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An algebraic method for the description of giant dipole resonances built on discrete excited states of
both spherical and deformed nuclei is presented within the framework of the interacting boson model.

Applications to lanthanide and actinide isotopes are discussed and the effect of y deformation is also in-

vestigated.
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I. INTRODUCTION

The excitation of the giant dipole resonance (GDR) in
photoreactions or hadronic and heavy-ion collisions has
represented for 40 years one of the major experimental
tools in the investigation of nuclear structure properties.
The GDR is one of the best known collective motions in
nuclei both at zero and finite temperature. Because of its
coupling to the low-energy surface degrees of freedom, it
provides valuable information on the shape of ground
and excited states, derived, for instance, by elastic and in-
elastic (Raman) photon scattering measurements. More-
over, in recent years [1], y-ray and particle coincidence
experiments following heavy-ion reactions have made it
possible to study the GDR in hot nuclei at temperatures
T=1-2 MeV.

Therefore, mean resonance energies, widths, and
strengths of the GDR have been determined with
sufficient accuracy for a wide range of nuclei and spin
values (I ~ 4(Hi ). In particular, the persistence of
ground-state-like deformation up to temperatures of
1-1.5 MeV [2] has been observed in many cases. Many
theoretical approaches have been developed so far in or-
der to deal with GDR excitations at finite temperatures
(see [3],and references quoted therein).

Mean-field theories predict a large variety of behaviors
in nuclei, due to the interplay between shell effects (van-
ishing with increasing temperatures) and time-dependent
shape fluctuations [3).

Proportionally, minor attention has been paid to the
GDR's built on low-energy states of given spin, which are
excited, for instance, in nucleon radiative capture reac-
tions [4,5], that correspond to the time-reversed process
of photoabsorption. In his often quoted thesis, Brink es-
timated the partial widths of neutron resonances due to
electric dipole emission, assuming that the energy depen-
dence of the photoeffect was independent of the detailed
structure of the initial state (the so-called Brink-Axel hy-
pothesis [6]) and applying the principle of detailed bal-
ance.

Recent experimental studies [7] seem to indicate a
broadening of the GDR as the energy of the relevant ex-
cited state increases. Moreover, Brink himself has pro-
posed [8] a simplified theoretical treatment, based on a
coupled oscillator model, showing that his initial assump-
tion is only approximately correct.

This matter is both of fundamental and applied in-
terest, for instance, in the evaluation of radiative capture
cross sections for shielding and heating in fission and
fusion devices.

In the last years, we have developed an algebraic ap-
proach to GDR excitations within the framework of the
interacting boson model (IBM) approximation [9] to the
shell model. This treatment [10] is particularly suitable
to the description of shape-transitional nuclei far from
closed-shell configurations. %ith only minor changes,
the IBM and related code can be easily extended to calcu-
lations of GDR excitation on low-lying excited levels.
This topic will be specifically discussed in the present pa-
per.

Section II will be devoted to the description of the
relevant formalism, while numerical results will be
presented in Sec. III. Finally, concluding remarks will be
made in Sec. IV.

It is worth pointing out that evaluation of GDR shapes
at finite temperature can rely upon the same IBM ap-
proach, once the calculated GDR profiles for a number
of discrete levels are suitably averaged over a definite
range of excitation energies and spin values. However,
this application lies outside the purposes of this article
and requires further developments.

II. FORMALISM

The IBM assumes correlated pairs of protons and neu-
trons, in the valence shells, coupled to angular momenta
J=O and 2 (s and d bosons, respectively), as building
blocks [9]. This assumption corresponds to a suitable
truncation of the complete shell-model space. If one is
interested in giant resonances, in addition to low-energy
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collective motions, further degrees of freedom have to be
included in the algebraic model. In particular, the iso-
vector giant dipole resonance (GDR) arises from a
coherent superposition of one-particle —one-hole (lp-lh)
excitations across one major shell, in the shell-model
language. Therefore, the GDR states in even-even nuclei
have spin and parity J"= 1

The IBM limiting symmetry corresponding to de-
formed nuclei, studied in this work, is SU(3). The electric
dipole operator behaves like a first-rank tensor under
SU(3) transformations; in the IBM approach, it can be
simulated by a p boson, carrying one unit of spin and neg-
ative parity [10,11] and belonging to the (1,0) irreducible
representation of SU(3).

The model space is thus given by

i(s, d) &e~(s,d) p)ei(s, d) p )e, (1)

where N is the usual effective number of valence bosons.
In general, one adopts the one-boson approximation to

the giant resonances and, therefore, considers only states
of the form

~
(sd ) ) for the low-energy levels and

~(s, d ) p ) for the GDR components. More than one p
boson are needed only when descriptions of multiple gi-
ant resonances are attempted.

