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We report variational calculations of the ground state of ' 0 with realistic two- and three-nucleon in-

teractions. The trial wave function is constructed from pair- and triplet-correlation operators acting on

a product of single-particle determinants. These operators include central, spin, isospin, tensor, spin-

orbit, and three-nucleon potential components. Expectation values are evaluated with a cluster expan-

sion for the noncentral correlations; terms in the expansion are evaluated exactly using Monte Carlo in-

tegration. The optimal trial function is obtained by minimizing the energy through the four-body cluster

level. Results are reported for the ground-state binding energy, nucleon density and momentum distri-

butions, charge form factor, and longitudinal structure function. They are also compared with the avail-

able results for few-body nuclei and nuclear matter with the same interactions.

PACS number(s): 21.60.—n, 21.10.—k, 25.30.—c, 27.20.+n

I. INTRODUCTION

=T+u+ V, (1.2)

and u; and V;.k are two- and three-nucleon potentials
that fit scattering data and few-body ground-state proper-
ties. Exact solutions, obtained by Faddeev [1] and
Green's-function Monte Carlo (GFMC) [2] methods, are
available only for A ~ 5 nuclei at present. These calcula-
tions show that realistic u, - give only -85% of the exper-
imental binding energy and attribute the rest to V;k.
Variational Monte Carlo (VMC) calculations [3] of the
few-body binding energies are accurate within 4/o. The
infinite-body nuclear matter problem has been approxi-
mately solved with two-nucleon potentials by Brueckner-
Bethe [4] methods and with two- and three-nucleon po-
tentials by variational [5] methods, but the accuracy of
these calculations is not firmly established, and the agree-
ment with empirical data is only at the 10% level.

A major problem in nuclear physics is to understand
how nuclear structure comes about from the underlying
interactions between nucleons. Elastic nucleon-nucleon
scattering data can be accurately described with a variety
of "realistic" two-body potentials. All these realistic po-
tentials have large spin, isospin, and tensor terms. In ad-
dition, three-nucleon potentials are significant on the
scale of the binding energy. Consequently, many-body
calculations of nuclear ground states are extremely chal-
lenging, and many fundamental issues, including the sta-
bility of light nuclei against breakup and the origin of the
spin-orbit splitting in the shell model, have not been ad-
dressed satisfactorily to date.

%e want to solve the many-body Schrodinger equation
00=F.+ for arbitrary size nuclear systems, where

$2H=g V;+ g v;+ g V~k
i i&j i &j&k

The first detailed calculations of larger nuclei with
realistic interactions were made by Kummel, Luhrmann,
and Zabolitzky [6], who studied He, ' 0, and Ca using
the coupled-cluster method. Their most sophisticated
calculation, designated Faddeev-Brueckner-Hartree-
Fock-4, retained all two- and three-body and some four-
body cluster contributions. In this approximation they
obtained ground-state energies for the Reid [7] potential
of —6.0, —5.0, and —6.0 MeV/nucleon, respectively, for
He, ' 0, and Ca. The experimental values are —7.1,—8.0, and —8.6 MeV/nucleon. Their value for He is in

good agreement with a variational result of —5.9
MeV/nucleon and an exact GFMC result of —6.1

MeV/nucleon. However, ' 0 is not stable with respect to
breakup into four He nuclei with this interaction, while

Ca is barely stable. They also made some calculations
with an early version of the Tucson-Melbourne [8] three-
nucleon potential, which lowered the binding energies to
—8.2, —7.2, and —8.1 MeV/nucleon, leaving ' 0 still
unstable by 1 MeV/nucleon. Further, their Vijk was
averaged over the third particle to make an effective
density-dependent two-nucleon potential, and this has
since been shown to be a poor approximation [9].

The first VMC calculation of ' 0 was made by Carlson
and Kalos [10], but they used a semirealistic version of
the Reid potential without V; k and had large sampling
errors. More recently, we reported initial results for a
variational method using a cluster expansion with Monte
Carlo integration (CMC) for evaluating expectation
values [11]. These studies have been made for a realistic
Hamiltonian containing the Argonne v, 4 two-nucleon
[12] and Urbana VII three-nucleon [13] potentials. The
present paper is an updated and more complete report of
these studies.

The interactions and the variational wave function are
described in Sec. II; the cluster expansions and the Monte
Carlo methods are presented in Secs. III and IV, respec-
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tively. We have used three different cluster expansions,
and their results are compared in Sec. V. Sections VI and
VII give the results obtained for ' 0 and compare them
with those for the few-body nuclei and nuclear matter.
The one- and two-body densities, charge form factor,
momentum distribution, and longitudinal structure func-
tion, calculated from the optimum wave function, are re-
ported in Sec. VIII, and we conclude with Sec. IX.

II. INTERACTIONS AND TRIAL FUNCTIONS

U,
= g v (r, )0,"",

p =1,14

where

(2.1)

The Argonne v&~ nucleon-nucleon potential [12] is
written as a sum of operator terms:

O,J' "= l, ~, r ) o, o. ,
.(cr; cr, )(~; ri), S;, , S;,(~; ~, ), L S, L S(r) rj),

L', L'(r, r, ), L'(o, o, ), L'(cr, cr, )(~, r, ), (L S)', (L S)'(r, r, ) . (2.2)

1J 4

X,i
= Y ( r,) )cr, .o.i+ T„(r; )S;

(2.3)

(2.4)

where Y„(r) and T (r) are the Yukawa and tensor Yu-
kawa functions with a cutoff.

The Urbana VII three-nucleon potential [13] is a sum
of long-range two-pion-exchange and short-range repul-
sive parts:

2.n. R
~;,J;

= V;,~+~,k

V k=A g([X,, X ][tr7;, ~, r„]
cyc

+ ,'[X;,,X k—][7)) Ti) T; rk]),

V„k = U g T„(r,, )T (r k ) .
cyc

(2.5)

(2.6)

(2.7)

The X; and T (r) are the same as in Argonne v, ~, and
the constants 3 and U were adjusted to give a good
overall fit to the binding energies of few-body nuclei and
nuclear matter in earlier variational calculations. The
protons also interact with each other with a Coulomb po-
tential calculated with a dipole proton charge form fac-
tor.

One feature of Argonne v, 4 is that the expectation
vaIue of the first six operators in v, is much larger than
that of the remaining part. Including Urbana VII, the
ordering of the expectation values in nuclear ground
states is given by

(For convenience, we sometimes refer to these operators
by the abbreviations c, ~, cr, o.~, t, t~, b, b~, q, q~, qo. ,
qo~, bb, and bbr )Othe. r potential models, such as the
Paris [14] and Nijmegen [15] models, can be written in a
similar form, but use V operators instead of, or in addi-
tion to, the L operators. The long-range part of Ar-
gonne v14 is given by the usual one-pion exchange

Hamiltonian gives —136, —30.5, —8.9, and +0.14 MeV,
respectively, for the above expectation values. This is not
true for all interactions; e.g. , in He with Nijmegen v, ,

the last term in Eq. (2.8) has an expectation value of —14
MeV. The Nijmegen and Paris v,J have operators
Of~

' with V instead of the L in Eq. (2.2). Hence the
0; ' terms in these models give large contributions
via the dominant I =0 partial waves, whereas in Argonne
v, the 0; ' are zero in l =0 waves.

We assume that a good variational wave function for
the ground state of a closed-shell nucleus can be ex-
pressed in the form of a product of two- and three-body
correlation operators acting on a Jastrow wave function:

~%„)= p(1+U,,„) Sg(1+U,J) ~e, ), (2.9)

II f, (r;, ) &I+& .
i(j

(2.10)

1
R, =—gr, , (2. 12)

we make the 4 translationally invariant.
For ' 0 and Ca, N is conveniently expressed as a

product of four determinants D „one each for spin up
and down, neutrons and protons:

Here U; k and U, are operators containing the spin and
isospin of particles ij k and ij, respectively, 1 and A are
symmetrization and antisymmetrization operators, f, (r,~)
is a central pair-correlation function, and 4 is an
independent-particle wave function.

