[(1 r3)/2]r"—g F "8 A„—+ ,'F„,F"' . —

The expectation value of H can be calculated using
Wick's theorem by means of which expectation values of
products of many field operators can be expressed in
terms of expectation values of only two field operators
(contractions). For example,

and have, for example, not yet included a tensor field.
Accordingly, in the following we will use only the direct
terms; that is, we make a relativistic Hartree approxima-
tion. The expectation values which then occur are the
following:

p, ( )=&ply( )y( )Iy&

A

Qk X Qk X

In this case, Wick's theorem leads to the well-known
direct and exchange terms. There are techniques to ex-
press these exchange terms in a form that is identical to
the direct terms of products of other densities [15]. Also,
the exchange parts of the higher-order terms can be ex-
pressed as direct terms of products of these densities us-

ing Fierz relations, but these terms are much more corn-
plicated than in the case of four-fermion couplings.
However, the fact that higher order exchange terms can
be expressed as direct terms means, in principle, that a
Lagrangian X can be determined in a relativistic Hartree
sense that is equivalent to that determined in a relativistic
Hartree-Fock sense, L'. By equivalent, here, it is meant
that

and

Jv (x)=&pl&(x)r„g(x)lltp&

A= g uk(x)y„uk(x),
k=1

p (x)= &(t ly(x)ry(x)ly &

Qk X TQk X
k=1

j„()=&ply(x) r„g(x)lp&
A

uk(x)Tr ilk(x)
k=1

(10)

Equation (9) is satisfied for a point coupling model pro-
vided that (a) all possible Lorentz invariants arising at the
Hartree level are included, and (b) that an appropriate
approximation is made for the (long-range) Coulomb ex-
change term. In the initial version of our point coupling
model, however, we consider only scalar and vector fields

These nucleon densities are, respectively, the isoscalar-
scalar density, the isoscalar-vector current density, the
isovector-scalar density, and the isovector-vector current
density. For convenience we also define the proton
(charge) current density:
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1 —~3
j~(x)=(Pl/(x) y„f(x)lg)= g uk(x) y„uk(x)=,'[j—v(x) j—rv (x)] .

k=1

Using Eqs. (10) and (11), the expectation value of H is given by

A

(ylHly) = f d'x y uk(iy d+m)uk+ +sps+Yl~vJV„JF+ +TSPTS+ z+TV3rv jTV+ 3~sps+ 'YsP—s
k=1

+ —,'yv(jv jI')' —,'us[(aoP, )'+(aPs)'] —-'S, [(aoJ'v )(aojI')+(aJ ) (BJI )]

+eA jJ'"—F "8 A +—'F F"
P p 4 pv (12)

Minimizing (plHlp) with respect to the wave functions uk and using the fact that the ground state is stationary, we

obtain the time-independent Hartree equations that are of Dirac type:

['y'~+m +rzsps+rzvpvyo+~zsprsr3+~rvprv'r3yo

+APs+ysPs+y vpvyo+fis~Ps+~v~Pvyo+e~o[(1 ~3)~ ]]uk yoekuk

Pv jvp~ Prs Prs ~ Prv jTvp3 (14)

Here we have used the fact that the isospin of the nu-

cleons is in the 3-direction and have introduced the ab-
breviations

Ps = ,'(Ps+Prs-» Ps &(Ps Prs)

Vs = Vs+ Vrs, VE = Vs Vrs and

Pv=~(pv+Prv)~ Pv=2(i v Prv) Jo
(20)

(Note that henceforth we shall refer to a "current densi-
ty" simply as a "density. ") The eigenvalue Ek in the
Dirac equation is the single-particle energy. For the elec-
tromagnetic potential, we find the usual Poisson equa-
tion:

AAo=4mej~o . (15)

By introducing the isoscalar-scalar and isoscalar-vector
potentials

Vs ~sps+ ~sps+ 'Y sps+ ~s~ps

Vv &vPv+XVPV+&v~PV ~

3
(16)

the isovector-scalar and isovector-vector potentials

Vrs =&rsprs

Vrv=&rvprv
(17)

and the Coulomb potential,

Vc =eAo

the Dirac equation can be written as

(18)

[iy.8+m+ Vs+ Vvyo+ Vzs~3 Vrvr3y

+ Vc[(1—13)/2]]uk =yoEkuk . (19)

Vv Vv+ Vrv Vf = Vv Vrv

C. Binding energy

Note that a factor of —,
' appears for the densities, but not

for the potentials.
The Hartree equations, Eqs. (19), are nonlinear equa-

tions because the potentials depend on the wave functions
uk. They are solved by iteration, that is, starting with
some fixed potentials we solve Eqs. (19) as linear equa-
tions. From the wave functions obtained we calculate
new potentials using Eqs. (10)—(11) and Eqs. (15)—(18).
This procedure is repeated until suitable convergence cri-
teria are satisfied. The convergence can be stabilized by
introducing "damping, " which means that the potential
that is used in the next iteration is not the one calculated
from the wave functions, but the average of the latter and
the potential used when solving the previous iteration.

Because we consider only spherical closed major shell
or closed subshell nuclei, we have only to deal with the
radial equations. These ordinary differentia equations
are solved in configuration space by use of a shooting al-
gorithm. We typically use a lattice with 300 points and a
step size of —,', fm. To accelerate the computation, we

predict the initial single-particle energies from one itera-
tion to the next in the shooting algorithm by use of per-
turbation theory.

For later use, we introduce the neutron and proton
components of the scalar and vector densities and the
scalar and vector potentials:

The total energy Er of the nuclear ground state is

given by the integral of the ground state expectation
value of the zero-zero component Too of the energy-
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momentum density tensor [14],namely,

(21)

where the first term is the sum over the single-particle en-
ergies of all occupied states and the second term is the
volume integral of the ground state expectation value of
the Lagrangian density given by Eqs. (1) and (2). Using
the Dirac equation, Eq. (19), and the definitions, Eqs. (14)
and (20), this equation becomes

ET X ek fd x[ '~sPs+ l~vPv+ '~rsPrs+ l+rvPrv+ 'I sP—s+ '1 s—Ps+ —'7 vPv+ 'fisPs—~Ps
k=1

+ 2fivpv-~pv+ ,'J'O~c-] .

The binding energy Ez of the nuclear ground state is
given by the difFerence between the sum of the free (un-
bound) nucleon masses and Er, with Er corrected by the
energy of the center-of-mass motion, E,

Ea =Zm~+Nm„(Er —E, )—, (23)

where Z+N=A, m is the free proton mass, and m„is
the free neutron mass. In this work we use an empirical
expression for the E, correction:

E, =(17.2 MeV)/A ' (24)

obtained by Reinhard [11] in a fit to spherical oscillator-
basis calculations over the mass range 16& A &208.
Within this range the magnitude of E, satisfies the re-
lation 9.9 MeV & E, ~ 5.9 MeV. The empirical expres-
sion Eq. (24) reproduces [18] the exact calculations to
within S%%uo.

D. Root-mean-square radii

The root-mean-square (rms) radii of the point neutron
and point proton distributions, ( r )„'~ and ( r 2 ) '~, are
obtained from the second moments of the neutron and
proton point densities. These point densities have al-
ready been expressed in terms of the isoscalar-vector and
isovector-vector densities in Eq. (20). Using Eqs. (10),
(14), and (20), we obtain

where the index j ranges over all occupied proton orbits.
The root-mean-square radius of the charge distribution,
(r ),'h„s„is obtained by including finite nucleon size
effects in the proton point density distribution that are
due to the proton and neutron intrinsic charge distribu-
tions. Adopting the results of Friar and Negele [19] to
our approach, we find

(r'),„„„=(r'),+(r,')+(X/Z)(r„'), (27)

III. OPTIMIZATION
OF COUPLING CONSTANTS

where (r~)=0.6400 fm and t', r„)=—0. 1156 fm are
the mean-square charge radii of the proton and neutron,
respectively. This expression is a good approximation
[19]to the true mean-square charge radius, but a number
of small corrections have been neglected. These include
contributions from meson exchange currents and the
center-of-mass motion correction, where the latter is in-
creasingly important with decreasing mass number. For
example, a harmonic oscillator model yields a —0.4% es-
timate for Pb and a —15% estimate for He, in the
correction to the root-mean-square charge radius. We
expect to include such corrections in future refinements
of our model.

fd'x[x' ,'[p—v«)+prv(x-)]]
1

d X X Q; Xtl; X
1

1

(25)

=—fd x[x ,'[pv(x) p—rv(x)]]—
1

=—f d x x g uji(x)u~(x)
1

1

(26)

where the index i ranges over all occupied neutron orbits.
Similarly, we obtain

(r2) =—fd'x[x pv(x)}2 1

With the relativistic point coupling model described in
Sec. II, the following ground state properties of spherical
closed-shell nuclei can be calculated: (i) single-particle
Dirac wave functions and energy levels (eigenvalues), (ii)
point proton and point neutron densities and their mo-
ments, (iii) charge density and its moments, (iv)
isoscalar-scalar, isoscalar-vector, isovector-scalar, and
isovector-vector potentials (mean nucleon fields), and (v)
binding energy (mass).

