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Spectral functions are calculated from mean fields calculated both by Brueckner and by Botermans-
MalAiet Green s function methods. Similarities and differences between the two methods are illustrated.
Results are shown at normal nuclear matter density and zero temperature. Calculations are made by the

separable phase-shift technique that was introduced earlier including the single-particle strength up to
—1700 MeV with (usually) less than l%%uo of the total strength missing. It is found that -5% of the sin-

gle particle strength lies above 500 MeV. Mean removal (centroid) energies of nucleons and occupation
numbers are calculated by energy averaging over the spectral functions. The averages are also done in

the extended quasiparticle approximation for the spectral function discussed in an earlier paper showing

good agreement with the "exact" results. It is in fact shown that this approximation yields the same re-

sult for centroid energies as does Koltun's work which was based on an analysis of the linked cluster ex-

pansion. The total energy is calculated by Koltun s sum rule which involves an integration over the cal-
culated (correlated) occupation numbers. The result compares favorably with the Brueckner energy
which involves an integration over model (uncorrelated) occupation numbers.

PACS number(s): 21.65.+f, 21.10.Pc

I. INTRODUCTION

A new method to perform many-body calculations for
nuclear matter was presented and applied in some previ-
ous publications [1,2]. The idea is to use the experimen-
tal phase shifts rather than a semiphenornenological po-
tential model to calculate the effective interaction (i.e.,
the Brueckner K matrix or similarly defined object). This
is possible by assuming that a matrix referred to as Ko,
the diagonal elements of which are essentially the phase
shifts, is separable in momentum space. The method has
already been tested against potential-model calculations
with no noticeable difference [1,2]. This concurs with the
result that many-body calculations that have been made
before with various potential models all agree, provided
that the phase shifts are fitted equally. Quantities that
were calculated by this new method involve mean fields,
binding energy, occupation numbers, and spectral func-
tions at zero as well as nonzero temperatures. Although
the method (probably) can be refined, especially as re-
gards the treatment of the tensor component of the force
and the assumptions related to the sign change of the
phase shifts (see Ref. [1]),the relative ease with which the
method can be applied prompts us to pursue calculations
by this method in its present form.

Although our main interest is to study nuclear dynarn-
ics at energies of several MeV as achieved in heavy ion
collisions, this paper is devoted to ground-state nuclear
matter. Calculations of spectral functions are shown that
are more extensive and elaborate than in a previous paper
[2]. The distribution of single-particle strength over a
larger range of energy, as well as mean values of energy,
etc. , are calculated and described in the following sec-
tions. There are several papers on spectral functions pub-
lished during the past few years using diferent methods
[3—8]. Spectral functions are fundamental in describing

nuclear correlations, experimentally accessible by ( ee'p)

experiments, and are of importance in relation to the
EMC effect [9,10].

Most calculations in this publication are done by
Brueckner theory. Some are done by Green's-function
theory as formulated by Botermans and Malfliet [11].
Numerical comparisons between the two methods show

agreements substantiating the formal comparison made
in an earlier paper [12].

An approximation to the spectral function also intro-
duced in this earlier paper (see also Ref. [13])has interest-
ing properties and establishes a link between the
Bruekner and Green's-function theories. In this paper
this extended quasiparticle approximation (EQP) is ex-
plored further and shows considerable agreement with
the "exact" calculations.

Koltun [14] (see also Baranger [15]) showed an impor-
tant theorem stating that the second-order Brueckner
rearrangement energy does not contribute to the centroid
of the removal energy of single particles from a specified
state but only to its width. It is shown below that this
theorem also follows from an application of the EQP ap-
proximation. Centroid energies calculated from the "ex-
act" spectral functions also agree very closely with this
theorem.