The ground-state wave function should be translation-
ally invariant. The two- and three-body correlations are
functions of the interparticle distances and, hence, satisfy
this condition. By writing the one-body orbitals in 4 as
functions of

(2. 1 1)

U (r, )Op~
~4) =Dt D( Dt„D)„. (2.13)

p=1, e

v (r,, )Or)
p =7, 14

(2.8)

In He, for example, a variational calculation with this

Each determinant contains A /4 nucleons, and we can as-
sume that D& contains nucleons 1 to A /4, D& has nu-
cleons A /4+1 to A /2, etc. Then. A~4) in Eq. (2.10) is
a sum over all partitions of the A nucleons into four
groups of 2 /4 nucleons, the sign of each term being such
that A

~
4 ) is antisymmetric.
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In ' 0 each determinant could be constructed from one
Is (goo) and three lp (P& ) wave functions, where

and

P,=p, =pb =Pb.=P. (2.24)

P( (r)=&((r)&( (r) . (2.14)

However, any set of orthogonal linear combinations of
these functions will give the same determinant. In Monte
Carlo calculations, it is more convenient to use the real
functions

(2.25)

In variational calculations of few-body nuclei, it has
proven beneficial to modify the U; by a product of
three-body correlation factors [17]:

p, (r) =x/r,

p (r)=y/r,

p, (r) =z/r,

(2.15)

(2.16)

(2.17)

U) g f3(r, ;rk, rk. )U;
kWi,j

f3(rq', rk, rjk ) =1—t
ijk

exp( t 3R—;1k ),

(2.26)

(2.27)

instead of the complex Y& 's.
In the present work, the radial wave functions X&(r }

are obtained from the bound-state solutions of a nucleon
of mass m bound to a nucleus of mass (A —1)m by a
Woods-Saxon wine-bottle potential

(2.18)

The parameters V„R„a„a„andp, of V(r) are deter-
mined variationally.

Each operator in U;. can induce a corresponding corre-
lation. However, since the dominant features in the
nucleon-nucleon phase shifts can be reproduced with a U;.

containing only the p=1 —8 terms, a reasonable choice
for the pair correlation operator U; is

R;qk =r;q+r;k+rjk . (2.28)

The functions f3(r;;r,k, r~k) reduce the spin-isospin
correlations of nucleons i and j when a third nucleon k
comes close to both. This modification of U," is also used
in the present study of ' 0, and it contains the variational
parameters t, , t2, and t3.

The U,"k is meant to represent the triplet correlations
induced by the three-nucleon interaction V; k. The form

UIjk =&~]jk (2.29)

Y (r)=(1—e " )e '/x, (2.30)

suggested by perturbation theory, is used. Here V,"k is
the same as V~k [Eqs. (2.5)—(2.7)], except for the range b'
of the cutoff function in Y (r) and T„(r}:

J= & P.u. ("J) 'J.
p=2, 8

(2.19) T (r)= 1+—+ (1—e " )Y (r),—b'r2

X
(2.31)

v; = g a~v~(r;~)O/J',
p =1,14

(2.20)

to the energy of infinite nuclear matter at Fermi mornen-
tum kF, with the boundary conditions

The eight pair-correlation functions f, (r) and uz(r)
(p =2—8) are obtained by solving a set of Euler-Lagrange
equations [16) which minimize the two-body cluster con-
tribution of a quenched potential:

(2.32)

The parameters c and b' are determined variationally.
In nuclei with A & 5, only the terms linear in U,"k have

been kept in the calculation of the wave function. This
corresponds to using an "independent-triplet" (IT) prod-
uct of 1+U,"k in the variational wave function. The IT
product is defined like the independent-pair (IP) product
[18],

f,(r) d)=1,
up(r )d)=0,

for p =~, o., o.~, b, and b~,

u (r)d, )=0,

(2.21)

(2.22)

(2.23)

= 1+ g U,"„+—,
'

i&j&k
UijkU j k+

i&j &k
i'& j'&k'Wi,j,k

(2.33}
for p=t and tr. The functions f,(r) and u (r) are re-
quired to obtain their asymptotic values, at d or d„
smoothly with zero first derivatives. The a =1 for p =c,
q, bb, and bb~, and ap =a for all other p. Thus the varia-
tional parameters in the pair-correlation functions are the
healing distances d and d„ the Fermi momentum of nu-
clear matter kF used in the Euler-Lagrange equations, the
parameter a in V, and the strengths p for p=2 —8. In
practice, the number of P~ parameters is reduced by as-
suming that

and it is much simpler to use. Approximating the sym-
metrized product of 1+U, by an IP product has a rela-
tively small e6'ect on the energies of few-body nuclei, and
hence the IT product of 1+U;jk could be an excellent ap-
proximation.

III. CLUSTER EXPANSION

We wish to evaluate expectation values of various
operators for trial functions of the form given by Eq.
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(2.9). In particular, we need to evaluate the energy expec-
tation value

&q, IHIP', &

(3.1)

and vary 4, to minimize it. The optimum 4, can then
be used to evaluate other quantities of interest.

Evaluation of expectation values with the 4, is numer-

ically difficult because of the summation over the discrete
spin and isospin indices. The %'„can be represented as a
vector of

A
N=2 z (3.2}

spin-isospin components f„(R), where R=(r„.. . , r„)
is a given spatial configuration; the 1(„are the amplitudes
of states with definite cr, and ~, for each nucleon. The
large noncentral operators in the nuclear interaction can
produce significant contributions from relatively small

The number N grows very rapidly with A and Z,
e.g., N=24, 96, 1280, and 843448320 for H, He, Li,
and ' 0, respectively. Monte Carlo (MC} integration
methods [17]have been developed for use in few-body nu-

clei that sample the spatial configuration R and order of
operators in the symmetrized product of Eq. (2.9) while

performing a complete summation over the N discrete
spin-isospin components. However, this complete sum-

mation becomes impossibly expensive for A )8.
The 3(A —1)-dimensional spatial integration implied

in the expectation value (3.1) does not pose any serious
difficulty in a MC calculation. For example, VMC calcu-
lations of drops of Fermi-liquid He atoms with A 240
have been performed [19]. These calculations were possi-
ble because the interaction between He atoms is indepen-
dent of spin, and hence one can assign particles 1 to A /2
to be spin up and particles A /2+ 1 to A to be spin down;
these assignments persist because the correlations and in-
teractions do not flip spins.

We can expand the &'P, IHI%'„& and &'Ii„l+„& accord-
ing to the number of nucleons connected by the spin-
isospin correlations U, and U; k and obtain a cluster ex-
pansion for E„. This cluster expansion is probably much
better behaved than the conventional expansions [20] be-
cause it treats exactly all the exchanges and central corre-
lations between the A nucleons. In the conventional
cluster expansions, one also expands in powers of
f, (r) —1 and does not necessarily keep all exchange
terms. The present cluster expansion is obtained by fol-
lowing the methods developed in Ref. [20] for nuclear
matter. However, there are many significant differences
as discussed below.