In order to calculate these quantities accurately, a
physically realistic set of coupling constants must be
determined. The test of a candidate set of coupling con-
stants will be its predictive power in calculating these
same quantities, as well as others, for nuclei other than
those used in their determination. In this section we de-
scribe the general procedure for determining the coupling
constants, the choice of nuclei to be used, and the choice
of observables and their weights.
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A. General procedure

X X
k E nuclei XF observables

X(k) X(k)( jp j )

(k) (k)~X +exp

The nine coupling constants to be determined for the
relativistic point coupling model are listed in Table I.
Four of these appear in the isoscalar-scalar potential Vz,
three appear in the isoscalar-vector potential Vv, and one
each appear in the isovector-scalar potential VTz and the
isovector-vector potential VTV. The coupling constants
appear explicitly in the time-independent Hartree equa-
tions of Dirac type, Eq. (13), and, equivalently, the poten-
tials appear explicitly in the Dirac equations, Eq. (19).

As described in Sec. II 8, we solve the nonlinear Dirac
equations, Eq. (19), iteratively by starting with Woods-
Saxon shapes and a fixed set of coupling constants for the
initial solution and concluding, self-consistently, when
predetermined convergence criteria have been met. This
is the process for a given, fixed, set of coupling constants.
To determine the optimal set of coupling constants, the
Dirac equations solver, or, equivalently, Hartree equa-
tions solver is used as the function cal1 in a generalized
nonlinear least-squares minimization program [20] based
on the Levenberg-Marquardt algorithm I21]. A
flowchart for the entire process, shown in Fig. 1, facili-
tates a description of the procedure:

A set of nuclei [k j is chosen that (a) satisfies the physi-
cal constraints implicit in Eqs. (13) and (19), and (b),
possesses well-measured ground state observables
[X(,"„'+~("„'j. For a given, fixed, set of coupling con-
stants jp j and, initially, Woods-Saxon shapes, the self-

consistent solution to the Hartree equations is obtained
and the corresponding theoretical values of the observ-
ables [X,'„"'([p j ) j, depending on the set of coupling con-
stants [p j, is computed. Then the generalized X is cal-
culated,

X nuclei
2

solve Hartree
equations

coupling
constants

predict
observable s

experimental
observables

theoretical
observabies

)( function
2

weights minimize )(

FIG. 1. Flowchart for application of the relativistic point
coupling model.

and

1

+Nb, N X jpj)
obs

(30)

ment/X reduction process is repeated until an (absolute)
minimum in g is achieved. At this point, the final set of
coupling constants [ps„»j is tested by predicting the
same observables, as well as others, for nuclei not includ-

ed in the set [k j.
We note here, for later use, the definitions of the gen-

eralized y per data point, yz, where X,b, is the total
obs

number of measured observables contained in Eq. (28),
and y per degree of freedom, yz f, where the number of
degrees of freedom is (N», N~ ), with —N

~ the total nurn-

ber of parameters contained in Eq. (28):

wherein the weights 8'& ' are given by

Pr(k) —f (k)gX(k) /X (k)
X X exp exp

(28)

(29)

1
X~.r.

=
N N

X'(j&j)
obs p

B. Choice of nuclei

(31)

that is, the product of the external weight factor fz") and

the relative experimental uncertainty ~',"„~/X',"„~(ordi-

narily, fz'"'=1.0). The coupling constants jpj are then

adjusted by the Levenberg-Marquardt algorithm so
as to reduce y. The y computation/parameter adjust-

The physical constraints implied by Eqs. (13) and (19),
which are correspondingly contained in our present com-

putations, consist of the following: (1) The nucleus must

be spherical and cannot be deformed. The total angular

momentum of the nucleus must be zero. (2) The nuclear

TABLE I. Coupling constants of the relativistic point coupling model.

Potential

~s
Vs

Vs

Vs

~Ts
Vl

Vv

Vl,

~TV

Coupling constant

&s
Ps
Ps
&s

&Ts
A'y

7 v

5~
~TV

Dimension

MeV
MeV
MeV
MeV
MeV
MeV
MeV
MeV
MeV

Description

isoscalar-scalar
isosc alar-scalar
isoscalar-scalar
isoscalar-scalar
isovector-scalar
isoscalar-vector
isoscalar-vector
isoscalar-vector
isovector-vector

linear
quadratic
cubic
derivative
linear
linear
cubic
derivative
linear
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TABLE II. Sets of nuclei for the g optimization of the cou-
pling constants.

and (4) the spin-orbit energy splitting for the least-bound
proton spin-orbit pair

Set A Set 8 Set C Set D bE,'~,' =e'I"(n, lj =1 '—) —e—' '(n, lj =I+—,') . (33)

4He
16O

Ca
48C

Ni

"Zr

132S

208pb

16O

Ca
48C
' Ni

"Zr

132Sn

208pb

16O

Ca
"Ca

Ni
88Sr

114Sn

132S

140Ce

146Gd

208pb

16O

88Sr

208pb

C. Choice of observables and weights

For each nucleus we selected the following four ground
state observables: (1) the binding energy Ez, (2) the root-
mean-square charge radius (r ),'„„s„(3)the spin-orbit
energy splitting for the least-bound neutron spin-orbit
pair

bE', 0 =c'"'(n, lj =I ——')—e'"'(n, lj =I+—') (32)

orbit occupation probabilities must be either zero or one
and the nucleus must be closed shell, or closed subshell,
in both proton number and neutron number. This means
that only even-even nuclei can be considered. Addition-
ally, the set of nuclei chosen to determine the coupling
constants of the model should have the following proper-
ties: (3) The nuclei should span wide ranges in mass num-

ber A, atomic number Z, and neutron-proton asymmetry
(N —Z). This provides for the possibilities of determin-
ing the sensitivities of the coupling constants to these pa-
rameters, and, correspondingly, of predicting nuclear
properties over their wide ranges (4) H. igh-quality mea-
surements of the ground-state observables for these nuclei
should exist, in order that the y function has the least
possible uncertainty.

Guided by the constraints (1)—(4), four sets of nuclei
were chosen for the purpose of determining the coupling
constants. These sets are labeled A, B, C, and D in Table
II. Whereas the first of these sets contains all doubly
magic nuclei, except for singly magic Zr, each of the
latter three sets span the same range in mass number,
atomic number, and neutron-proton asymmetry, namely,
16-208, 8-82, and 0—44, respectively. There are twelve
nuclear species in the table and seven of these are doubly
magic, while the remaining five have one closed major
shell (singly magic) and one closed minor shell. The mag-
nitudes of the ground state quadrupole deformations e2 of
the twelve species, determined in a fit [22] to experimen-
tal ground state masses, have an average absolute value

~ez~ =0.006 and satisfy the inequality 0.0~ ~ez~ &0.017.
Thus, each nucleus chosen is either spherical or very
close to spherical.

The first two of these observables depend sensitively
upon the "nonrelativistic" combination of the scalar and
vector mean nucleon fields, V&+ Vz. Alternatively, as a
second-order reduction of the Dirac equation shows [23],
the last two of these observables depend sensitively upon
the "relativistic" combination of the scalar and vector
fields, Vz —Vz. Thus, the observables have been chosen
to provide sensitivities to both the sum and the difference
of the scalar and vector mean fields. Note that in Eqs.
(32) and (33) we have used the standard shell model nota-
tion, (njl), for the principal, orbital angular momentum,
and total angular momentum quantum numbers, respec-
tively.

The binding energy (mass) is a most important observ-
able, as it is sensitive to both the sum of the single-
particle eigenvalues c.k over all occupied orbitals and the
total potential energy due to the mean nucleon fields [see
Eqs. (22) and (23)]. In addition, the experimental masses
are extremely well measured so they will dominate the
magnitude of g . For example, the average relative ex-
perimental uncertainty in the binding energy for the
twelve nuclei of Table II is 1.2X10 %. The root-
mean-square charge radius is also a very important ob-
servable, as it is sensitive to the detail of the nuclear
charge distribution and, therefore, to the point proton
density, which itself depends sensitively on the single-
particle wave functions uk(x), particularly their tail re-
gions [see Eq. (26)]. The rms charge radii are also well
measured in, e.g., electron scattering experiments, but
usually not as well as the ground-state masses. The aver-
age relative experimental uncertainty in the rms charge
radius for the eight nuclei of Table II that have been mea-
sured is 1.7X10 '%. [We use extrapolated values with

large uncertainties (as large as 5%) for 6Ni, '3 Sn, '~Ce,
and ' Gd. ]

The spin-orbit splittings for the least-bound neutron
and proton spin-orbit pairs are not directly measurable
and can only be inferred, usually from the single-hole
states with respect to the nucleus of interest by pickup re-
actions. Moreover, the experimental single-hole state en-
ergies must be corrected for polarization effects, which
are usually ignored, as they are expected to be small rela-
tive to the actual spin-orbit splitting [11]. We follow this
practice and use the experimental single-hole state ener-
gies to construct the "experimental" spin-orbit splittings,
for both neutrons and protons, in five of the eleven nuclei
of Table II having spin-orbit splittings, namely, ' 0, Ca,

Ca, Zr, and Pb. For the remaining six "unmea-
sured" nuclei we use the following approximation (for
both neutrons and protons) due to Bohr and Mottelson
[24]:

bE'"' =bE' ' =10(21+1)/A MeV . (34)

This approximation is more accurate for larger values of
the mass number A where individual variations are not
as strong as for lighter nuclei. The smallest mass number
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TABLE III. External weight factors f» ' and weights W»"'
for set D.

Nucleus

16O

88Sr

208pb

100
100
100

f(F2))/2
charge

fgg(p)

Nucleus

16O

SSSr

208pb

WE

0.0015
0.0015
0.0015

charge

0.002
0.002
0.002

W,E(.)

S. O.

0.05
0.50
0.05

gE(P)
S.O.