The paper is organized as follows. In Sec. II some
basic formalism and definitions relevant for the calcula-
tions are presented, starting with Botermans and Ma16iet
[11] expressions for the mean field, etc. , and continuing
with the similar expressions in Brueckner theory. Section
III contains the results of calculations using the separable
phase-shift method with special emphasis on quantities
derived from the spectral functions. Results are com-
pared with those of the EQP approximation and compar-
isons with Koltun's work are made. A numerical com-
parison between the Brueckner method and the Green's-
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function method in the formulation of Botermans and
MalAiet is also shown. In Sec. IV a discussion and sum-

mary as well as suggestions for future work are presented.

II. FORMALISM

The quantum transport theory of Botermans and
Malfiiet [11] is based on the real-time Green's-function
formalism of Schwinger, further developed by Kadanoff
and Baym [16] and by Danielwicz [17,18]. This theory
differs from the imaginary time formalism that does not
allow the study of nonequilibrium (transport) properties

I

[19]. Although the present study is only for nuclear
matter in equilbrium, it is motivated by an interest to
gain experience with this formalism for application to nu-
clear dynamics in general and heavy ion (HI) collisions in
particular. It is also of interest to gain an understanding
of possible differences from the Lehman-Galitskii formal-
ism applied by other investigators [4,5,20].

In the present investigation the special emphasis is on
spectral functions. Although the calculations will be re-
stricted to zero temperature the theory is shown for tem-
perature ~0. The relevant equations are summarized
below in general following the notations of Ref. [11]. The
mean field is defined by

d4 '
&' +—'(p) = —&f', [ & —,'(p —p')

I

T' —'(p +p') I-,'(p —p') & „g '(p')+ & —,'(p —p')
I
T'(p +p')I —,'(p —p') & „g + '(p') ],

where p =(p, co). The first term in Eq. (1) gives a first-order contribution to the mean field X(p) in the efFective interac-
tion T' +—' defined by

d4p d4p g
'

—,'(P"+p")g '( ,'P" p")—g'—( ,'P"—+p")g—(—,
'P" —p")

&plT'-'(P)lp'&=&plUlp'&+(i&)', &plvlp" &

(2~Pi) 0—0"+t e

X &p" iT' +—'(P)ip'&(2iri)i) 5 (P —P'), (2)

where U is the N Npotential a-nd P is the four-vector center-of-mass momentum with P =(P,Q). The second term in

Eq. (1) is of second order in T' 'because—
4 zt 4

& p I

T'"'(P) lp' &
= i &f, & p I

T'+ '(P)
I —,'(p" —p"') &g (p")g (p"')

(2n A')
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g(+)( )
co —p /2m X( '(p)+i—e—

giving

2i ImX(+ '(p)

[co—p'/2m —ReX(+)(p)] + [1m'(+'(p))

In equilibrium we have

g (p) = —
( I /iA')S (p)n (co),

g (p)=(1/i r)Sii(p)[1 —n(co)],

n (co) = I /[e~ "'+1],
where S (p) is the spectral function defined by

S (p) = i%'[g ' (p) —
g '(p) ]

= i@'[g'+ '(p) —g' (p) ]

with

(4)

(6)

satisfying the sum rule

S p dco=2~A

for all values of p. It should be noted that if X were in-
dependent of co the sum rule is satisfied identically for any
value of X(p). For the sum rule to be satisfied in the gen-
eral case it is evident that a relation between the co depen-
dences of the real and imaginary parts of X has to be
satisfied. The dispersion relation is probably a sufficient
condition although a proof of this is not known to exist.