Because there are many ways of partitioning the A nu-
cleons into four groups of A/4 nucleons, the l+i & and
lq', & contain a very large number of terms. However,
since 0 is a symmetric operator,

&q, lHlq, &

(3.3)

where
I gR & is not fully antisymmetric; it is defined as

g(1+U;, } &g(I+U;, ) Pf, (;, ) IC'&, (3.4)

without the A in 4, of Eqs. (2.9) and (2.10).
Consider, for example, the expectation value of a symmetric one-body operator:

(3.5)

The N and D can be expanded as a sum of n-body contributions:

N= g n + g ni+ g niik+ 2 niik+ ' ' ' +n12 A

i&j i' &k i &j&k

D=1+ g d + g d(ik+ g dik(+ d~~. . . „.
(3.6)

(3.7)

i &j&k i &jlk&1
i &k

The expectation value & X & is defined as

&@IA Q; f,(;, ) x g;„f,(;,} I@&
&X&= 2«I g;„f,(;, )

(3.8)

and the contributions n; . . and d; . . are obtained as

n, =&o, &,

n,i =&(1+Uti)(O, +Oi)(1+ U,i) & n, ni- —

n, ik
=

& ( 1+U i, )0, ( 1+U k ) &
—n, ,

(3.9)

(3.10)

(3.11)
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n,jk —
J + jk +Oj+Ok, Jk +,~ n; jk +n,j+n;

CPC CPC CgC

d;. =((1+U; )(1+U;.))—1,

(3.12)

(3.13)

etc. In the CMC method developed in the present work,
the expectation values n,-, n;- . . . and di, d,-k . . . are calcu-
lated. The operators in the expectation value n,".. . I or
d;~. . . I contain only the spin and isospin of the particles
ij I. The spins and isospins of the other particles are
unchanged and hence can be essentially ignored. If
ij 1 are in a single determinant D, in ~4), only the
term (4~ in (@~A contributes and the rest can be ig-
nored. If i is in D, and j 1 are in D, in ~4), then
we need to consider only the direct term (4~ and those
obtained by exchanging i with j 1 in (@~A. For these
reasons it appears possible, with currently available com-
puters, to calculate expectation values n;, . . . I and d;, . . .

&

containing up to five nucleons, though in the present cal-
culation we stop at four-body terms. We again em-
phasize that every term in the cluster expansion contains

=pc;+ gc;, + g c;,k+ g c,,„+
1 i (j i&j &k i&j(k

(3.14)

are obtained from the equation

gc;+ $ cJ+ D=N (3.15)

by equating terms that contain the same particles:

the complete product of central correlations and hence is
a 3( A —1)-dimensional integral.

The expansions (3.6) and (3.7) for N and D are diver-
gent. Convergent linked cluster expansions

(q, ~g, o, ~q~)

c;=n;,
n;,

—(c, +c, )d;
j

ni jk cidjk
c 1+djk

n,,„—P,„,[c,d,,„+(c,, +c„,, )(d,„+d)„+diJk )]
1+ g,„,d; +d, k

(3.16)

(3.17}

(3.18)

(3.19)

Terms of type c; k, c,"ki. . . do not appear in the con-
ventional cluster expansions in which one defines an h,"
such thai

(1+U; )f, (r; )=1+6; (3.20)

The conventional expansions are similar to the present
except that the U; get replaced by h," and the expecta-
tion values, denoted by (X) in Eq. (3.8), do not contain
products of the f, 's. In this case, n; Jk [Eq. (3.11}]con-
tains two disconnected integrals n,- and d k, and hence
c;~k =0. Because of the products of f, (r,") in all the ex-
pectation values, there are no disconnected diagrams in
the present expansion; terms such as c; .

k are small be-
cause of large cancellation between n,. k and cid k, but
they are finite. They represent parts of contributions of
clusters with more than three nucleons in the convention-
al expansions. We will refer to these terms as semifactor-
izable.

The ~4) is a product of four determinants in which
particles 1 —4, 5 —8, 9-12, and 13-16 are, respectively,
p 1, p l, n 1, and n t, , while (4 ~A is fully antisymmetric.
Thus the expectation values

ij e ~ ~ ( dp J r ~ ~d" (3.22)

npfpf np$p$ nn fn f

npypg nnyn&

ping p$n J

ptnl pint .

(3.23)

(3.24)

(3.25)

(3.26}

The above equations present a general framework to
expand E„. We have considered three different expan-
sions which differ only in the treatment of the antisym-
metrization. In the first cluster expansion, called CEA,
we use the average values ofn, . . . and d

I l J J i C' J j
to obtain the cluster contributions. The c; . . . also de-
pend only upon o;~;,o.J.~j . and may be considered as

when i and i' belong to the same determinant. In MC
calculations we can average over these identical expecta-
tion values to reduce sampling errors. For example,
A(A —1)/2 values of n; (i (j) are calculated, but in a
nucleus such as ' 0, in which N =Z and the effects of the
Coulomb potential on the wave function are neglected,
there are only four different n, 's:

ij . . . I ni'j . . I (3.21) co'-r, u
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The second cluster expansion, called CEB, has the fol-
lowing motivation. The expectation values n, . . .

&
and

d, &
calculated with the full A ~4), in place of ~4&) in

Eq. (3.8), do not depend upon the particle numbers

ij - - . l. In fact, they are given by the average of n, -. . .
&

and d; . . . &, respectively, over all ij . . - I. For example,

2 (3.27)

(+, l~' g, „f,(;, ) X g...f,(;, )

(@,I Q, „f,(,, )

(3.28)

@,=Pi(xi)02«z } (3.29)

(3.30)

In CEB the cluster contributions are calculated with the
n and d.

Every cluster contribution of CEA or CEB retains the
effect of spatial correlations f, (r, )a"nd exchanges be-
tween all the 3 nucleons in the nucleus. This can be
rather easily achieved since the gf, (r,~) and the deter-
minants can be very efficiently computed. Most of the
computation effort in the present calculations goes into
evaluating the matrix elements of the products of spin,
isospin, and tensor operators in U; and U,"k.

The third cluster expansion, called CEC, is obtained by
keeping only the exchanges between particles ij / in
the evaluation of d, . . . .

&
and n, . . . &. The CEC expecta-

tion values are defined as

computed without separating their semifactorizable con-
tributions.

The total n-body cluster contribution C„ to the expec-
tation value is obtained from the sum

C„= ci i i
1 2 n

(3.32)

which includes the semifactorizable terms. The semifac-
torizable terms give large contributions to the Monte
Carlo variance of c; . . . k. They are, however, much
easier to calculate, and so, in order to calculate the n-

body cluster contribution in an optimum fashion, it is
efficient to sample the semifactorizable terms more often
than the others. In order to get comparable contribu-
tions from c; k& and the semifactorizable terms to the
sampling error of C4, four times more configurations
were needed in the present work to calculate the four-
body semifactorizable terms.

The statistical errors in C„Cz, C3, and C4 are corre-
lated because the contributions of larger clusters are ob-
tained by subtracting those of the smaller subclusters via
Eqs. (3.10)—(3.12) and (3.17)—(3.19). Therefore the vari-
ance in the sum C& +C2+ C3+ C4 is smaller, often by a
factor of 3, than that in the uncorrelated sum, in which
different configurations are used to calculate the various
C„. Hence it is advantageous to use the same
configurations to calculate the sum of C„. For this
reason, separating the semifactorizable contributions
does not appear to be essential in ' 0 if the only quantity
of interest is the sum of C„. However, in larger nuclei it
may be advantageous to separate their contribution to all
quantities of interest.

cijk c&j k +ci jk +cj, ik + ck, ij (3.31)

etc. The corresponding n; k, n;-k& can also be directly

and the antisymmetrization operator A' includes only
the exchanges between particles ij I that appear in X.
In CEC we use the average values n; . . .

&
and di . . .

&
to

obtain the cluster contributions.
The CEB is the linked cluster expansion of the expecta-

tion value (3.1), while CEA is that for the expectation
value (3.3). Even though these expectation values are
identical, their cluster expansions are different. The CEC
is yet another expansion of (3.1). Thus, by comparing the
results obtained with CEA, CEB, and CEC, we hope to
learn about their convergence.