0.05
0.50
0.05

IV. RKSUI.TS

Our early studies considered sets A and 8 of Table II,
which differ only by the presence or absence of He, and

for which we use Eq. (34) is A =56. We use the follow-
ing average relative "experimental" uncertainties for the
neutron and proton spin-orbit splittings for the nuclei
listed in Table II. In cases where single-hole states have
been measured (' 0, Zr, and Pb) we use the value
5%. In cases where single-hole states have been rnea-
sured but are fragmented ( Ca and Ca), we use the
value 25%. If Eq. (34) is employed ( Ni, Sr, " Sn,

Sn, ' Ce, and ' Gd) we use the value 50%. In view of
the magnitudes of these uncertainties, the total g will be
influenced little by the spin-orbit energy splittings.

The sources of the experimental data that we use are
the following. Measured masses and their uncertainties
are taken from the midstream atomic mass evaluation of
Audi [25], whereas measured rms charge radii and their
uncertainties are taken from averages of model-
independent analyses compiled by deV ries and co-
workers [26]. Single-hole state energies, and their uncer-
tainties, for constructing spin-orbit splittings of the
least-bound neutron and proton spin-orbit pairs, are tak-
en from Refs. [24, 27 —29].

In order to study the influence of the four observable
types on the optimization of the coupling constants
through the g minimization process, we have inserted an
external weight factor f»") in Eq. (29) for the weights
W»("). As stated there, the ordinary value of f»(") is unity,
otherwise f»(")) 1.0. A second reason for including the
external weight factor is to take equal account of the
physical influence of one observable type simultaneously
with a second observable type that has been measured
with enormously greater precision. Such a case exists in
the present analysis, namely, the average relative experi-
mental uncertainty in the binding energy is about two or-
ders of magnitude smaller than the corresponding quanti-
ty for the rms charge radii ( 1.2 X 10 '7o vs
1.7X10 '%). For this reason fz(") values of 10 will

B
sometimes be used, whereas those for the remaining ob-
servable types will be set to unity.

To conclude this section, we present in Table III the
final external weight factors f»"' and weights W»") used
in our analysis with set D of Table II, to be discussed in
the next section.

examined convergence properties of the Hartree itera-
tions under various model assumptions. Whereas a
scalar-vector model of linear form with two coupling con-
stants {as], {(xv] does not converge, one of linear, non-
linear, and derivative forms with six coupling constants
{as,Pz, ys, 5+], {a&,5&] does converge for the eight nu-
clei with a common set of coupling constants. If the
isoscalar-vector cubic term yap~ is included, for a total
of seven terms, the measured observables are reproduced
to within 10% except for He where they are reproduced
to within only 25%. Further study with sets A and 8
showed that deletion of He yields an improvement in y
per data point, g&, of a factor of 2.7. Two important

obs

studies were then performed with set B. The first was to
test the importance of the derivative terms with coupling
constants 5~ and 5~. Here, a factor of 12.8 improvement
in the g per degree of freedom, gd &, was obtained in
comparison with the same run, but with 5&

—=5&—=0.0.
The second was to test the significance of introducing iso-
spin through the isovector-scalar and isovector-vector
linear terms, aT&pT+ and aT&pT&, respectively. Here, a
factor of 17.6 improvement in yd &

was obtained in com-
parison with the same run, but with a&z =—aTt. =—0.0. At
this point our model had become a scalar-vector model
with both isoscalar and isovector components, represent-
ed by nine linear, nonlinear, and derivative terms with
the corresponding nine coupling constants {as,13s,ys,
5s, aTz], {av,yi, 5v, aTv]. This model was tested using
set C of Table II to (a) again demonstrate convergence in

the Hartree iterations with a common set of coupling
constants, and (b) demonstrate that the convergence is in-
dependent of the set of nuclei chosen from Table II. Both
of these requirements were met satisfactorily.

We then commenced a search for the optimal set of
nine coupling constants, using set C of Table II, in a
series of systematic searches. The results were somewhat
disappointing in the sense that while several minima in

were found, it was not clear which of the corre-
obs

sponding sets of coupling constants are the most physical,
that is, have the most predictive power. This is because
these particular sets have almost equivalent predictive
powers, with similar values for all coupling constants ex-
cept those of the isovector terms, ~Tz and eTV, and
sometimes that of the isoscalar-vector cubic term y v.
This situation led us to reexamine the properties of the
nuclei in sets A —C in terms of the constraints given in
Sec. III B, especially that of orbital occupation numbers
of only 0 or 1. A more stringent review of these con-
straints led us to construct set D of Table II wherein 016

and Pb are perhaps the two nuclei that best satisfy
them and Sr, of intermediate mass, may be the best
choice among the remaining eight nuclei of set C. [Note
that the nuclei of set D span the same mass number,
atomic number, and neutron-proton asymmetry ranges as
sets 8 and C.] We then tested our model using set D and
found a minimum in g& with a corresponding set of

obs

coupling constants that are very similar to a subset of
those found with set C except for the value of the
isovector-scalar coupling constant e T~. As will be seen in
the next subsections, the contribution of the isovector-
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scalar term to the total potential is very small, which is
probably the reason why it is so difBcult to precisely
determine the value of its coupling constant azz. The
coupling constants determined with set D have the most
predictive power to date for this model and they will be
used throughout the remainder of this paper.

A. Coupling constants

The optimal set of the nine coupling constants of our
model, determined using set D of Table II, is given in
Table IV. The 6rst four of these are associated with the
isoscalar-scalar potential Vs given by Eq. (16). The fifth

is associated with the isovector-scalar potential Vz.& given

by Eq. (17). The sixth through eighth are associated with
the isoscalar-vector potential Vv, also given by Eq. (16),
and the ninth is associated with the isovector-vector po-
tential Vri, also given by Eq. (17). Except for the cou-
pling constants of the derivative terms, 5s and 5&, a posi-
tive coupling constant corresponds to a repulsive term in
the potential and a negative coupling constant corre-
sponds to an attractive term in the potential. The deriva-
tive terms generally contain both repulsive and attractive
regions depending usually upon whether one is consider-
ing the interior or surface regions of the nucleus. The di-
mensions of the coupling constants are determined by re-
calling that for units in which A=c = 1, a length has a di-
mension of inverse energy. %e note here that the ratio of
isovector-scalar to isovector-vector coupling constants
is indeed small, arz/ar„= 7.40291X10 /3. 25677
X10 5 = 0.023. Furthermore, the ratio of isovector-
scalar to isoscalar-scalar coupling constants is even
smaller, arz/as = —7.402 91 X 10 /4. 507 65 X 10
= —0.0016. Thus, the influence of the isovector-scalar
term on the total potential will be very small, so the fact
that we have not precisely determined its value should
have little efFect on our calculated results. It is not
surprising that the isovector-scalar term is small because
it corresponds to an isovector-scalar meson 6eld for the
exchange of the 5 meson. The one-boson exchange con-
tribution of the 5 meson goes as gs/m &, but the inass of
the 5 meson is relatively large, m&=983 MeV, and the
coupling constant is relatively small, g&-2, so its contri-
bution is small [30].

B. Gbservables

A comparison of calculated and measured observables
for the nuclei of set D is given in Table V. The agree-
ment is quite good, as one expects, because the measured
observables were used in the minimization of y to opti-
mize the coupling constants. An inspection of the table
shows that relative errors with respect to measured bind-
ing energies range from 0.08% to 0.19%, that relative er-
rors with respect to measured root-mean-square charge
radii range from 0.16% to 0.62%, and that relative errors
with respect to measured spin-orbit splittings range from
0.49 to 47.6'. The roughly comparable relative errors in
the calculated binding energies and root-mean-square
charge radii reflect our intent to obtain comparable
influence from these two important observables in deter-
mining the coupling constants (see Table III and discus-
sion). Note that the 47.6%%uo relative error for the
1d 3/2 1d 5/2 proton spin-orbit splitting in Pb is anoma-
lously large with respect to those for the other three mea-
sured spin-orbit splittings, particularly that of the
2p, /2-2p3/2 neutron spin-orbit splitting in the same nu-

cleus with a value of 1.56%. We have no explanation as
to why the neutron spin-orbit splitting is reproduced so
well in Pb while that for the proton is reproduced so
poorly. The same problem occurs for other nonrelativis-
tic [27] and relativistic [3] Hartree calculations for ~osPb.

More generally, the comparison between calculated
and measured single-particle energies for the nuclei of set
D is as good, or better, than other similar calculations of
which we are aware [1-3,6—8, 10,11]. Table VI gives a
comparison with experiment for ' 0 and Pb as evi-
dence for this point. %'e note two additional points with
respect to this table: (a) the calculated 1f,&2 and 2@3/2
neutron levels in Pb are inverted in comparison with
experiment, and this inversion is common to many other
theoretical calculations, both nonrelativistic and relativis-
tic, and (b) unlike the work of Horowitz and Serot [3] and
Serot and Walecka [6], we do not obtain an inversion of
the calculated Og9/2 and 1p, /2 proton levels, in contrast
to experiment. However, although we have the ordering
of the latter two levels correct, they are nevertheless too

TABLE V. Comparison of calculated and measured observ-
ables for the nuclei used to optimize the coupling constants.

Potential Coupling constant Magnitude Dimension

TABLE IV. Optimized coupling constants for the relativistic
point coupling model.

Nucleus

16O Calc.
Exp.
Diff.