There are several self-consistencies, all involving the
mean field X, which have to be satisfied to solve the set of
equations above. The most familiar may be the
Brueckner-type self-consistency with 0" defined in terms
of X (see below). A second self-consistency arises because
of the co dependence of the occupation numbers n defined
by Eq. (4). The self-consistency that will be of special
concern here relates to the spectral function defined in
terms of the mean field in Eq. (7). For the first iteration it
is natural to choose the spectral function in the quasipar-
ticle (QP) approximation. Thus
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Sqp(p) =22ri)1Z(p)5((v —
p2p)

with

cop=p /2m+ReX(+)(p, (vp),

i( ) 1
BReX(+ '(p)

P =
(10)

rather than to 2vrfi as in Eq. (8). We shall see below how
this deficiency is remedied by the EQP approximation.
At this point, however, we shall put Z =1, i.e., neglect
the (v dependence of the mean field in Eq. (10), and refer
to this as the quasiclassical (QC) approxiination. One
then finds

The (v integrations in Eqs. (1)—(3) are then trivial. A
severe drawback with Sq& is that it normalizes to 2m'

g( —)(p)— 1

CO COO l E

so that the mean field X'+ ' becomes

d p i (+)X' '(p)=f, (-,'(p —p')IT'+'(p+p', ~+rvp)I ,'(p—p—')) ~n(p')

(+)+ —,
'

p —p' T p +p, coo+coo —, p —p

x P P (2M)'5'(p+p' —p"—p"'),n (p")n(p"')
(12)

where the effective interaction now is

d p 1 —n( —,'P+p") —n( —,'P —p")
&plT"'(P)lp'& = &plvlp'&+ f, (plvlp" &

(22ri)2) 0 P2/4m ——p "2/m —ReX'+ '( —,
' P+p" ) —ReX'+ '( —,

' P —p" ) +i e

x &p"IT"'(P)lp'& . (13)

ese last two equations provide a first iteration from which the spectral functions can be calculated. In principle, one
could continue the cycle of iterations by inserting these in Eqs. (1), (2), and (3). We shall return to this problem below in
the discussions.

Equations (12) and (13) differ from the corresponding Brueckner equations:

d3 I

V(p) = f & —,'(p —p')lit (p+ p', p)+rvp) I-,'(p —p') & g n(p')
(22ri)i)

dp dp dp+ —,
'
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—,
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X (22ri)1) 5 ( + ' —"—"'),P P P P (14)

where

p ii [1 n( ,'P+—p")—][1—n( —,'P —p")]
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(22ri)2) 0 P /4m —p /m —Re—V( —,
' P+p" ) —Re V( —,

' P —p" )+i e

x(p"IE(P)lp') .

The difference stems from the fact that intermediate hole states are included in the definition of T, while in the
Brueckner E only the intermediate particle states are included. The relation between the two interactions is given by

&plT'+'(P)lp'& = &plI( (P)lp'& —f &pl&(P)lp" &

(2vrfi)'

n ( —,'P+p")n( —,'P —p")
0 P2/4m —p "2/m —R—ex(+)(

2i P+p-) —ReX(+)(2i P —p-)+)6

x(p" IT'+'(p)lp'& .
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This is an exact relation between E and T. It is assumed
that the energy denominator is the same in the two
separate cases.

In Brueckner theory intermediate hole propagations
are only contained in the second term in Eq. (14), often
referred to as the Brueckner second-order rearrangement
contribution to the mean field. Although the two
theories are certainly different and the expressions for the
first- and second-order mean-field terms differ, one finds
that the sum of the two terms are in close agreement, i.e.,
X- V. This is easily seen [12] if one replaces the last T in
Eq. (16) with K and inserts the resultant expression for T
in Eq. (12). Up to second order in K one thus finds that
X'+'(p) is equal to V(p). This is very satisfactory, show-

ing a close relation between the two theories. However,
the sign of the imaginary part of the second-order term in

Eq. (14) is opposite to that of Eq. (12) but equal to the rep-
resentation utilized in other works [5,20,21]. This sign
difference is also pointed out by Danielwicz [18]. For the
zero-temperature calculation of spectral functions done
in this paper this is of no consequence because the
second-order term is zero for k ) kF while the first-order
term is zero for k & kF. The two series are identical only
to second order in K.