So far, we have discussed the cluster expansion for the
expectation value of the sum of one-body operators.
Those for the expectation value of the sum of two- or
three-body operators such as U; and V, k are very similar.
In the case of that for a sum of U,J, there are no one-body
terms n, , nor terms such as n, &. . . in N [Eq. .(3.6)].
Hence the cluster expansion contains only the terms
c;~,cjk, c;~k(, cjk], . . . Similarly, that for the sum of

ns the terms c
It is not necessary to treat the semifactorizable terms

separately from the others. For example, we can define
cluster contributions c, -. . . k as the sum of all those that
contain particles ij . * k, so that

IV. CALCULATIONAL METHODS

The 3( 3 —1)-dimensional integrals in Eq. (3.8} are cal-
culated with MC techniques [21] using a Metropolis ran-
dom walk. In this method,

f d R W(R)I(R)

fdR W(R)
1

lim g I(R ).
+c~~ Nc i=

c

(4.1)

Here N, is the number of configurations R; chosen with
probability proportional to W(R), and R represents the
particle coordinates r„r2, . . . , r~, with the constraint
R, =0. The weight function W(R) has to be chosen
such that it is positive and normahzable, and the variance
of I(R, ) is as small as possible. In practice, one must use
a finite number N, of configurations, and then the statisti-
cal error in the MC calculation is given by +var/N, .

In the present calculations, we have used

W(R) =N*(R) g f, (r,, ) 4(R)F(R), (4.2)

so that the expectation value (X ) of Eq. (3.8) is given by

fdR W(R}+'(R)AX@(R)/@'(R)@(R)F(R)
(X&= fdR W(R)/F(R)

(4.3)
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Note that A and X are operators, spin-isospin summa-
tions are implicit in 4'(R)AX@(R), and in the present
case 4(R) is real so that 4'=4. The numerator and
denominator of Eq. (4.3} are both evaluated in the same
Metropolis walk controlled by W(R).

The @(R), being a product of four determinants [Eq.
(2.13)], can be small in certain regions of R. However,
4'(R)A is a sum of products of determinants which is
not necessarily small where 4(R) is small. For example,
when r, -r2, 4(R} is small because nucleons 1 and 2 are
pt in 4(R). However, 4'(R)A has terms in which
1 and 2 have different spin and isospin, and these
may be large even when r, —r2. The quantity
4*(R)AX@(R)/~4(R)~ can become very large in such
regions and, thus, has a large variance.

The factor F(R) in the W(R) is meant to avoid
this problem, and it was chosen so that
4"(R)AX@(R)/~&b(R)

~
F(R) is finite at all R. All ex-

changes that may contribute to 4'(R)AX4'(R) are in-
cluded in ~4(R)

~
F(R) so that

= ~e(R}('+ y ~(r,, )(P,,e(R}('

+ y ~{r,, )~(r,„)~(r,„)
i (j(k

X [iPJP k 4(R) i + iPk P,"4(R)
i
2] +

(4.4)

In a calculation meant to evaluate all m & n body clus-
ters, only the terms with ~ n-body exchanges need to be
considered in ~4(R)~ F(R}. Further, the sums in Eq.
(4.4) can be restricted to only those ij that are in
different determinants in 4. The function co(r) can be
chosen conveniently; we have used co(r) proportional to
the sum of the squares of u (r), since the exchange of
particles i and j with different spin-isospin states in 4
must be accompanied by a v;J, U;, , VJk, or U;Jk.

There are 120 pairs of nucleons in ' 0 and hence the
symmetrization operator I in %„and %z introduces 120!
orderings of the 1+U," in the expectation value (3.3}.
This sum of the orderings of 1+U; is sampled by choos-
ing two random orderings of the 120 pairs, one for 4„
and the other for Oz, at each configuration R;.

The 4'(R)AX@(R) for a given cluster is calculated
with methods developed for few-body nuclei [3,17,22].
The terms in 4 (R)A that can contribute are summed,
and 4*(R)A is represented as a vector whose com-
ponents give the amplitudes of the spin-isospin states of
the nucleons in the cluster. The corresponding vector
representing 4(R) has only one nonzero component since
all particles have definite values of o, and r, in 4&(R).
The v;J. , V; k, Ui, and U,-

k operate on these vectors as dis-
cussed in Refs. [3], [17],and [22]. The expectation values
of the kinetic-energy operators are obtained by comput-
ing %~ at slightly shifted positions and using finite
differences to evaluate terms in V Pz.

In a two-proton, two-neutron, four-body cluster,
the vector representing II(1+U~ )4(R) or II(1

+ Uz)A4(R) generally has 96 nonzero components. In
contrast, the vector representing 4(R) has only one, and
that for A4(R) has at most 24 nonzero components. All
the possible 96 components of the vector get filled by suc-
cessive operations with the U; -'s. Hence it is more
efficient, by a factor of -2.3, to use the wave functions

S II(1+U,J ) g (1+U,J„)
i (j IT

X gf(r ) le& (4.5)

H6=T+ g g v (r; )Of~+Uc, „,(r~) +V,
i (j p=1,6

(4.6)

II(1+U;.„) Sg(l+U;, ) gf, (r;, ) A@,

(4.7)

U,"= II f3(r, ;r k, r;k) g P "u (;.)0, .

kWi,j p =2, 6
(4.8)

and %6~, 4'6 „and 4'«are also defined analogously.
Contributions of up to four-body clusters to the energy

&+6,.~H6~~6, R &

(+,„Iq,, )
(4.9)

are calculated, and the small difference

EEp)6 Ev E6 v (4.10)

is estimated from two-body clusters alone.
The statistical error o. in the average of X samples, s„,

with normal distribution, is given by

and the corresponding ~4r ), rather than the ~%„) and

~%z ) given by Eqs. (2.9) and (3.4). In tz and t„ the
U; k's operate on the sparse vectors representing 4(R)
and A4(R).

The perturbative arguments [23] used to model the
U; k assume that the g(1+U~k) is to the left of the

II(1+UJ). Nevertheless, the 4, and %„are not too
different, and hence we determine the variational parame-
ters by rninirnizing the energy E„calculated with 4„. In
the end the small difference between Ev and E„ is calcu-
lated in a single random walk. In the search for optimum
variational parameters, differences between the energies
given by a set of %„are used. These energy differences
can be calculated in a single walk with much smaller sta-
tistical errors [3,21,22].

The numerical evaluation of V';%„required to calcu-
late the kinetic energy, is the most time-consuming part
of the present calculation. The calculation of the contri-
bution of many-body clusters to the kinetic energy be-
comes particularly diScult when the spin-orbit correla-
tions ub b, are included in the U;J. Fortunately, the in-
teractions u~(r, )0/~

' together with the u& b, correla-
tions give a rather small contribution to E, . It is, howev-

er, necessary to retain the u& b, correlations in the calcu-
lation of vb b, interaction contributions.

In order to calculate E, efhciently, we define H6 and

e6 „as
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10— s„'—
n =1,N

1
s„

n =1N,

2 1/2

(4.11)

This equation can be used to estimate the sampling error
in the calculated values of the n,- . . . and d; . . . . The clus-
ter contributions c;, . . . [Eqs. (3.16)—(3.19)] are ratios of
sums of products of the n's and d's, and in order to esti-
mate the error in their calculation, we need to compute
the correlation coefficients between the n's and d's. This
is avoided by using the following approximate method.

After every m steps of the random walk, the cluster
contributions are calculated using running averages of
the n's and d's. This produces a sequence of improving
estimates [c,, ]„, n =I,N, where %=X,jm. We then
define

Cij 1= Cij (4.12)

[c, ]„=n[c; . . . ]„(n——l)[c,, . . . ]„ (4.13)

The result [c; . . . ]N of the calculation is just the average
value of the [c; . . . ]„, n =I, . . . , N If th.e c; . . . were
linear functions of the n's and d's, the [c;1.. . ] „would be
independent block-averaged samples of c; . . . , and the er-
ror would be given by Eq. (4.11) if the block size m is
chosen large enough so that [c; . . . ] „have a normal dis-

tribution. In reality, the c; . . . are linear functions of the

n; . . . , but not of the d's. However, the variance of the
d's is much smaller than that of the n's, and hence the er-
ror estimates obtained from the [c;~.. . ] „are very reli-
able. The statistical errors reported in this paper are es-
timated from the [c;~.. . ]„using m —10—20. We have
verified that these error estimates are accurate for the
two-body cluster contributions from detailed calculations
of the correlated error in c; .