Eg
{MeV)

127.44
127.62
—0.18

)charge

{fm)

2.732
2.737

—0.005

gE(n)
{Me'V'}

6.385
6.176
0.209

gE(P)

{MeV)

6.355
6.324
0.031

~s
~s
~s
~s

~z-s

Vv

Vv

Vv

~rv

as
Ps
7s
&s

ass
av
'Vv

~v
arv

—4.507 65 X 10-'
1.10951X10-"
5.735 22 X 10

—4.239 44 X 10
7.402 91 X 10
3.42665 X10-'

—4.388 58 X 10
—1.143 65 X 10-"

3.25677 X10-'

MeV
MeV
MeV
MeV
MeV
MeV
MeV
MeV
MeV

88Sr Calc.
Exp.
Diff.

769.92
768.47

1.45

2os@b Calc.
Exp.
DifF.

1635.10
1636.47
—1.37

'Calculated using Eq. {34).

4.214
4.188
0.026

5.511
5.502
0.009

1.939
1.516'
0.423

0.912
0.898
0.014

6.116
3.538'
2.578

1.963
1.332
0.631
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TABLE VI. Comparison of calculated and measured single-particle energies for ' 0 and 'Pb.

S.P. level

Neutrons

Calc.
(MeV)

Exp.
(MeV)

A. '0
S.P. level

Protons

Calc.
(MeV)

Exp.
(MeV)

Op I /2

Op3/2

0$1/2

2p1/2
1f5/2

2p
+ 13/2

tfin
Oh 9/2

2$1/2
1d3/2

—15.355
—21.740
—41.413

—6.818
—8.489
—7.730
—9.791

—11.051
—13.732
—18.236
—19.133

—15.664
—21.840
—47+7

—7.368
—7.938
—8.266
—9.001
—9.708

—10.781

B. 2"Pb

Op 1/2

Op3/2

0$1/2

2$1/2
1d3/2

Oh 11/2

1d s/2

Og 9/2

lp 1/2

lp3/2

—11.512
—17.868
—37.270

—8.191
—9.435

—10.604
—11.397
—15.747
—19.906
—20.475
—21.619

—12.128
—18.451
—40+8

—8.013
—8.364
—9.361
—9.696

—11.487
—15.413

deeply bound, in common with other relativistic mean
field approaches [3,7, 12].

We turn now to a discussion of the densities and corre-
sponding potentials that were used to obtain the calculat-
ed observables that have just been discussed.

C. Densities

We show the isoscalar-scalar densities, p„ the
isoscalar-vector densities, pv, the isovector-scalar densi-
ties, pT&, and the isovector-vector densities, pT~, for the
nuclei of set 0 in Figs. 2 —5. These densities, shown here
for the nuclei used to determine the coupling constants of
Table IV, are defined by Eqs. (10) and (14). The gross
structure of the isoscalar densities is as one would expect:
Woods-Saxon-like shapes with similar surface diffuseness
properties (logarithmic plots show very similar slopes in
the surface regions), and central densities of approximate-
ly 0.15 fm . A closer examination shows that the sur-
face diffuseness properties of isoscalar-scalar and
isoscalar-vector densities are also very similar and that

PTs Ps Ps

and (35)

PTv PV PV

Accordingly, the isovector densities are sensitive to the

the central regions of the isoscalar-vector (baryon) densi-
ties are slightly larger, about 0.01 fm, than the corre-
sponding central regions of the isoscalar-scalar densities.

The structure in the interiors of the isoscalar densities
is due to the orbital contributions of the single-particle
wave functions [see Eqs. (10)]. For ' 0 one observes a
minimum at the origin and a maximum just beyond 1 fm,
for Sr there are two minima and two maxima, and for

Pb there are one minima and two maxima.
The isovector densities, Figs. 4 and 5, exhibit much

more structure than the isoscalar densities. This is be-
cause these densities are equal to the differences between
the neutron and proton components of the isoscalar den-
sities. From Eqs. (20) one has

0 ' 20 0.20

Isoscalar scalar densities

016

Sr88

Pb208

0. 15—

0. 10—

0.05—

0.00 i I i I i «7 ~ I i I I~I~ I i~i~ I

0 2 4 6 8 10
Radius (fm)

12

C/l

CD

0. 10—

Isoscalar vector densities

160
88S

\ 208Pb

\

I I I I I I I I~J I I I W I I I ~~ I I I I

2 4 6 8 10
Radius (fm)

FIG. 2. Isoscalar-scalar densities ps(r) for the nuclei used to
optimize the coupling constants.

FIG. 3. Isoscalar-vector densities pv(r), or baryon densities,

for the nuclei used to optimize the coupling constants.
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FIG. 4. Isovector-scalar densities p»(r) for the nuclei used
to optimize the coupling constants.
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FIG. 6. Neutron and proton point densities p"r(r) and +(r),
respectively, for ' O. Their sum is the isoscalar-vector (baryon)
density for ' 0 shown in Fig. 3.
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FIG. 5. Isovector-vector densities p&&(r) for the nuclei used
to optimize the coupling constants.

0.000

differences between the orbital contributions of the
single-particle neutron wave functions and the single-
particle proton wave functions. For Pb there are three
distinct maxima and minima and for Sr there are two
each. For the X =Z nucleus ' 0, one observes that the
protons are shifted somewhat to the outside [the
isovector-vector density of Fig. 5 becomes negative at
r =2.86 fm] due presumably to Coulomb repulsion.

The point neutron and point proton densities pz and

pr, respectively, are the neutron and proton components
of the isoscalar-vector (baryon) densities pr shown in Fig.
3. The point densities for these three nuclei are shown in
Figs. 6-8. In ' 0, Fig. 6, the neutron point density is
somewhat larger in the interior whereas the proton point
density just exceeds the neutron point density in the sur-
face region, in agreement with Fig. 5. For Sr, shown in

Fig. 7 with a neutron excess X —Z=38, the point neu-
tron density exceeds the point proton density over the en-
tire nucleus. The same is true for Pb, shown in Fig. 8,
with a neutron excess N —Z =44. Here it is interesting
to note that whereas the point neutron density has a
minimum at the origin, the point proton density has a
maximum at the origin, in agreement with the findings of

0 10 1 I I
I

I I I I l l I I I l I
I

I I I

Vector densities for "$r
0.08

---- Neutrons——Protons

0.02—

0 00 I I I I I I I I m~~ L J I I I

E 0.06

~ 0.04
C3

0 2 4 6 8

Radius (fm)

10

FIG. 7. Neutron and proton point densities pr(r) and +(r),
respectively, for ' Sr. Their sum is the isoscalar-vector (baryon)
density for Sr shown in Fig. 3.
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E 0.06

~ 0.04
C3
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I i « I » i I v t=~ J
4 6 8
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FIG. 8. Neutron and proton point densities pf, (r) and +(r),
respectively, for Pb. Their sum is the isoscalar-vector
(baryon) density for Pb shown in Fig. 3.



1768 B. A. NIKOLAUS, T. HOCH, AND D. G. MADLAND 46

TABLE VII. Calculated root-mean-square radii of the point
neutron and point proton densities for the nuclei used to opti-
mize the coupling constants.

Nucleus

16O

88Sr

zo8Pb

(t2)1 /2

(fm)

2.608
4.308
5.721

( 2)1/2
P

(fm)

2.634
4.156
5.469

Horowitz and Serot [3]. Another way of assessing the
point neutron and point proton densities is to calculate
their second moments, the mean-square radii. The root-
mean-square radii for the point densities shown in Figs.
6—8, calculated using Eqs. (25) and (26), are given in
Table VII. Inspection of this table yields a measure as to
the extent the protons in ' 0 are outside of the neutrons,
and as to the extent the neutrons in Sr and Pb are
outside of the respective protons. Namely, for ' 0,
{r )~

—(r )„' has the value 0.026 fm, and for Sr and
Pb, (r )„'/ —(r )'/ has the values 0.152 fm and

0.252 fm, respectively.

D. Potentials

Corresponding to the densities shown in the previous
subsection, we show here the isoscalar-scalar potentials
Vz, the isoscalar-vector potentials Vz, the isovector-
scalar potentials VT&, and the isovector-vector potentials

VTv, for the nuclei of set D in Figs. 9—11. These poten-
tials, constructed from the coupling constants of Table
IV and the densities just discussed, are defined by Eqs.
(16) and (17). Similar to the gross structure of the isoscal-
ar densities, the isoscalar potentials have Woods-Saxon-
like shapes with similar surface diffuseness properties for
the three nuclei of set D. The central strengths of the
isoscalar-scalar potentials, Vz, are approximately —400
MeV, while those of the isoscalar-vector potentials V~,
are approximately +325 MeV. Inspection of Fig. 9 re-
veals that the scalar potentials are longer ranged than the
corresponding vector potentials, in agreement with ex-
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FIG. 11. Isovector-vector potentials VTV(r) for the nuclei
used to optimize the coupling constants.

FIG. 10. Isovector-scalar potentials VT+(r) for the nuclei
used to optimize the coupling constants.
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FIG. 9. Isoscalar-scalar and isoscalar-vector potentials V&(r)

and Vf.(r), respectively, for the nuclei used to optimize the cou-

pling constants.
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timize the coupling constants.
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FIG. 13. Difference of the isoscalar-scalar and isoscalar-
vector potentials V&(r) and V&(r), respectively, for the nuclei
used to optimize the coupling constants.

FIG. 15. Difference of the isovector-scalar and isovector-
vector potentials V»(r) and VT&(r), respectively, for the nuclei
used to optimize the coupling constants.

pectations based upon the static potential limit for a one-
boson-exchange potential (OBEP) from scalar (cr) and
vector (eI) meson exchange [6]. Finally, a comparison of
Fig. 9 with Figs. 2 and 3 shows that the isoscalar poten-
tials have less structure in the interior regions than do the
corresponding isoscalar densities. This is due to the
smoothing that is produced by the nonlinear and deriva-
tive terms appearing in the isoscalar potentials.