The energies of the GDR components can be easily

computed by diagonalizing the following Hamiltonian
[10,11]

%=&,d+& +&, d „, (2)

where %, d is the usual IBM-1 [9] Hamiltonian and &~
corresponds to the unperturbed p-boson energy, c. &,
with & the number of p bosons, equal to 0 or 1 for low-
or high-energy (GDR) levels, respectively. &, d~ de-
scribes the coupling between low- and high-lying degrees
of freedom and is responsible for the fragmentation of the
GDR.

where the sd-boson quadrupole operator,

Q=[dtXs+stXd]' '+y[dtXd]"', (4)

is defined as usual [9]. It is worth recalling that
s=s, d =( —1) d andp =( —1)

The leading term in Eq. (3) is the quadrupole-
quadrupole interaction; the [b, ] coefficients are treated
as adjustable parameters and the free p-boson energy, c,
is assumed to follow the semiempirical law c, =703
MeV.

In general, the Hamiltonian (2) has to be diagonalized
numerically in the basis (1). Moreover, one must evaluate
the reduced matrix elements of the electric dipole opera-
tor, D '", between the low-lying states and the GDR
components. It has the following form [10]:

~ (i) —Q [pi +p ](i)

I (E)=kE

where the excitation energy, E, is expressed in MeV, I is
the intrinsic width, and k and a are adjustable parame-
ters [10].

Once GDR excitation energies and dipole transition
strengths have been evaluated within the framework of
the IBM approach, photon absorption and scattering
cross sections can be obtained by means of standard tech-
niques. The photon absorption cross section can be de-
rived from the optical theorem and reads

with Do adjustable parameter.
In order to compare the IBM predictions about the

GDR fragmentation with the experimental data, an in-
trinsic width must be associated with each calculated
GDR component, due to the coupling to more complicat-
ed nuclear configurations, such as 2p-2h doorway states,
or the continuum. Since these configurations lie outside
the IBM, their effect has to be accounted for by means of
a phenomenological recipe such as

ere E 2E kI
r ) ' gc 3(2I +1) (E2 E2)2+1-2 E2 J"

where E is the incident photon energy, I,- is the spin of
the initial nuclear state on which the GDR is built, the
indices j and k refer, respectively, to the allowed angular
momentum values of the GDR ( ~I,

—
1~ &I ~I, + 1), and

the different GDR states at fixed I . Therefore, I &,
E k, and I & are the spin, energy, and width, respective-
ly, of each component into which the GDR is split up.

With these ingredients, it is a simple matter to evaluate
the GDR shapes built on excited discrete levels for even-
even nuclei with open-shell configurations. Numerical re-
sults for deformed and shape-transitional isotopes in the
lanthanide and actinide regions will be presented and dis-
cussed in the following section.

Here, we intend to work out in some detail a particular
case, namely, the GDR built on the P bandhead of an axi-
ally symmetric rotor, corresponding to the SU(3) IBM
dynamical symmetry [9],which can be handled by analyt-
ical methods. Our procedure is analogous to the one
developed by Rowe and Iachello [11]for the GDR built
on the ground state of deformed nuclei.

In fact, if %', d in Eq. (2) has an SU(3) symmetry [9], it
is possible to cast the Hamiltonian (2) in terms of quadra-
tic Casimir operators of SU(3) and SO(3) [11,12] by re-
taining in Eq. (3) only the quadrupole-quadrupole in-

teraction, and to solve analytically the eigenvalue prob-
lem. Moreover, the reduced matrix elements of the di-
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yf s, d,p

b2
—[Cz(s, d,p )

—Cz(s, d ) —C'z(p)],
2 3

(9)

where the Casimir operator, C z
—=2Q Q + ',E E (E —is

defined as in Refs. [9,12]), is diagonal in the (A, ,p) irre-
ducible representation (irrep) of SU(3). Its eigenvalue is

Cz(A, ,p)=A, +p +A(p, +3)+3@.

Since the P bandhead belongs to the (2N —4, 2) irrep
[9], with N effective number of valence bosons, the cou-
pling of the p boson, belonging to the (1,0) irrep, with the

P band gives rise to the following set of states:

(2N —4, 2) (1,0)= (2N —4, 1)e(2N —5, 3)

e(2N —3,2) . (10)

All the irreps on the right-hand side of Eq. (10}contain
1 states, whose excitation energies are therefore given

pole operator (5) are proportional to the Wigner
coefficients of the SU(3)DSO(3) reduction. Thus, Rowe
and Iachello [11] recovered by this group-theoretical
technique the well-known result that the GDR splits into
two components because of its coupling with low-lying
quadrupole degrees of freedom. For a prolate nucleus,
the higher energy component is doubly degenerate and,
therefore, its dipole transition strength from the ground
state is nearly twice that of the lower energy component.
The opposite happens in the case of oblate nuclei.