If the cluster expansions are summed all the way up to
the maximum possible A-body cluster contribution, then
the result will be an exact evaluation of E„~ We have
done this for the case of He and compared the results

with a completely independent Monte Carlo calculation
of E„without cluster expansion [3]. The two calculations
agree to within the statistical errors of ~ l%%uo.

The ' 0 calculations were carried out on a single pro-
cessor of a Cray-2 computer running at an average speed
of just over 100 MFLOPS. The CPU times per
configuration required to calculate the three- and four-
body cluster contributions to E6 „with 46 „are 0.56 and
15 s, respectively. Of this, 0.41 and 11 s are used to cal-
culate kinetic-energy contributions. Evaluation of the
two-body cluster contribution to EEp )6 takes only 0.13 s

per configuration. Searches for optimal values of the
variational parameters used —500—1000 configurations,
while -5000 configurations are needed to have a statisti-
cal error -0.2 MeV/nucleon for the total energy. The
calculation of E„—E„ takes -10CPU hours.

Most of the computational effort goes into evaluating
the products of U;. 's and U;Jk's operating on the ~4) and
A~4). This part is identical in the cluster expansions
CEA, CEB, and CEC. Hence the required computer
time per configuration is rather similar for these three ex-
pansions; the additional calculations of the determinants
in CEA and CEB take relatively negligible time.

V. COMPARISON
OF THE CLUSTER EXPANSIONS

In this section we compare the convergence and MC
variance of the three cluster expansions defined in Sec.
III. All the results shown here are for E6„calculated
from the 46 „with optimum variational parameters. The
results for total E„ including the hE &6 and E, —E„are
presented in the next section.

The calculated cluster contributions in CEA, CEB, and
CEC are shown in Table I. For brevity, we use T, v6,
V, and V to denote expectation values of the kinetic
energy, the p ~ 6 terms in v; and the Coulomb interac-
tion, and the three-nucleon interactions Vjk and Vjk.
Also, n-body cluster contributions to these quantities are

TABLE I. Cluster contributions to E6, of ' 0 in MeV/nucleon.

1b 2b 3b 4b 5-16b Sum

U6

CEA
CEB
CEC

CEA
CEB
CEC

CEA
CEB
CEC

CEA
CEB
CEC

CEA
CEB
CEC

18.8
18.8
18 ~ 8

18.8
18.8
18.8

16.5
16.7
14.8

—45.3
—45.8
—42. 1

—28.8
—29.1
—27.3

—1.2
—1.6

0.1(2)

6.7
7.7
2.6

—6.2
—6.4
—5.1

2.6
2.7
2.2

1.9
2.4

—0.2(2)

—0.3(2)'
—0.2(2)

0.2(1.2)

—0.1(2)
—0.7(2)

0.1(5)

2.8
3.1

0.8
—0.6
—0.7

0.0

1.8
1.5
1.1(8)

~Q
-0
-0
~0
-0
~0
—0.8
—1.0
—0.1

0.1

0.1

0.0
—0.7
—0.9
—0.1

33.7
33.8(2)
33.8( 1.2)

—38.4
—38.8(2)
—39.4(5)

—4.3
—4.3
—4.4

2.1

2.1

2.2

—7.0(1)
—7.2(1)
—7.7(8)

'The Monte Carlo sampling errors are shown in parenthesis only when they exceed 0.1 MeV/nucleon.
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denoted by T(nb), etc. The sum of V "and V is denot-
ed by V, while E6, is the sum of T, v6, and V. The
columns give cluster contributions and their sums. The
four-body cluster contributions are dominated by the
three-nucleon interactions, particularly by the long-range
V2k. Note that some of the T(4b) and v6(4b) are statisti-
cally consistent with zero.

The statistical errors due to MC sampling of the clus-
ter contributions in 10000 configurations are shown in
Table II. The errors are strongly correlated; that in the
cluster contributions to E6 „ is much less than the sum of
the errors in T, v6, and the total V. This is to be expect-
ed; when + is close to an eigenstate of H, the fluctuations
in T%, v4, and V% essentially cancel each other. The
smallest sampling error is in the sum of one- to four-body
cluster contributions to the expectation value E6 „ofH6.
This is particularly nice because E6, is the quantity of
primary interest in the variational calculation.

The convergence of CEA and CEB is similar, while
that of CEC is significantly better, particularly for V
Let c; k be a three-body cluster contributing to V (3b); it
contains terms having V; k and any or all of U;j Uk Ujk,
and U;.k in all the cluster expansions. However, in CEC
only those terms having exchanges among i, j, and k are
included in c; k, while in CEA and CEB the terms in
which i, j, and/or k are exchanged with the other nu-
cleons in the nucleus are also included in c;jI, These ex-
tra exchanges seem to give a negative contribution which
makes V (3b) more negative in CEA and CEB than in
CEC. The V (4b) is positive in all cluster expansions;
however, it is smallest in CEC because it contains some of
the negative contributions that are a part of V (3b) in
CEA and CEB. Thus the overall convergence of CEC is
much better than that of CEA and CEB. This result was
rather unexpected; at the beginning of this work, our ex-
pectation was that CEA or CEB would have better con-
vergence.

Unfortunately, the variance of the cluster contribu-
tions is the largest in CEC, presumably because in CEA
and CEB each e;. . . . samples all the single-particle states,
whereas c,".. . in CEC samples only the single-particle
states P, P,

. occupied by ij . in 4~ [Eq. (3.&9)].

The variance of T(4b) and v6(4b) is so large in CEC that
the sampling error in CEC T(4b) and v&(4b), in calcula-
tions using 10000 configurations, is much larger than the
T(4b) and v6(4b} in CEA and CEB. Thus, even though
the values of T(4b) and v6(4b) may be smaller in CEC
than in CEA and CEB, it is impractical to use CEC to
calculate them.

The variance of V(3b) and V(4b} is generally smaller
than that of the corresponding cluster contributions to T
and v6. This could be because of the large number (560)
of three-body interactions in ' O. Hence CEC can be
used to calculate V with sampling errors -0.1

MeV/nucleon. Thus the optimum way to calculate E6 „
with this approach seems to be to use CEA for T and v6

and CEC for V. With 10000 configurations, the statisti-
cal error in this calculation of E6 „ is ~ 0.2
MeV/nucleon.

It is necessary to include the small contributions T(4b)
and v&(4b) in the variational calculation. Optimization of
variational parameters without including T(4b) and
v 6(4b) leads to wave functions for which T(4b ) + v 6 (4b)
are large and positive, so that truncation at the three-
body level is not valid.

The convergence of CEA is so good for T and v6 that
the expected values of T(nb) and v6(nb) for n ~5 are
much less than 0.1 MeV/nucleon and negligible in the
present context. The contributions of V (nb) for n ~ 5
are estimated assuming uniform convergence, i.e., by us-
ing

V [(n+ 1)b ] V (4b)
V2~[nb ] V2n(3b)

(5 1)

In Table I the values of the sum of V "(5b) to V2 (16b)
obtained with Eq. (5.1) are listed along with those for V
estimated similarly under the column titled "5-16b." It is
rather comforting to note that, when the estimated con-
tributions of n-body clusters having n & 4 are added to
the calculated n ~4 contributions, the total values for
V and V listed under the column "sum" in Table I for
CEA, CEB, and CEC agree to within 0.1 MeV/nucleon.

TABLE II. Statistical errors in the calculation of E6, in MeV/nucleon for 10000 configurations.