The isovector potentials V~ and VTz are shown in
Figs. 10 and 11, respectively. As these potentials are
linear in the corresponding isovector densities pz& and

)I7rv [see Eq. (17)], their shapes are the same as those of
Figs. 4 and 5. Figures 9-11 show that the isovector-
scalar, isovector-vector, and isoscalar potential strengths
are in the approximate ratio 0.1 MeV/5 MeV j400 MeV.
The physical significance of the isovector-scalar and
isovector-vector potentials is the same as for the corre-
sponding isovector densities, namely, sensitivity to the
differences between orbital contributions of the single-
particle neutron wave functions and the single-particle

and

Vrv=-,'( Vv —Vf »
(36)

with corresponding physical interpretations.
The sums and differences of the isoscalar-scalar and

isoscalar-vector potentials Vz and Vz are shown in Figs.
12 and 13 for the nuclei of set D. The same is shown in
Figs. 14 and 15 for the isovector-scalar and isovector-
vector potentials Vz& and VT&. In the nonrelativistic lim-
it (m„,mz —+ac) the Dirac equation is equivalent to a
Schrodinger equation with a central potential
V,",'„=V++Vz and a spin-orbit potential, of Thomas
form, constructed from V", ', = V~ —Vz. More accurate-
ly,

V,",'„(neutron) = Vs+ Vv

=( Vs+ Vv)+( Vrs+ V7.v), (37)

proton wave functions. Analogous to Eq. (35), one finds
from Eq. (20) that

VTs =
—,'( Vs —Vg)
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FIG. 14. Sum of the isovector-scalar and isovector-vector po-

tentials V»(r) and VTV(r), respectively, for the nuclei used to
optimize the coupling constants.

FIG. 16. Neutron and proton potentials Vz(r)+ Vv(r) and
Vg(r)+ VP(r)+ Vc(r), respectively, for ' O.
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FIG. 17. Neutron and proton potentials Vs(r)+ Vv(r) and
Vg(r)+ Vf(r)+ Vc(r), respectively, for "Sr.

FIG. 18. Neutron and proton potentials V&(r)+ Vv(r) and
Vg(r)+ Vil(r)+ Vc(r), respectively, for ' 'Pb.

V,",'„(proton)= Vg+ Vf+ Vc

=( Vs+ Vv) (Vrs+ Vrv)+ Vc

V,"", (neutron) = Vs —Vv

=( Vs Vv)+( Vrs VTv), and

V,"", (proton) = Vg —Vf —Vc

=(Vs Vv) —(VTs Vrv) —Vc . —

(38)

(39)

(40)

Thus, the nonrelativistic combinations appearing in the
Schrodinger central neutron potentials for the nuclei of
set D are given by the sums of corresponding curves in
Figs. 12 and 14, whereas those combinations appearing in
the Schrodinger central proton potentials are given by
the differences of corresponding curves in Figs. 12 and
14, plus the Coulomb potential. Similarly, the nonrela-
tivistic combinations appearing in the Schrodinger spin-
orbit potential of Thomas form for neutrons are given by
the sums of corresponding curves in Figs. 13 and 15,
whereas these combinations appearing in the Schrodinger
spin-orbit potential of Thomas form for protons are given
by the differences of corresponding curves in Figs. 13 and
15, minus the Coulomb potential.

We show the Schrodinger-equivalent nonrelativistic
central neutron and proton potentials, Eqs. (37) and (38),
for the nuclei of set D in Figs. 16—18. For these nuclei,
the proton potentials range from ——50 MeV to ——80
MeV in depth, from Pb to ' 0, whereas the corre-
sponding neutron potentials range from ——70 MeV to
——90 MeV in depth. Clearly, the potentials for ' 0,
Fig. 16, do not have Woods-Saxon forms, whereas those
for Pb, Fig. 18, could at least be approximated by
Woods-Saxon forms. It is interesting to note from Table
VI that the Os, &2 neutron and proton levels for ' 0 are at
—41.413 and —37.270 MeV, respectively, and that for
~ospb the corresponding Os&&z levels [not included in
Table VI] are at —60.726 and —50.228 MeV. Thus, in
' 0 the bottoms of the wells are -45 MeV below the
lowest single-particle levels and in Pb the bottom of

the neutron well is -3 MeV below the lowest single-
particle neutron level and the bottom of the proton well
is —11 MeV below the lowest single-particle proton level.

We do not show the non-relativistic spin-orbit com-
binations, Eqs. (39) and (40), appearing in the
Schrodinger spin-orbit potentials of Thomas form be-
cause they are only very slightly different from the curves
shown for Vs —Vv in Fig. 13. That is, Eqs. (39) and (40)
are overwhelmingly dominated by their first terms. The
central magnitudes of Vz —Vv, approximately —725
MeV, together with the .magnitudes of their gradients
~'ll'( Vs —Vv)~, appear necessary to explain the large nu-
clear spin-orbit splittings that are experimentally ob-
served.

V. PREDICTIONS OF NUCLEAR GROUND STATE
PROPERTIES AND NUCLEAR MATTER

In this section we test our relativistic point coupling
model by comparing predicted and measured observables.
For this purpose we use the fixed set of nine optimized
coupling constants determined in Sec. IV and listed in
Table IV. None of the nuclei of set D, used to determine
the optimized coupling constants, is considered in this
section. At the end of the section we predict nuclear
matter properties with a subset of the coupling constants
of Table IV.

A. Choice of nuclei

As discussed in Sec. IIIB, the current status of our
model and corresponding compo. ter code constrains the
test nuclei to be (a) spherical nuclei with ground state to-
tal angular momentum J, =0, and (b) even-even closed-
she11 nuclei or closed-subshell nuclei in both proton num-
ber Z and neutron number 1V. We satisfied both (a) and
(b) by forming the intersection of two sets of nuclei:
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and

Set 1= Ieven-even nuclei with Jz, =0 and with ground state quadrupole deformations ~ez~ ~0.05I,

Set 2=nuclei with Z E I2, 6, 8, 14, 16,20, 28, 32, 38,40, 50, 58, 64, 76, 80, 82j

and with NE I2, 6, 8, 14, 16,20, 28, 32, 38,40, 50, 56, 64, 66,70, 82, 90, 100, 114,118,124, 126) .

TABLE VIII. Comparison of predicted and measured observables.

Nucleus

4He Calc.
Expt.
Diff.

E
(MeV)

27.77
28.30

—0.53

~charge

(fm)

2.137
1.681
0.456

Neutron
shell

aE'"'
S.0.

(MeV)
Proton

shell

gE(P)

(MeV)

'He Calc.
Exp.
Diff.

33.76
31.41
2.35

2.010
2.467'

—0.457

"He Calc.
Exp.
Diff.

33.98 2.031 Op 3.994

8C Calc.
Exp.
Diff.

26.06
24.78

1.28

3.039

14C Calc.
Exp.
Diff.

104.63
105.29
—0.66

2.568
2.56
0.008

Op 6.571

20C Calc.
Exp.
Diff.

116.38
119.14
—2.76

2.595 Op 5.503

22C Calc.
Exp.
Diff.

120.52
120.34

0.18

2.608 Op 5.609

14O Calc.
Exp.
Diff.

97.82
98.73

—0.91

2.763 Op 6.447

22p Calc.
Exp.
Diffa

162.70
161.87

0.83

2.730 Op 5.247 Op 5.524

24O Calc.
Exp.
Diff.

170.19
168.81

1.38

2.742 Op 5.577 Op 5.730

28O Calc.
Exp.
Diff.

176.41
165.91

10.50

2.814 Od 6.202 Op 4.771

Calc.
Exp.
Diff.

83.24 3.374 Op 5.386

22Si Calc.
Exp.
Diff.

135.25
134.30

0.95

3.215 Op 5.423 Op 5.185
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TABLE VIII. (Continued).

Nucleus
E

(MeV)
) charge

(fm)

Neutron
shell

gE(n)

(MeV)
Proton

shell

gE(P)

(MeV)

34S1 Calc.
Exp.
Diff.

284. 14
283.43

0.71

3.178 Od 7.176 Op 4.066

36S

34C

Calc.
Exp.
Diff.

Calc.
Exp.
Diff'.

305.84
308.72
—2.88

245.20
244.84

0.36

3.285
3.278
0.007

3.469

Od

Op

7.234

3.952

Op

Od

4.552

6.961

"Ca

48C

52Ca

Calc.
Exp.
Diff.

Calc.
Exp.
Diff.

Calc.
Exp.
Diff.

343.16
342.05

1.11

417.13
415.99

1.14

435.08
436.53
—1.45

3.451
3.465

—0.014

3.479
3.451
0.028

3.503

Od

Od

Od

6.848
6.3
0.548

5.874
3.6
2.274

6.000

Od

Od

Od

6.844
7.2

—0.356

6.138
4.3
1.838

6.133

58Ca Calc.
Exp.
Diff.

455.31
452.71

2.60

3.595 6.949 Od 5.221

60C

Ca

Calc.
Exp.
Diff.

Calc.
Exp.
Diff.

463.74

466.29

3.609

3.716

1p

1p

1.645

1.560

Od

Od

5.216

4.173

'Ni Calc.
Exp.
Diff.

351.41
347.56b

3.85

3.779 Od 5.953 Od 5.803

' Ni Calc.
Exp.
Diff.

481.85
483.99
—2.14

3.774
3.727'
0.047

Od 5.098 Od 5.207

Ni Calc.
Exp.
Diff.