Following the notation of Ref. [12], the Hamiltonian
(2) can be reduced to the form (bo =bi =0)

&=Sf,q+s h +b~Q [ptXgr ]' ', (&)

where Q is defined as in Eq. (4) with y=+V7/2 and

Q =+V3/4[p Xp ]' '. In the previous expressions, one
has to take simultaneously the upper, or the lower signs.
We assume, moreover, b2 )0.

Choosing the minus sign in both operators, which cor-
responds to the usual assumption for ground-state prolate
shapes [9],one has

b2
Ei —Eo+ =

a~
— —[C~(2N —4, 1)—C, (2N —4, 2)

P

—C2(1,0)]

b2
=eq+ —(2N+6),

2 3

b2
Ep Eo—i =s~ — —[C~(2N —5, 3)—C~(2N —4, 2)

P

—Cq(1, 0)]

b2=s + (2N —3),
2&3

b2
E3—Eo+ =e~ — —[Cq(2N —3,2}—Cp(2N —4, 2)

—C2(1,0)]

b2=8 — (2N —3) .P

According to our choice for the sign of b2, E&
+ E2 + E3 It is worth recalling the expressions for the
energies of the two GDR components built on the 0&+

ground state, namely [11],

2b2
E, =s — —N,

3

b2
Eq =ep+ —(2N+3),

2 3

(12)

which look like Eqs. (11), since E, =E3 in the large N
limit and E2 corresponds to the average of E& and E2,
approximately.

Finally, the dipole matrix elements for transitions be-
tween the basis of the P band and the three GDR com-
ponents are proportional to the following Wigner
coefficients [13]:

Di =((2N —4, 2),K =0,L =0;(lio),K=OiL =111(2N—4, 1)iK=1,L =1)
1/2

2(2N —1)
18%

D~ =((2N —4, 2),K=0&L =Oi(li0), K=O L = ill(2N 5i3)iK = liL =1 ~

1/2
4(2N 4)—
9(2N —3) (13)

D3={(2N 4 2) K=O L =0'(1 0) K=O L =ill(2N 3,2) K=O L =1~

1/2
(2N+ 1)(N —1)

3N(2N —3)
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the rotational (A) ground state and (B) P
bands. The curve peaks decrease with increas-
ing spin.
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8 =
—,'(2%+3)/2%=0. 57, in agreement with the geome-

trical factor for a prolate shape in both cases.
Analogous results can be obtained for GDR's built on

higher spin states of the (2N —4, 2) irrep. It is worth re-
calling that the P and y bands belong to this irrep and
their states with the same spin values are degenerate.
Therefore, the energies and transition strengths for the
GDR's built on these levels are the same.

These findings are confirmed by refined numerical cal-
culations, as discussed in the next section.

III. RESULTS AND COMMENTS

A. Deformed nuclei

FIG. 4. GDR shapes built on positive-parity states of 'U,
belonging to the rotational y band.

The resulting ratio between lower and upper com-
ponents, namely, R —= ~D3~ /(~D, ~ +~D2~ ), approaches
—,
' in the limit of large N, as expected for prolate shapes,
and corresponds to a first approximation to the shape of
the GDR built on the ground state, thus confirming in
this particular case the Brink-Axel hypothesis. In the
case of the deformed nucleus ' Sm, %=11 and R =0.58
for the GDR components built on the 0+ state of the P
band, while the corresponding ratio for the two GDR
components excited from the 0&+ ground-state is

a
O0

O
O

FIG. 5. GDR pro61es built on 0,+ states of U (i = 1, . . ., 5).

The U nucleus is a suitable example of rigid rotator,
close to the IBM SU(3) symmetry [12,14). The p-boson
model was able [14] to describe both the GDR two-
humped photoabsorption cross section and the elastic
scattering distribution by the 0,+ ground state and the
Raman inelastic scattering cross section to the 2&+ excited
level, thus giving a first insight into the reliability of the
algebraic approach when coupling of the collective dipole
mode to states other than the ground state is considered.