1-4b
3b sum

CEA
CEB
CEC

CEA
CEB
CEC

CEA
CEB
CEC

CEA
CEB
CEC

0.13
0.13
0.18

0.13
0.13
0.18

0.13
0.15
0.17

0.24
0.24
0.23

0.16
0.16
0.19

0.17
0.19
0.51

0.15
0.16
0.37

0.05
0.05
0.04

0.14
0.15
0.23

0.20
0.24
0.84

0.26
0.30
0.88

0.05
0.07
0.10

0.16
0.19
0.81

0.30
0.35
0.98

0.30
0.32
0.92

0.06
0.05
0.11

0.10
0.12
0.60
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VI. GROUND-STATE ENERGY
AND WAVE FUNCTION

R, =3. 1 fm, a, =0.5 fm,

a, =0.3, p, = 1.0 fm,

V, = —49. 1 MeV .

(6.1)

The binding energies of the 1s and 1p states are, respec-
tively, 28.1 and 14 MeV for this potential. No statistical-
ly significant improvement of E, could be obtained by in-
troducing a spin-orbit splitting in the potential well.

The parameters used to determine the two-body corre-
lations f, (r) and u (r) [Eqs. (2.19)—(2.25)] are

d=2. 5 fm, d, =4.4 fm,

P =0.95, P, =1.05,
a=0.94, kF =1.1 fm

(6.2)

The parameters of the three-nucleon correlation U, k

[Eqs. (2.29)—(2.32)] are

c= —0.0015, b'=1.6 fm (6.3)

The value of the cutoff, b, is 2 fm in the three-nucleon
interaction V, k. The U;-k correlation lowers the energy
of ' 0 by 0.85 MeV/nucleon; it changes T, v6, and V by,
respectively, 2.0, —1.4, and —1.45 MeV/nucleon.

The parameters of f3(r, ;r;k, r k) [Eqs. (2.26) —(2.28)]
have the values

t, =4, t2=4, t3=0.2 fm (6.4)

The f3 factors lower the energy of ' O by only 0.04+0.05
MeV/nucleon, and thus the value of parameters t] 3

We obtain E6 „=—7.05+0.05 MeV/nucleon from an
average including —40 000 configurations. It contains
an estimate of the 5-16b cluster contributions to V as dis-
cussed in the last section. The hE &6(2b)= —0.45
MeV/nucleon; it includes the v 7&4(2b)= —0.87
MeV/nucleon, the kinetic energy of ub b, correlations
b, T(2b)=0.40 MeV/nucleon and a change bU6(2b)
=0.02 MeV/nucleon due to u& b, correlations. The sta-
tistical errors in bE &6(2b) are negligible, and this term
is the same for wave functions 4, and 4, because the
three-body U; k correlations do not contribute to the
two-body clusters.

The optimum values of the variational parameters are
determined by minimizing the approximate energy
E6, +bE~&6(2b), and the results given above and in Sec.
V are with the optimum 4, . The correction E6 „—E6
is found to be only —0.19+0.07 MeV/nucleon. It in-
cludes changes of 0.27(6), —0.14(2), and —0.32(2) in
T(3 4b), U6—(3-4b), and V(3 4b+ e-stimate for 5-16b), re-
spectively. Thus the total variational ground-state energy
of ' 0 for the Argonne v&4 and Urbana VII interactions
and the present %', is —7.7+0. 1 MeV/nucleon against
the experimental value of —7.98 MeV/nucleon.

The optimum values for the parameters of the single-
particle potential [Eq. (2.18)] used to calculate the 4 are

U~= g Pu(r, , )OP~,
p=5, 6

(6.6)

U" =
LJ Pinup(rj)OP~ . (6.7)

p =2, 3,4, 7, 8

The rationale for this modification was that by having the
important tensor operators act last, the other spin corre-
lations would not interfere with them. We were able to
achieve the same variational energy with this form as
with Eq. (2.9), but no improvement was found.

The second modification was to introduce a backflow
correlation in the one-body orbitals:

y, (r) y, (r'), (6.8)

r,'=r, + gg(r, )(r, —r "),
jwi

(6.9)

g(r) =A,„expI —[(r r„)/co„] ]—, (6.10)

where A,„, r„, and co„are variational parameters. Such a
correlation significantly improves the variational energies
[19] of drops of liquid He. We also hoped that it would
reduce the density oscillation discussed in Sec. VII, pro-
duced by the present +, . However, the best energy ap-
pears to be for A.„=O. Small values of A,„ that produced
statistically insignificant changes in E, do not give
significant changes in the density profile.

VII. COMPARISONS WITH FEW-BODY NUCLEI
AND NUCLEAR MATTER

It is interesting and instructive to compare the results
obtained with Argonne v, 4 and Urbana VII for H, He,
He, ' 0, and nuclear matter at its equilibrium density

p=0. 16 fm, as well as at the density p=0. 09 fm
corresponding to the value of kF used in calculating the
pair-correlation functions for ' O. The expectation
values of several operators of interest are compared in
Table III. They are calculated with the exact wave func-
tion for H, variational wave functions containing f„U~,
U,"k, and f3 for He, He, and ' O, and with ~, contain-
ing only f, and U, for nuclear matter. The results for
He and He are from complete MC integrations [3],

those for ' 0 are from the present CMC, and the nuclear
matter expectation values are calculated with Fermi
hypernetted and operator chain summation methods [5].

The kinetic energy and the one-pion-exchange interac-

given above have limited significance. The variational en-

ergy of He [3] is lowered from —7.0 MeV/nucleon by

0.4 MeV/nucleon when the U; k is included and by 0.2
MeV/nucleon when the f3 is included, to a total of
—7.62+0.01 MeV/nucleon. It appears that the present
form of f3 [Eq. (2.27)] is more beneficial in 4He than in
16O

We have made a number of attempts to improve our
variational bound on the ' 0 binding energy by modify-
ing the structure of the wave function. Two of these are
described here. In the first, we broke the symmetrized
product of two-body correlations into two separate sym-
metrized products:

Sg(I+ U,, ) Sg(I+ U, ', ) Sg(I+ U,;), (6.5)
i&j &J I (J
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TABLE III. Expectation values in MeV/nucleon, n.rn. denotes nuclear matter at the specified density.

H 'He 4He 16O
n.IIl.

0.09 fm
n.IIl.

0.16 fm

T
U

rr

U (X)
V

R

p2 rr

yR

UCou1

E,
Eo

E,„p,

9.6
—11.2
—12.1

0.5
0
0
0

—1.11
—1.11
—1.11

17.1
—15.9
—16.7
—3.6
—0.8

0.2
0.22

—2.7
—2.8
—2.6

28.7
—28.2
—29.3
—6.1
—3.3

1.1
0.19

—7.6
—7.9
—7.1

34.4
—30.7
—31.3
—9.7
—4.6

2. 1

0.86
—7.7

—8.0

29
—27
—28
—10
—1.8

1.3
0

—9

45
—39
—41
—17
—4.4

3.9
0

—12

—16

tion v give the largest contributions to the energy. The
v has model-dependent short-range cutoffs. However,
the model dependence of v is not very large; for exam-
ple, the expectation values of U in the Argonne and

Nijmegen interactions, listed in the lines v and v (N) in
Table III, are quite similar. The rest of the two-nucleon
interaction (excluding Coulomb),

UlJ
=—

UlJ UlJ 7 (7.1)

gives a contribution comparable to the total energy for
A ~ 3. One could separate the v; into a repulsive short-
range part v;J and an attractive intermediate-range part
v; . However, the U; and U; are much more model
dependent than the v; they give large positive and nega-
tive contributions of the order of 100 MeV. With the Ar-
gonne v&4 interaction, the contribution of v is several
times that of v".

The total E„per nucleon is compared with the exact
ground-state energy Eo for He and He calculated with
the Faddeev [1] and GFMC [2] methods, respectively.
The E„ is exact for the deuteron because the pair correla-
tions are calculated from Euler-Lagrange equations. In
principle, if the U; k and f3 are correctly chosen, the E,
should also be exact for He. The 0.1-MeV difference be-
tween Eo and E, of He indicates that these functions are
not yet fully optimized. Attempts to extract the U; & and

f3 from the Faddeev wave function are in progress; these
could reduce the error in E, substantially. The error in
the total (not per nucleon) variational energy of He is 1.1

MeV, while that in He is 0.28 MeV. There are four trip-
lets in He, and so it is possible that variational calcula-
tions with the proper U; k and f3 would be very accurate
for He.