518.84
526.85
—8.01

3.791
3.797

—0.006

Od 5.423 Od 5.388

Ni Calc.
Exp.
Diff.

575.30
576.83
—1.53

3 ~ 866 Of 7.200 Of 4.617

Ni Calc.
Exp.
Diff.

591.52
590.43

1.09

3.878 1p 1.735 Od 4.658

Ni Calc.
Exp.
Diff.

643.51
642.09

1.42

3.969 1.562 Od 3.731
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TABLE VIII. (Continued).

Nucleus
Eg

(MeV)
)charge

(fm)

Neutron
shell

gE(n)
S.0.

(MeV)
Proton

shell

gE(p)

(MeV)

Calc.
Exp.
Diff.

480.64
487.02
—6.38

3.956 Od 5.250 Od 5.455

82Ge

"Zr

Calc.
Exp.
Diff.

Calc.
Exp.
Diff.

692.45
702.36
—9.91

785.15
783.90

1.25

4.067

4.259
4.258
0.001

1p

1p

2.025

1.911
0.507
1.404

Od

1p

4.128

1.846
1.507
0.339

Sn Calc.
Exp.
Diff.

617.69 4.478 Of 5.819 1p 1.785

"Sn Calc.
Exp.
Diffa

656.66 4.478 1p 1.838 1p 1.799

100Sn Calc.
Exp.
Diff.

830.99
823.29b

7.61

4.496 1.677 1p 1.649

106Sn Calc.
Exp.
Diff.

885.70
893.87
—8.17

4.521 1p 1.552 1p 1.657

"4Sn Calc.
Exp.
Diff.

970.56
971.58
—1.02

4.601
4.602

—0.001

Og 6.921 1.505

116Sn Calc.
Exp.
Diff.

985.27
988.69
—3.42

4.610
4.627

—0.017

Og 6.851 1p 1.885

120Sn Calc.

Exp.
Diff.

1015.33

1020.55
—5.22

4.635

4.643
—0.008

1d 2.326 1p 1.672

132S Calc.
Exp.
Diff.

1104.45
1102.92
—1.53

4.721
4 775

—0.054

1d 2.185 1p 1.454

140Ce Calc.
Exp.
Diff.

1177.70
1172.71

4.99

4.887
4.911'

—0.024

1d 2.047 Og 5.899

146Gd Calc.
Exp.
Diff.

1206.24
1204.45

1.79

4.971
5.034'

—0.063

1d 2.330 Og 5.897

158O Calc.
Exp.
Diff.

1221.06
1214.89

6.17

5.191 1d 2.108 Og 5.303

200Os Calc.
Exp.
Diff.

1564.08
1574.66b
—10.58

5.459 2.241 Og 4.124
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TABLE VIII. ( Continued).

Nucleus
E

(MeV)
~ charge

(fm)
Neutron

shell

gE(n)

(MeV)
Proton

shell

202Os Calc.
Exp.
Diff.

1575.48
1585.70
—10.22

5.467 2p 0.526 Og 4.106

162Hg Calc.
Exp.
Diff.

1217.51 5.247 2.041 2.008

170H Calc.
Exp.
Diff.

1290.65
1302.17
—11.52

5.280 1.836 1d 1.948

204Hg Calc.
Exp.
Diff.

1604.77
1608.69
—3.92

5.492 2.421 1.672

206Hg Calc.
Exp.
Diff.

1617.82
1621.08
—3.26

5.499 0.378 1.768

164pb Calc.
Exp.
Diffa

1212.88 5.272 2.229 2.175

172pb Calc.
Exp.
Diff.

1290.50 5.302 1d 2.047 2.139

182pb Calc.
Exp.
Diff.

1412.60
1411.66

0.94

5.377 Oh 6.429 2.009

196pb Calc.
Exp.
Diff.

1539.99
1543.25
—3.26

5.457 OA 5.797 1.785

2oopb Calc.
Exp.
Diff.

1571.15
1576.41
—5.26

5.471 OA 5.718 2.060

206Pb Calc.
Exp.
Diff.

1621.36
1622.36
—1.00

5.504
5.490
0.014

2.506 1.869

'Interpolation between experimental data points for 'Li and Be from Ref. [26].
Calculated binding energy from Ref. [22].

'Extrapolation of experimental data point for "Ni from Ref. [26].
Extrapolation of experimental data point for "Sn from Ref. [26].

'Extrapolation of experimental data point for '4~Nd from Ref. [26].
'Extrapolation of experimental data point for "Cgd from Ref. [26].

For A ~ 16 we used Ref. [22] as the source of quadrupole
deformations (from fitting experimental ground-state
masses). Four of the nuclei chosen exceed the con-
straint

~ E2~ & 0.05 and instead lie in the range

0.050~ ~ez~ ~0.084. These are Ca, Ni, Ge, and
Hg. For A ( 16 the quadrupole deformations were ob-

tained from the literature or are unknown. Some of the
nuclei with A & 16 also have unknown deformation prop-
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erties. These are 2oC, ~~C, 2oSi, 6oCa 7oCa, Sn, oSn,

Hg, and ' Pb. For our present purpose we assume
that these are spherical nuclei.

The intersection of Set 1 and Set 2 yields a set of 58 nu-
clei within the ranges 2 ~Z & 82 and 4~ A ~208. Three
of these nuclei (' 0, Sr, and Pb) were used to deter-
mine the coupling constants to be tested (Table IV) and
are therefore excluded. One nucleus, doubly magic ' 0,
does not admit a bound-state solution with the coupling
constants of Table IV. This leaves 54 nuclei to test the
relativistic point coupling model.

B. Predicted observables

TABLE IX. Average absolute deviations' of predicted ob-
servables from measured observables for nuclei with 3 ) 10.

Observable
X

)charge
gE(n)

S.O.

aE,(P.)

Average absolute
deviation (5X)

2.783 MeV
0.021 fm

1.409 MeV
0.844 MeV

Number of cases
Nx

32
14
3
3

'Not including the observables for the nuclei used to optimize
the coupling constants.
h(sx) =(irx, )y, , ~x,".'„—x,'„',I.

Comparisons of predicted and measured observables
for 54 nuclei are given in Table VIII. The observables
chosen are the same as those chosen to optimize the cou-
pling constants (Table V), namely, the ground state bind-
ing energy, the root-mean-square charge radius, the ener-

gy splitting of the least-bound neutron spin-orbit pair,
and the same for the least-bound proton spin-orbit pair.
The average absolute deviations of the predicted observ-
ables from the measured observables for the nuclei of
Table VIII with A ) 10, 50 nuclei, are given in Table IX.
Finally, the predicted root-mean-square radii of the point
neutron and point proton densities, pz and P~, of all 54
nuclei are given in Table X.

While it is not expected that a mean-field approxima-
tion should be a viable approach for very light nuclei, it is
nevertheless of interest to see how such an approximation
breaks down in this region. We find for He that the ex-
perimental binding energy is reasonably well predicted
(8%), but that the rms charge radius is grossly under-
predicted (23%). For He, on the other hand, the experi-
mental binding energy is predicted rather well (2%), but
the rms charge radius is grossly overpredicted (27%).
Given these strong fiuctuations in calculated rms charge
radii for He and He, we conclude that the relativistic
point coupling model may be inappropriate for nuclei
with, for example, A ~10. For this reason the average
absolute deviations of Table IX are restricted to nuclei
with A ) 10. [Note that the center-of-mass correction to
the rms charge radius, which we have neglected, is al-
ways in the direction to reduce the value obtained from
Eq. (27)).

Table VIII shows that the observables for two very
well studied nuclei, Ca and Ca, are predicted reason-
ably well by our model. Their binding energies are pre-

Nucleus
(t2)1 /2

(fm}
( t2) 1/2

P

(fm}

4He
'He
"He
8C
14C

20C

22C

140
220
240
280
20S'

22Si

34sl

36S

34C

"Ca
Ca

52C

58C

60C

"Ca
4'Nl

Ni
Ni
Ni
Ni
Ni

60G,e
826e
907r
"Sn
"Sn
100S

106Sn

114sn
116S

120Sn

132S

140Ce

1466d
1580

2000s
2020

162Hg
170H

204Hg

206Hg

164pb

172Pb

82Pb

196Pb

200Pb

206pb

1.997
2.772
3.046
1.937
2.622
3.133
3.349
2.456
3.048
3.239
3.465
2.515
2.637
3.312
3.306
3.081
3.329
3.627
3.823
4.019
4.097
4.358
3.384
3.656
3.802
3.974
4.036
4.285
3.681
4.281
4.315
4.118
4.154

4.366
4.501
4.660
4.703
4.784
4.982
5.021
5.032
5.089
5.690
5.717
5.110
5.231
5.694
5.719
5.116
5.235
5.379
5.574
5.620
5.692

2.011
1.936
1.987
2.939
2.472
2.523
2.544
2.661
2.649
2.666
2.751
3.286
3.125
3.103
3.208
3.388
3.374
3.410
3.437
3.536
3.552
3.669
3.705
3.704
3.723
3.803
3.816
3.914
3.887
4.010
4.201
4.416
4.416
4.437
4.465
4.548
4.557
4.583
4.673
4.838
4.922
5.141
5.417
5.425
5.197
5.231
5.450
5.457
5a222
5.254
5.330
5.413
5.427
5.461

TABLE X. Predicted root-mean-square radii of point neu-

tron and point proton densities.
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dieted to within 1.2 MeV, their rms charge radii to
within 0.03 fm, and the spin-orbit splittings are predicted
to within about 0.5 MeV for Ca, and to within about 2
MeV for Ca. Turning to the corresponding rms radii of
the neutron and proton point densities in Table X, one
observes that the protons in Ca are, on average, 0.045
fm outside of the neutrons and that in Ca the neutrons
are, on average, 0.217 fm outside of the protons, in good
agreement with recent analyses of elastic pion scattering
experiments [31].