It is one purpose of this investigation to find the actual
difference numerically as shown by results below. But
most of the results in this paper will be by Brueckner
theory. The reason is that, as we will find, the results re-
lated to removal energies are most easily discussed with
reference to the Brueckner first- and second-order mean
fields.

In the Brueckner mean field V defined by Eq. (14) the
third-order rearrangement contribution is omitted be-
cause the Green's function X does not have a correspond-
ing term in the QC approximation. In the QP approxi-
mation there would be such a term coming from the Z
factors. However, only terms corresponding to the dia-
gram of Fig. 1(c) would then be present while the dia-
gram in Fig. 1(d) has no counterpart. This is directly re-
lated to the deficiency in the QP approximation men-
tioned above and explained as follows. Figure 1(c)
corrects for the fact that a nucleon in state i interacts
with another nucleon in state j which is a partially dep-

leted hole state and Fig. 1(d) says that the missing
strength is to be found in states b. The Z factors only say
that the states are depleted but does not say where the
strength is which amounts to the same as neglecting the
diagram in Fig 1.(d).

The third-order rearrangement energy was included in
previous papers [1,2]. However, it is not important for
the conclusions of this paper. Its effect is mainly a renor-
malization effect of the first-order mean field by a factor
of about 0.85 and a corresponding shift in quasiparticle
energies. While it is not included by the QC approxima-
tion it will be included in the next iteration and in the
EQP approximation discussed below.

All calculations presented in this paper will be at zero
temperature. The spectral function is calculated from
Eq. (7), in the case of Brueckner theory with X replaced
by V. The occupation of hole states is then given by

p(p)= f" S(p,~)d~, (17)

where p is the chemical potential. The mean removal (or
centroid) energy for a hole (particle) is given by

J AS(p, co)dao,
27rflp p

1 + tXl

2M[1 —p(p) ] p

(18)

where we used the fact that the sum of holes and particles
equals 1.

An interesting approximation to the spectral function
which goes beyond the quasiparticle approximation of
Eq. (10) and referred to as the extended quasiparticle ap-
proximation is given by [12]:

c)Re V(p, co)
SEgp(p, N ) 2~6'5(co —coo) 1+

Bco
L

2Im V(p, cci)

( Ci) No)
(19)

where P refers to a principal value integration. In the
second term (co—coo) should be interpreted as

[d /des'(co —co')]

(a)

FIG. 1. Diagrammatic representation of first-, second-, and
third-order contributions to the mean field (mass operator) dis-

cussed in text. Diagram (b) is often referred to as the Brueckner
second-order rearrangement energy. The third-order diagram
(c) can be considered as a correction to diagram (a) due to de-

pletion of hole states caused by the correlation while (d) is a
correction due to interaction with particle states created by the
correlations. Only the first- and second-order diagrams are in-

cluded in the mean field defined by Eq. (14). See text for discus-
sions regarding the third-order diagrams.

In the previous publication [12] this approximation was
discussed with reference to Brueckner theory. It is ob-
tained by an expansion around the quasiparticle peak
with Im V «Re V. It has several interesting features. It
satisfies the sum rule expressed by Eq. (8) which is not
satisfied in the quasiparticle approximation. The strength
missing in the QP approximation is contained in the
second term of Eq. {19). Notice, however, that the first
term in this equation is not identical to the QP approxi-
mation. The EQP approximation is especially studied to
use with the Brueckner theory in which ImV"'(p, co)=0
for co(coF while ImV' '(p, co)=0 for co&coF with V'"
and V' ' being the first- and second-order terms of the
mean field in the Brueckner approximation equation (14).
Using the dispersion relations between the real and imag-
inary parts of each of these fields one finds, inserting
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SEQp into Eq. (17),

c)Re V'"(p, co)

Bco

c)Re V' '(p, c0)

Bco
(20)

and this is exactly the Brueckner-approximation for the
occupation numbers [12,22].