The error in the E, of ' 0 is very dificult to estimate

reliably; it is certainly larger than that in the present E,
of He. If the error in E„ is entirely due to inaccurate
representation of the three-body correlations in 4„, it will

approximately scale with V and become -0.5
MeV/nucleon in ' O.

The E„ofnuclear matter calculated with the Urbana
rather than Argonne v; has been lowered by 1.7 MeV at
p=0. 16 fm by adding two-particle, two-hole correc-
tions to 4, perturbatively [24]. A correction of this mag-
nitude can also be inferred from the comparison of results
obtained with the variational and Brueckner-Bethe calcu-
lations [4] with Argonne v;J. The E, of nuclear matter
with v;J and VJk might be lowered further by —1 MeV by
including the U;Jk in the 0, . A detailed comparison of
the contributions of the various U 's to the energy, shown
in Table IV, suggests that the calculated expectation
values of Up —9 ]4 may be too large in nuclear matter. In
the few-body nuclei and ' 0, these int(ractions contribute
mostly through the D, state in which their sum is small
and negative. In H, He, and He, the L S interactions
also contribute mostly via the D& state in which their
sum is repulsive. In ' 0 and nuclear matter, the L.S in-
teractions give a small negative contribution via the P
waves and L S correlations. Without tahe L S correla-
tions, the P waves give a negligible coirtribution, and

v~ 7 8 becomes +0.55 MeV/nucleon in ' 0, again dom-
inated by the D, state.

The experimental energies of H, He, He, and ' 0,
and the empirical nuclear matter energy are also listed in
Table III. The Urbana VII model of V, „ is not very real-
istic; the exact Eo obtained with it for He and He is too
low. The Urbana VIII model [3] of V,"k has a weaker

V,"k and a stronger V, -k adjusted to give the observed en-

ergies of H and He in exact calculations. However, the

TABLE IV. Expectation values of the vp's in MeV/nucleon; n.m. denotes nuclear matter at the
specified density.

Up —7, 8

U& =9, 14

H

—10.4
0.18

—0.49

He

—19.2
0.24

—0.49

4He

—34.3
0.50

—0.46

16O

—39.6
—0.36
—0.41

n.m.
0.09 fm

—37
—0.6

0.8

n.m.
0.16 fm

—57
—1.5

2.7
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E, obtained with it for ' 0 is only —6.4 MeV/nucleon.
Even if we assume that the present E, of ' 0 is as much

as 0.5 MeV/nucleon above the true Eo, ' 0 is under-

bound with the Urbana VIII model.

VIII. DENSITY AND MOMENTUM
DISTRIBUTIONS AND RELATED OBSERVABLES

-1
10

-2
10

I I I I

i
l i I

0,20

0.16

0.12

E

0.08

0.04

3b
I

3

FIG. 1. Density distributions obtained from the 4'„+J, and
4 compared with the "experimental" data, shown by the shaded

region. The contributions of 2-4b clusters to the p(r) from 4'„,

are also shown.

The results obtained with CEA for the point nucleon
density distribution p(r) of ' 0 are shown in Fig. 1, along
with the p(r) obtained from the independent-particle
wave function 4. The two-body (2b) cluster contribu-
tions to the p(r) are significant, while those of the four-
body (4b) clusters are negligible except at small r T.he
solid curve in Fig. 1 shows the sum of the Jastrow and 2-
4b contributions without any estimate made for 5-16b
contributions.

The "experimental" p(r) shown in Fig. 1 is obtained by
unfolding a dipole proton form factor from the pubhshed
[25] charge distributions and by assuming that the neu-
trons and protons have identical density distributions.
The exchange-current as well as neutron contributions
are neglected in this extraction of the "experimental"
density from the observed data. The calculated p(r) has a
much larger oscillation than the data; the oscillation
comes primarily from P and is enhanced by the noncen-
tral correlations. In contrast, in drops of atomic liquid
He, the pair correlations substantially smooth out the

density profile generated by the 4 [19]. The rms point
nucleon radius given by 4, 0„, and experiment" are
2.60, 2.43, and 2.62 fm, respectively.

The charge form factor F, (k) of ' 0 is calculated using
the one- and two-body charge operators given by
Schiavilla, Pandharipande, and Riska [26]. The results,
including up to four-body cluster contributions, are com-
pared with the experimental data [27] in Fig. 2. The con-
tributions of m.-, p-, and e-exchange two-body charge
operators reduce the difference between theory and ex-
periment for k & 2 fm ', however, they are negligible at

10

—/
-4J
g, r'

10

io']I
0

I

2

k(fm )

I

3 4

FIG. 2. Charge form factor obtained from the %„compared
with the experimental data [27]. The form factor obtained in
the impulse approximation and the contributions of the m-, p-,
and co-exchange terms are also shown.

k (2 fm '. The Iachello-Jackson-Lande [28] nucleon
form factors are used in these calculations, but at the
small values of k ( ( 4 fm ') of interest here, the
differences between the various models of the nucleon
form factor discussed in Ref. [26] are small.

The failure of our calculation to reproduce the ob-
served F,(k) is directly related to the excessive oscillation
of the calculated p(r) Char. ge form factors in good
agreement with the data can be obtained by changing the
4, i.e., parameters given in Eq. (6.1). However, the ener-

gy is raised by -0.5 MeV/nucleon in this process so that
4's that explain the observed F,(k) are variationally ex-
cluded. Moreover, if we change 4 to obtain better F,(k)
and then reoptimize the pair correlations by minimizing
the energy, most of the improvement in F, (k) obtained
by changing the 4 is lost. These results suggest that the
failure to reproduce the experimental F, (k) is due to the
present Hamiltonian and not due to inadequacies in the
variational calculation. However, this Hamiltonian gives
a fairly good description of the observed form factors of
hydrogen and helium isotopes [29].

The momentum distribution n (k) of nucleons in ' 0 is
calculated using CEB and a method described elsewhere

[30]; the results are shown in Fig. 3. The n (k) given by
4 is obtained from the Fourier transforms of the single-
particle orbitals P„& (r). It is shown by the dotted line,
while the n (k) for the Jastrow wave function is shown by
the dot-dashed curve. The dashed curve shows the n (k)
obtained on including the contributions of two-body clus-
ters. These two-body contributions, which come primari-
ly from the tensor correlations, are much larger than
those of %J in the 2 —3.5-fm region and remain 4 times

bigger for larger momenta.
The three-body clusters give a small contribution to

n (k); the calculated total n (k) including three-body con-
tributions is shown by the solid curve in Fig. 3. We ex-
pect the four-body cluster contributions to n (k) to be
smaller than the statistical error obtainable with a
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10
I

~e

and has the normalization

4nf dr r p&2(r) = A —1 . (8.2)

-1
10

-2
10

-3
10

-4
10

It is proportional to the probability of finding a pair of
nucleons separated by a distance r in the nucleus. The
cluster contributions to p, z(r) and the total p, z(r) ob-
tained with CEA are shown in Fig. 5. The expansion
seems to converge very well for the p, 2(r), and the statist-
ical errors are negligible in the results shown here.

The two particle densities p~~(r) and pz„(r) are defined

as

10
0

k(fm )

3 (8.3)

FIG. 3. Cumulative cluster contributions to n (k).

p&2(r) =
z g (0„15(r—Ir; —rj l)le„&

4n.r A;~J.
(8.1)

reasonable amount of computer time. The statistical er-
rors of the curves in Figs. 3 and 4 are negligible.