According to the formalism presented in the previous
section, we have calculated the GDR profiles built on ex-
cited levels of U, by numerical diagonalization of the
full Hamiltonian (2), where the relevant parameters
slightly. violate the SU(3) limit symmetry. These IBM pa-
rameters, namely [b;] and y in Eqs. (3) and (4), Do, k,
and a in Eqs. (5) and (6), have been taken from Ref. [14].
They have been assumed independent of the nuclear exci-
tation energy, since it is well known from microscopic
calculations [15] that the effective nucleon-nucleon in-
teraction is only weakly dependent on nuclear tempera-
ture in the range 0-15 MeV.

Figure 1 shows the calculated GDR shapes in
correspondence with the yrast levels of U belonging to
the rotational ground-state band, up to spin J= 12%. The
resulting two-humped structure is typical of a prolate ro-
tor with axial symmetry; however, by increasing spin and
excitation energy of the basis level, this shape is
smoothed out because of the increased intrinsic width as-
sociated with each GDR component [see Eq. (6)]. No
sizeable broadening of the total GDR curve appears, as
clearly shown in the two-dimensional plot of Fig. 2(a).
An analogous behavior, even if the two peaks are less
pronounced than in the previous case, is exhibited by the
profiles relevant to the states of the rotational P band,
shown in Fig. 2(b). In this case, the deformed structure is
smoothed in a nearly spherical GDR shape at spin values
J=1(Hi. This transitional behavior, as a function of the
excitation energy of the level on which the GDR is built,
is also evident in Figs. 3 and 4, where the calculated
GDR shapes on P and y band states, respectively, are
shown.

Therefore, it is possible to state that in realistic calcula-
tions for U the effect relevant to dynamical y deforma-
tion in the side rotational bands does not alter the GDR
two-humped shape corresponding to an underlying pro-
late structure with axial symmetry, thus confirming the
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FIG. 6. GDR profiles built on
2,

+ states of "U (i = 1,. . . , 5).
Note that GDR shapes relevant
to the 22+, 23+, and 24+, 25+ states,
respectively, are nearly coin-
cident, because these doublets
are degenerate in the SU(3)
scheme.
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analytical results of Sec. II, obtained in the exact SU(3)
limit.

The main observed effect is the development of a
single-peaked shape, approximating a Lorentzian distri-
bution, because of the increasing of I'(E) for each GDR
component, due to the higher excitation energy, E, and
consequently to the increased number of exit or doorway
states coupled to the GDR states, which determine their
intrinsic widths.

In fact, if one considers GDR built on states with the

same spin, as in Figs. 5 and 6 for J=O+ and 2+, respec-
tively, a similar trend from deformed to spherical profiles
arises. The dependence on the spin values has a different,
opposite effect, as discussed in the next subsection. In the
case of U, it is overcome by the excitation energy
effect.

Finally, it is worth noticing that, in Fig. 6, the GDR
shapes for 2&+, 23+, and 24+, 25+ states are nearly coin-
cident, as expected on the basis of the degeneracy of the
above levels in the SU(3) scheme [9], even if they belong
to different rotational bands.

a
Q O

O
O

FIG. 7. GDR shapes built on yrast positive-parity states of"Sm, belonging to successive phonon multiplets.
FIG. 8. GDR profiles built on 0,+ states of "Sm

(i =1,. . . , 5).
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FIG. 9. GDR profiles built on 2,+ states of ' Sm (i = 1,. . ., 5).

B. Transitional nuclei

The photoabsorption cross sections in the ground
states of even-even Sm nuclei has been studied in Ref.
[16]within the framework of the p-boson IBM.

The Sm isotope chain provides a classical example of
transitional nuclei ranging from a spherical (' ' Sm) to
an axially symmetric deformed shape (' Sm) [9], thus al-
lowing us to investigate how the GDR profiles built on
excited states vary with the nuclear deformation. It is
worth recalling that IBM predictions of photon inelastic
scattering cross sections to 2&+ levels of ' ' "Sm have

been recently compared with the corresponding measured
data [17]; however, no definite conclusion can be drawn
from that work because the experiments have been per-
formed only at one incident photon energy, E&=11.4
MeV, lower than the GDR peaks and cannot discrim-
inate between the available theoretical models [17].

We focus our present analysis on ' Sm, which is inter-
mediate between a spherical vibrator and a deformed ro-
tor, and on ' Sm, where rotational bands are already ful-

ly developed. The same IBM parameters as in Ref. [16]
have been used, according to the above-mentioned re-
marks.

An interesting feature is provided by Fig. 7, where the

FIG. 10. GDR shapes built
on yrast positive-parity states of
""Srn, belonging to the rotation-
al ground-state band.