It is also interesting to note from Table VIII that the
exotic doubly magic nuclei 0, Ca, Ni, Ni, ' Sn,

Sn, and ' "Pb are not only bound, but appear to possess
reasonable ground state properties as well.

The average absolute deviations of the predicted ob-
servables from the measured observables for the nuclei of
Table VIII with A & 10 are given in Table IX. The aver-
age absolute deviation for the binding energies is about
2.8 MeV, which is quite respectable for a first attempt, we
believe, but nevertheless is a factor of three worse than
the most modern Schrodinger-equation based mass for-
mulas with many more constants (see Ref. [22], for exam-
ple). Part of the reason for not doing better may be the
severity of allowing orbital occupation probabilities of
only 0 or 1 in the present form of our program. On the
other hand, the average absolute deviation of the rms
charge radii is about 0.02 fm, a result that may be better
than we should expect given the same severe limitation
on orbital occupation probabilities. The average absolute
deviations in the spin-orbit splittings are more difficult to
assess because they are so few in number and because
they are so difficult to extract from experiment. Never-
theless, it is clear that values of about 1.4 MeV for neu-
trons and 0.8 MeV for protons are small enough to con-
c1ude that the correct magnitude spin-orbit force appears
naturally in the relativistic point coupling model. This
conclusion is reinforced by inspecting Table V.

Predicted rms radii of the point neutron and point pro-
ton densities, p~ and pv, are given in Table X. These rms
radii are useful in assessing the neutron or proton "skins"
given by their differences (r )„'~—(r )~ and

( r )~
—( r )„',respectively. We point out here the in-

teresting ranges represented for the isotopic sequences
Ca~ Ca, Ni~ Ni ' Sn~' Sn, and ' Pb~ Pb

(note that the Pb values are given in Table VII). For
example, the sequence [ Ca, Ca, Ca, Ca, Ca, Ca,'

Ca] begins with a proton "skin" of 0.307 fm and ends
with a neutron "skin" of 0.689 fm. The smallest "skin"
in the sequence, already mentioned earlier, is the proton
"skin" of 0.045 fm for Ca. Similarly, the sequence

j Ni, Ni, Ni, Ni, Ni, Ni] begins with a proton
"skin" of 0.321 fm and ends with a neutron "skin" of
0.371 fm. In this sequence, the smallest "skin" is the pro-
ton "skin" of 0.048 fm for Ni. Doubly magic ' Pb has
a predicted proton "skin" of 0.106 fm.

C. Predicted densities and potentials
for some representative nuclei

We show predictions of the neutron and proton point
densities p~ and pv, respectively, together with their sum
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FIG. 20. Neutron and proton point densities pf, (r) and Q(r),
respectively, for 'Ca. Their sum is the isoscalar-vector (baryon)
density pv(r) for Ca.
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FIG. 21. Neutron and proton point densities pf (r) and +(r),
respectively, for ' Ni. Their sum is the isoscalar-vector (baryon)
density pt (r) for Ni

FIG. 19. Neutron and proton point densities p~(r) and pz(r),
respectively, for Ca. Their sum is the isoscalar-vector (baryon)
density p&(r) for Ca.



46 NUCLEAR GROUND STATE PROPERTIES IN A. . . 1777

0.20

0. 15—

0. 10—

0.05

Vector densities for '"Sn

protons

CO

~ 0. 1

CL

"Ca
48C

"Ni
132Sn

~, M

0.3 » ) ( r i r
I

r i I
(

I I I
(

I I

Isovector scalar potentials

p pp i i i I i i & I

0 2 4 6

Radius (fm)

10

0.0 %a

I & i i I «& I

2 4 6 8

Radius (fm)

10

FIG. 22. Neutron and proton point densities p&(r) and

+lr), respectively, for '"Sn. Their sum is the isoscalar-vector
(baryon) density p&(r) for ' Sn.

the isoscalar-vector (baryon) density p~, for the four
representative nuclei, Ca, Ca, Ni, and ' Sn, in Figs.
19-22. The central vector density for Ca exceeds 0.18
fm, but falls off very fast to 0.16 frn at about 1.7 fm.
The point neutron density exceeds the point proton den-
sity except in the tail region where the converse is true.
In Ca a minimum exists in the vector density at about
1.5 fm, due primarily to neutron contributions. Here the
point neutron density exceeds the point proton density, as
expected, for all values of r. A minimum also exists in
the vector density for Ni, at about 1.3 fm, followed by a
rather substantial maximum at about 2.6 fm. This struc-
ture is due to comparable contributions from both the
point neutron and point proton densities. As in the other
N =Z nucleus Ca, the point proton density exceeds the
point neutron density in the tail region. The vector den-
sity for ' Sn has a shallow minimum at the origin and a
weak maximum at about 4 fm. However, the point neu-
tron and point proton densities show quite dramatic
structure with several minima and maxima, especially at
the origin where the neutron and proton densities are just

FIG. 24. Isovector-scalar potentials VTz(r) for Ca, Ca,
' Ni, and" Sn.

under a factor of two apart.
The predicted isoscalar-scalar potentials Vz, isoscalar-

vector potentials V~, isovector-scalar potentials V~, and
isovector-vector potentials VTv are shown in Figs. 23-25
for the same four representative nuclei. The behavior of
the isoscalar potentials is similar to those of Fig. 9, but it
is interesting to note that the magnitudes of the ' Sn po-
tentials, in the central region, are less than those of the
Of7&z shell nuclei shown. Also, the isoscalar-vector po-
tentials (and isoscalar-scalar potentials) for the Of7/2
shell nuclei shown, cross each other at radii located be-
tween 2.0 and 2.5 frn. The isovector-scalar potentials are
similar in overall magnitudes to those of Fig. 10, but the
structure of these potentials is highly specific to each nu-
cleus. The A'=Z nuclei, Ca and Ni, exhibit similar
behavior reflecting the slight dominance of the proton
point density over the neutron point density in the sur-
face regions and the converse in the interior regions. The
dramatic structure seen for Ca and ' Sn simply
represents the large difference between the neutron and
proton point densities for these nuclei, shown in Figs. 20
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FIG. 23. Isoscalar-scalar and isoscalar-vector potentials
Vz(r) and Vv(r), respectively, for Ca, Ca, Ni, and ' Sn.

FIG. 25. Isovector-vector potentials VTV(r) for Ca, 'Ca,
Ni, and ' Sn.
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FIG. 26. Neutron and proton point densities p v(r) and +(r),
respectively, for Ni. Their sum is the isoscalar-vector (baryon)
density pv(r) for Ni.

FIG. 28. Neutron and proton point densities pv(r) and +(r),
respectively, for 'Ni. Their sum is the isoscalar-vector (baryon)
density pz(r) for Ni.

and 22 [see Eq. (35}]. An entirely similar set of remarks
holds for the isovector-vector potentials shown in Fig. 25.
Note, moreover, that the overall magnitudes of the
isovector-vector potentials are similar to those of Fig. 11
and, again, the isovector-vector potentials dominate the
isovector-scalar potentials by a factor of approximately
50.

D. Predicted densities and potentials
for some exotic nuclei
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CD
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0.05

Vector densities for 'ooSn

s + protons

In this subsection we consider the four exotic doubly
magic nuclei Ni, Ca, Ni, and ' Sn. Little is known
about these nuclei, including whether or not they are
bound. Our calculations indicate that they are bound.
From Table VIII we extract the predicted values of the
binding energy per nucleon, Ez /3, for the four, namely,
7.321, 6.661, 8.250, and 8.309 MeV, respectively.

Predicted neutron and proton point densities pz and

)orv, respectively, together with their sutn the isoscalar-
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FIG. 29. Neutron and proton point densities pv(r) and +(r),
respectively, for ' Sn. Their sum is the isoscalar-vector
(baryon) density p~(r) for '~Sn.
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FIG. 27. Neutron and proton point densities p v(r) and +(r),
respectively, for Ca. Their sum is the isoscalar-vector (baryon)
density p &(r) for Ca.
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vector density pv, are shown for the four exotic nuclei in

Figs. 26-29. Likewise, the predicted isoscalar-scalar po-
tentials Vz, isoscalar-vector potentials Vv, isovector-
scalar potentials VTz, and isovector-vector potentials VTv
are shown for the same four nuclei in Figs. 30-32. In
particular, Figs. 31 and 32 demonstrate the effects of
large changes in the neutron excess (nuclear isospin) upon
the magnitudes and shapes of the isovector potentials

Vzz and Vzv. In this example, the neutron excess X —Z
ranges from —8, for Ni to +30, for Ca.

It is instructive to compare the rms radii of the point
neutron and point proton densities for these nuclei, from
Table X, with the actual point densities themselves
shown in Figs. 26-29. In particular, the much larger
neutron "skin" of Ca in comparison with that of Ni
(both nuclei with N =50) is explained, that is, the eight

Of7/7 protons in Ni are mainly responsible for the
difference, as the two point neutron densities are almost
the same.

The differences observed between the point neutron
and point proton densities for Ni are responsible,
through Eq. (35), for the relatively large negative peaks in

the isovector potentials for this nucleus, shown in Figs.
31 and 32. The isoscalar potentials, Fig. 30, are similar
to those shown previously. Note, however, the
differences in slope for the isotones Ca and Ni.