The n(k)/A obtained with the present Hamiltonian
for H, He, [3], ' 0, and with the Urbana v; without
V~~k for nuclear matter [31], are compared in Fig. 4.
Note that for k&2 fm ' the He, ' 0, and nuclear
matter n (k)/A are in very close agreement with each
other. Since the Argonne v, 4 has a stronger tensor force
and since the V; k enhances the tensor correlations, it is

likely that the nuclear matter n (k )2 frn ')/A obtained
with the present Hamiltonian will be larger than that
from Ref. [31]shown in Fig. 4. In particular, the noncen-
tral correlations give only half of the n (k) at large k in
nuclear matter with Urbana U;, whereas they give ap-
proximately three-quarters of the total in the present cal-
culation.

The two-particle density distribution p&2(r) is defined

as

P12 Ppp +Ppn (8 4)

The distribution of particles around a neutron is given by
p„„and p„, and in T=O systems, p„„=ppp and p p pp„.
In MC calculations of such systems, one can average over
p„„and p to reduce sampling errors. The calculated
pp„and ppp are shown in Fig. 6. At large r, p „-ppp but
at small r, p &p „as a result of Pauli exclusion. Note
that Eq. (8.3) implies that

f 4mr dr[p „(r)—p (r)]=1, (8.5)

in the T=O systems.
The p~z. (r =0) are very small because of the correla-

tions induced by the repulsive core in the two-nucleon in-
teraction. The pzz(r) calculated from an independent-
particle wave function 4MF, which has the same p(r) as
the '0„, are also shown in Fig. 6 by curves labeled MF for
mean Geld. The 4MF are calculated using the methods
described in Ref. [32]. The mean-field pzz(r) are much
too large at small r; at large r, they provide an excellent

where PN(i ) are the projection operators [1+F3(i)]/2 for

p and n Th. e pz (r) and p~„(r), respectively, give the dis-

tribution of protons and neutrons around a proton, and
in systems such as ' 0, having total isospin T=O,

1
~~ I

~~
10

0.10

0.08

-2
10 0.06

-3
10

0.04

-4
10

0.02

-5
10

10
0

k(fm )

0

I 1 I

4b

2 3
f (fm)

FIG. 4. n (k)/A in H, He, ' 0, and nuclear matter.
FICx. 5. Two-body density p»(r) including contributions of

2-4b clusters.
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0.8

0.6
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0.02
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I
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FIG. 6. p»(r) and pp (~) calculated from 4, and 4M„.
FIG. 7. Longitudinal structure function SL(k), including

contributions of 2-4b clusters.

approximation to the complete calculation.
In finite systems, the p, 2(r ~ ~ )~0, whereas, in

infinite nuclear matter at density p, the p»(r~ ~ )~p.
Since the maximum value of p&2 in ' 0 is only 0.09 fm
it is not surprising that the optimal pair correlations in
' 0 correspond to those in nuclear matter at p-0.09
fm, as found in the variational search.

The Coulomb sum, or equivalently the longitudinal
structure function SL (k), is the integral over co of the lon-

gitudinal response function SL ( k, co) measured in
electron-nucleus scattering experiments. It is primarily
determined by the Fourier transform of p (r):

B= g g B (r, )O,~, "
P '&I

is given by

(B)=2m. A g f r dr B (r)p2&(r) .

(8.8)

(8.9)

(8.7)

These densities are very useful and are shown in Fig. 9.
For example, the expectation value of an operator 8,

S~(k)=p (k)+ I ——IP (k)l +corrections, (8.6)
P

The o~ and t~ operators have large two-body densities
which give the large ( U ) shown in Table III.

where p (k) is the Fourier transform of the proton densi-

ty distribution p (r). At small k the main correction is
from the contribution of neutrons to the longitudinal
scattering, as discussed in Ref. [32]. The contributions of
2b 4b clusters -to SL (k) are shown in Fig. 7. It is neces-
sary to include the 3b cluster contributions to ensure that
SI (k) ~ 0 as it must be for any system.

The SI (k=0)=0 for any system. This fundamental
property of SI (k) is preserved in each order of CEA,
which conserves the number of nn, pp, and np pairs in
each order. In contrast, the SL(k=0) calculated with
CEB or CEC is not necessarily zero when the expansions
are truncated. For this reason CEA has been used in a11

the studies of the two-body density functions.
The SI (k) of He and nuclear matter [32] are com-

pared with the present results for ' Q in Fig. 8. The
dashed line in Fig. 8 is obtained from the mean-field wave
function @MF. The relatively small difference between
the SL(k) obtained with the 4M„and 4„ is due to the
correlations. There are no data on the Sl (k) of ' 0; the
data shown in Fig. 8 are for ' C from Ref. [33] with an
estimate [34] for contributions from large co.

%'e define two-body densities p2 (r} associated with
the operators O,P as

IX. CONCLUSIONS

1.0

0.8

0.6
C/3

0
0 2

k (fm ')

FIG. 8. SL (k) obtained with 'P, and 4MF compared with the
SL(k) of He and nuclear matter calculated from their '0, . The
data points show the "experimental" Sl (k) of ' C from Refs.
[33,34].

The proposed CMC method appears to provide a way
by which accurate variational calculations can be carried
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-0.04

-0.12

-0.16

-0.20

FIG. 9. Two-body densities pz (r) in ' O.

out with realistic nuclear forces. The simpler VMC
method is limited to nuclei having A 8, and hence the
CMC is, at present, the only variational method useful
for larger nuclei. It appears to be necessary to include
four-body clusters in the calculation, which increases the
required computational effort substantially. Neverthe-
less, calculations of the properties of ' N, ' 0, and ' 0
are possible with available computers.

It should be possible to extend the CMC to lighter nu-
clei such as He and ' C and heavier nuclei such as Ca.
However, these extensions are not completely trivial. In
He and ' C, the 4 cannot be well approximated by an

antisymmetric product of four determinants, though it is
possible to express it as a sum of such products. In
heavier nuclei the number of four-body clusters increases
approximately like A; it is 91 390 in Ca compared with
1720 in ' O. However, it is possible to sample only a
fraction of the four-body clusters in CMC. In an unop-
timized test CMC calculation of Ca with the present
Hamiltonian, we sampled only 1720 four-body clusters
per configuration and obtained E„=—8.9+1.5
MeV/nucleon in 8 h of Cray-2 computer time.

The statistical error in the present calculation of E, for
' 0, estimated to be 0.1 MeV/nucleon, is tolerable. Un-
fortunately the difference between the present E, and the
true Eo is much larger, probably )0.5 MeV/nucleon in

' 0 as discussed in Sec. VII, and more difficult to esti-
mate. In few-body nuclei, it is possible to improve upon
the VMC by a GFMC calculation [2] and obtain the true
Eo. At present, it is not known if a similar development
of CMC is possible.

One of our objectives is to constrain the form and
determine the parameters of the three-nucleon interac-
tion V, k by fitting the observed properties of nuclei. This
Vjk can then be used to predict the equation of state of
nuclear matter, the structure of neutron stars [5], and to
probe nuclear structure in greater detail. The results of
the present calculations suggest that the Urbana VII V; k
has two problems in addition to the overbinding of H
and He it predicts. First, the difference between the E, 's

of He and ' 0 is only 0.1+0.1 MeV/nucleon, whereas
the experimental value is 0.9 Me V/nucleon. The
difference between the true Eo's with this V,"& is not
known, but it is likely to be less than 0.9 MeV/nucleon.
The present calculations suggest that this V; k does not
contribute significantly to this difference. Variational cal-
culations with the Argonne v;, without any V;.k, also
give a 0. 1+0.1-MeV/nucleon diff'erence in the E„'s of
He and ' 0; the E„'s without V, k are, respectively,—5.88(1) [3] and —6.0(1) for He and ' O. Second, the

oscillation in the p(r) of ' 0 predicted by the Argonne U,J
and Urbana VII V&k is approximately 3 times larger than
inferred from experiment.

Finally, the results presented here suggest at least two
improvements in the variational theory of nuclear matter.
The U;.k correlations induced by the V; k should be in-
cluded, and the contribution of the p =9-14 terms in the
latest [5] calculations of E(p) for nuclear matter is suspi-
ciously large.
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