I

1&0
I

iKO
I

140z' (Mev)
1&0



461732 G. MAINO, A. VENTURA, AND L. ZUFFI

GDR's built on the yrast levels of Sm are shown. The
0 round state has a single-GDR curve relevant to, g

humped shape characteristic o pof a s herical vibrator
in to hi her spins —the relevant levels as-

sume a ynam' ed amic deformation as reAecte y e i
ofmomententa of inertia L

'j, usent
' '

~18'jth giving rise to a splitting o
hose distance increasesthe GDR profile into two peaks whose i

with s in as a resu t o e iw 1 f the increased nuclear deforma-
on.

'
1 the concurrent effect due tot on. In this particular case, eion.

the hi her excita-
~ ~

the lar er intrinsic widths provided by 'g

ken into account, which tends totion energies to be ta en in o a
smooth out any GDR structure from deformation sp i-

d 2 for U), is overcome by the spin-ting (see Figs. l an or
induced larger deformation.

h thFor the sake of comparison, Figs.is. 8and9s ow e

0+ and 2,
+ statesGDR shapes built on excite

. . . S), respectively. Here, at fixed spin value,
l on the different excitation

a sin le- umpe
hen the curves depend only on e i

ies and nuclear-level structures,
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genergies an n
width is nearly constantGDR shape persists, whose tota wi is

int eh 0—4 MeV excitation energy range.
likeAs far as statica y ei all deformed nuclei are concerne,

Sm, close to the SU(3) limit, this kind of effect is even
more pronounced, as clearly shown g .wn in Fi s. 10and 11. In
the latter case, exemplifying th ge eneral behavior, or

he GDR rofile evolve from two- top' p
one-humped shape as the excitation energy o e
level increases.

the GDR total widthIn all the considered cases, t e

O
CI
O

o
CD
CD~ CQ

4
Q O

O
O

Q O
O
O

+
0

r)

C?a-

(b)

CD

o
tD

Q O
O
O

0P
Q O

O
O

+10
2

FIG. 11. GDR profiles built on (a); a0+ and (b) 6,+ states of"Sm (i = 1,. . . , 5).

of" SIn, belonging toFIG. 12. GDR shapes built on levels o
the rotational (a) ground-state and ( ab) bands.
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FIG. 13. GDR shapes built
on positive-parity states of"Srn, belonging to the rotation-
al y band.

I

Li.O
E (Mev)

HALO iLO

remains almost constant, only the detailed structure is
smoothed out because of the increased intrinsic width as-
sociated with each GDR component [see Eq. (6)]. The
efFect of spin is to enlarge the deformation splitting, thus
resulting in a broader width than for the ground state.

This behavior is elucidated in Figs. 10, 12(a), and 12(b)
for rotational ground state and P bands, respectively. In
the latter case, the two peaks, not completely resolved for
the low spins, arise from the three GDR components of
Eq. (11), where E2 and E3 components are not separate
because of the overlapping intrinsic widths, and are clear-
ly visible for spins J= 10'. This trend is further
confirmed by the results for the y band, shown in Fig. 13.
It is worth remembering that the even-spin levels of the y
band are nearly degenerate with the corresponding states
of the P band, belonging to the same SU(3) irreps [9].

IV. CONCLUDING REMARKS

The previous IBM calculations of GDR curves built on
excited states of deformed and transitional nuclei show
that the GDR profile has quite a regular behavior as a
function of level excitation energy and spin. In particu-
lar, the first two moments of the GDR strength distribu-
tion, which determine its centroid energy and total width,
do not vary too much as far as different basis levels are
considered for a given nucleus.

A minor spin effect is found, resulting in a larger defor-
mation of the nucleus with increasing spin, which could
eventually lead to a two-humped shape starting from a
single-humped one. We have studied this behavior in
transitional nuclei like Sm isotopes, belonging to the U(5)~ SU(3) IBM transitional chain; an analogous analysis
for the other transitional classes of the algebraic model
(from spherical oscillators to y soft nuclei and from y
soft to rigid rotors) has already been performed [19],
complementing and supporting the present results.

The degree of freedom given by the dynamical y defor-
mation does not have important consequences on the
GDR shape and, in general, a GDR pattern similar to
that for the ground state arises.

To sum up, the Brink-Axel hypothesis can be assumed
as a reasonable first-order approximation, even if its va-
lidity is confined to low spin and excitation energy re-
gions. Particular caution has to be taken in performing,
for instance, calculations of nucleon radiative-capture
cross sections to specific levels, mainly isometric states
with high spin, for which the angular-momentum effects
resulting in a rather large deformation of the nucleus
could provide a broad splitting of the GDR and, conse-
quently, affect the production cross sections, analogously
to the findings for the high-spin levels of yrast, P, and y
bands of deformed nuclei and, more dramatically, of the
multiphonon excitations in vibrational and transitional
nuclei, previously described.
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