E. Nuclear matter

As a final test in our first study of the relativistic point
coupling model we calculate some of the properties of sa-
turated nuclear matter, that is, at the minimum in the
equation of state for nuclear rnatter. Analogous to Eqs.
(21)—(23) for finite nuclei, we now consider all diagonal
elements of the energy-momentum density tensor T„
and calculate the energy density of nuclear matter, 8, as
a function of nuclear matter density [14]. The minimum
in this equation of state, 8(p~~}, is the saturation point,
the so-called "ground state" of nuclear matter.

We use our optimized set of coupling constants from
Table IV and consider nuclear rnatter with no Coulomb
forces. Accordingly, we set 5&=5v—=0.0 and are left
with the remaining seven coupling constants from the
table, namely, as, Ps, ys, a v, y v, ars, and arv. In addi-
tion, for these calculations we define the nucleon mass m
as

m =
—,'(m„+m )=938.926 MeV . (41)

PNM kF ~

3

6m.
(42}

where the spin-isospin degeneracy v has the value 4 for
nuclear matter. The magnitude of the energy density 8
at the minimum (binding energyinucleon) is 16.126 MeV.
We calculate the compressibility of nuclear matter, K,
with the relation

=2a'K =kF 8(kF ),' ak,'
(43)

evaluated at the minimum and find K=264.032 MeV.
We also calculate the symmetry energy, a~, using the re-
lation

1 I)a4= — 8(pv pv}2 t)5

where

pv v

Pv+Pv

(44)

(45)

TABLE XI. Properties of saturated nuclear matter.

Quantity

Fermi wave number kF
Density p~~
Binding energy/nucleon 6
Compressibility JC

Symmetry energy/nucleon a4
Effective mass m /m

Magnitude

1.299 fm
0.148 fm
16.126 MeV

264.032 MeV
37.194 MeV

0.575

We find the minimum in 8(p&M ) at pzM =0.148 fm
which corresponds to a Fermi wave number for the nu-

cleon of 1.299 fm ' through the relation
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and the derivative is calculated under the constraint
pv+Pz=const=2p&M. We find a4=37. 194 MeV. Last-
ly, we determine the effective nucleon mass in the medi-
um, m*, through the relation

m*=m + Vs(as Ps ys) (46)

and find m */m =0.575. All of the results here are sum-
marized in Table XI.

In comparing these results with other relativistic mean
field calculations of saturated nuclear matter, we find
quite good agreement. In particular, all properties in
Table XI, including the compressibility I(, agree well
with the results of Reinhard [11]for nonlinear scalar field
calculations performed with his own meson parameters
as well as with meson parameter sets obtained from
Boussy et al. [4,5]. The nuclear matter properties in
Table XI are also consistent with those determined by
Horowitz and Serot [3], except for the compressibility E
where their value is about double ours.

VI. DISCUSSION AND CONCLUSIONS

We have investigated a new relativistic point coupling
model that is comprised of mean nucleon fields where the
corresponding densities are of scalar and vector character
each having isoscalar and isovector components. No ex-
plicit mean meson fields appear in the model. The nine
coupling constants of the model have been determined by
reproducing measured ground state observables for three
closed-shell nuclei, simultaneously, in a nonlinear least-
squares adjustment algorithm. The three nuclei chosen
were doubly magic ' 0 and 208Pb, and singly magic 88Sr,

which is closed subshell in proton number. The predic-
tive power of the model has been tested by calculating the
same observables, and others, for 54 other closed shell
nuclei and by calculation of a number of properties of sa-
turated nuclear matter. The results are better than we
had hoped and they provide incentive to continue develop-
ment of the model.

Specifically, the model in its present form predicts the
ground state binding energy and rms charge radius well,
particularly the latter, and it obtains the correct spin-
orbit splitting in some cases, while at least obtaining the
correct magnitude in others. Part of the problem with
this latter observable is that it is difficult to extract from

experiment except in some isolated cases (' 0 and Pb,
for example). The rather good agreement with the results
of relativistic mean meson field approaches for the prop-
erties of saturated nuclear matter was obtained after the
coupling constants of Table IV were determined, that is,
our nuclear matter calculations were performed without
any parameter adjustment whatsoever.

We have learned that the mean nucleon fields generat-
ed by this relativistic point coupling approach may be
inappropriate for finite nuclei with A & —10, based upon
calculations for He and He. We have also learned that
the nine coupling constants of the model can possibly be
reduced to eight, that is, it may be possible to set the
isovector-scalar coupling constant, nT&, identically to
zero. This is based upon the observation that aTz is only
-2% of the magnitude of the isovector-vector coupling
constant a „V. Insofar as the isovector-scalar and
isovector-vector mean nucleon fields correspond to the
mean meson fields for the 5 and p mesons, respectively,
setting aT&=0 is equivalent to ignoring 5 meson ex-
change, which is precisely what is done in most of the
successful mean meson field approaches.

In our future work we will first introduce orbital occu-
pation probabilities based upon the BCS pairing ap-
proach [32], instead of using the fixed occupation proba-
bilities of 0 and 1. This will broaden the range of nuclei
that can be addressed and should improve our predictive
capability. Second, we intend to introduce the deforma-
tion degrees of freedom, which further broadens the
range of nuclei that can be calculated, but requires the
construction of an entirely new computer code. Finally,
we hope to include an explicit treatment of exchange pro-
cesses.

ACKNOWLEDGMENTS

We are grateful to J. Friar, T. Goldman, P. Manakos,
J. R. Nix, P.-G. Reinhard, and D. Strottman for stimu-
lating discussions. Two of us (B.A.N. and T.H. ) wish to
thank the Theoretical Division of the Los Alamos Na-
tional Laboratory for their hospitality and support dur-
ing our respective visits. This work was supported by the
U.S. Department of Energy, the Technische Hochschule
Darmstadt, and the Deutsche Forschungsgemeinschaft.

[1]R. Brockmann and W. Weise, Phys. Rev. C 16, 1282
(1977).

[2] B. D. Serot and J. D. Walecka, Phys. Lett. 87B, 172
(1979).

[3] C. J. Horowitz and B. D. Serot, Nucl. Phys. A368, 503
(1981).

[4] A. Bouyssy, S. Marcos, and J. F. Mathiot, Nucl. Phys.
A415, 497 (1984).

[5] A. Bouyssy, S. Marcos, and P. van Thieu, Nucl. Phys.
A422, 541 (1984).

[6] B. D. Serot and J. D. Walecka, in Advances in Nuclear
Physics, edited by J. W. Negele and E. Vogt (Plenum, New
York, 1986), Vol. 16, p. 1.

[7] P.-G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, and J.

Friedrich, Z. Phys. A 323, 13 (1986).
[8] A. Bouyssy, J.-F. Mathiot, Nguyen Van Giai, and S. Mar-

cos, Phys. Rev. C 36, 380 (1987).
[9] P. G. Blunden and M. J. Iqbal, Phys. Lett. 196B, 295

(1987).
[10]M. Rufa, P.-G. Reinhard, J. A. Maruhn, W. Greiner, and

M. R. Strayer, Phys. Rev. C 38, 390 (1988).
[11]P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).
[12]Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. 19$,

132 (1990).
[13]P. Manakos and T. Mannel, Z. Phys. A 330, 223 (1988).
[14] C. Itzykson and J. Zuber, Quantum Field Theory

(McGraw-Hill, New York, 1980), p. 22.
[15]P. Manakos and T. Mannel, Z. Phys. A 334, 481 (1989).



46 NUCLEAR GROUND STATE PROPERTIES IN A. . . 1781

[16]B. A. Nikolaus, D. G. Madland, and P. Manakos, Bull.
Am. Phys. Soc. 35, 976 (1990).

[17]T. Hoch, B. A. Nikolaus, and D. G. Madland, Bull. Am.
Phys. Soc. 35, 1651 (1990).

[18]P.-G. Reinhard, private communication.
[19]J. L. Friar and J. W. Negele, in Advances in Nuclear Phys

ics, edited by M. Baranger and E. Vogt (Plenum, New
York, 1975), Vol. 8, p. 219.

[20] J. R. Ford, W. R. Boland, J. Chow, V. Faber, P. O.
Frederickson, T. L. Jordan, T. A. Manteuffel, and A. B.
White, Jr., Common Los Alamos Mathematical Software
Compendium, Los Alamos National Laboratory internal
document (1987).

[21]J. J. More, in Numerical Analysis, edited by G. A. Watson
(Springer-Verlag, New York, 1977), p. 630.

[22] P. Moiler and J. R. Nix, At. Data Nucl. Data Tables 39,
213 (1988).

[23] R. Kozack and D. G. Madland, Phys. Rev. C 39, 1461

(1989).
[24] A. Bohr and B. Mottelson, Nuclear Structure {Benjamin,

New York, 1969), Vol. 1.
[25] G. Audi, Midstream Atomic Mass Evaluation, private

communication.
[26] H. deVries, C. W. Jager, and C. deVries, At. Data Nucl.

Data Tables 36, 495 (1987).
[27] X. Campi and D. W. Sprung, Nucl. Phys. A194, 401

(1972).
[28] C. M. Lederer and V. Shirley, Eds. , Table of Isotopes, 7th

ed. (Wiley, New York, 1978).
[29] M. R. Schmorak, Nucl. Data Sheets 43, 383 {1984).
[30]R. Machleidt, in Relativistic Dynamics and Quark Nuclea-r

Physics, edited by M. B. Johnson and A. Picklesimer (Wi-
ley, New York, 1986), p. 71.

[31]A. Hayes, private communication.
[32] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.

108, 1175 (1957).