To find the mean removal energy from Eq. (18) in the
same approximation one first notices that

f AS(p, co)dco
&i(p) =-

f S (p, co)dc@

f (co —a)0)S (p, co)dc'
CO (21)

f S(p, co)dco

using the EQP approximation for the spectral function
one then finds

8f [2ImV(p, co)/(co —coo)]den
rh(p) &0+

S(p, co)d co
(22)

Using the dispersion relation and noticing the relations
pointed out above Eq. (20) one then finds the following
expressions for the centroid energy for hole (particle) re-
moval in the EQP approximation:

ReV' '(p, coo)
ri', (p) = —coo+

p(p)
ReV"'(p, coo)

r'(p) = —coo+ I-p(p)

(23)

III. RESULTS OF CALCULATIONS

1. Some computational details

The calculations of the reaction matrix was done as in
recent publications [1,2]. The phase-shift model M 1 was
used [1]. However, only the states with J~ 2 were in-
cluded while in previous work all states with 7 ~5 were
used. Because this investigation is concerned with corre-
lations as exhibited by the spectral functions and the

(The last of these two equations is found by replacing the
limits of integration above with p~+ oo.) It is indeed
satisfactory that this very compact result agrees exactly
with the result of Koltun [14] in his diagrammatic
analysis of Brueckner theory. It illustrates the usefulness
of the EQP approximation. It should be noticed that for
hole states below the Fermi surface p(p)-1 which leads
to the sometimes used statement that "the Brueckner
second-order rearrangement energy does not contribute
to the centroid energy (for hole states) but only to the
width. " Koltun discusses this point.

This summarizes the formalism needed for the presen-
tation and discussion of the results presented in this pa-
per. Some relations referring to the Koltun sum rule are
shown in Sec. III, Pt. 3.

states of higher angular momenta have much smaller
correlations they were not included. As in previous work
the mean field used in defining the propagator in Eq. (15)
contained not V but only the first-order mean field V"'
calculated to be self-consistent in model M 1 (see Ref. [1]).
However, the computer program was rewritten to better
accommodate the calculation of the m dependence of the
fields. The momentum mesh was further increased from
0.1 to 0.2 fm ' with some small sacrifice in accuracy.
Each calculation of the mean field at a fixed momentum p
as a function of 120 values of co from —280 to 1722 MeV
took 87 s CPU on the YMP Cray at the San Diego Super-
computer Center. The spectral functions are strongly
peaked as a function of co especially around the Fermi
surface. In order to accurately do the co integrations, the
spectral functions were therefore calculated in a separate
program from the mean fields after putting them on a 1-
MeV mesh obtained by interpolation from the —13-MeV
mesh specified above.

The real part of the second-order mean field was calcu-
lated from the dispersion relation connecting it with the
imaginary part. This could in principle also be done for
the first-order but is not as straightforward because of the
background terms. The dispersion relation was for
reasons of technical convenience still used to calculate
parts of the E matrix that involve principal value integra-
tions. It should be noted that the sum rule expressed by
Eq. (8) probably relies on the dispersion relation between
the real and imaginary parts to be satisfied. %e are not
aware of any proof of this statement but the proof in the
case of the EQP approximation does certainly rely on
this.

2. Numerical results

The spectral functions were calculated at 11 values of
the momentum p between 0 and 2.25 fm ' (in units of A').

The normalization was satisfied for most momenta to
within 1% although for one momentum as much as 4%
is missing. The last column in Table I lists N(p) as the
integral in Eq. (8) in units of 2M. The missing strength
may be located above our upper limit co-1720 MeV.
The lower limit for a pole to appear is twice the potential
energy at the bottom of the Fermi sea which is well
covered within the range of co's that is used in the calcu-
lations (see the previous section). The convergence to full
strength at the upper range of co's, is, however, quite slow
as shown in Fig. 2. It is seen that almost 5% of the
strength lies above 500 MeV. It is to be expected that the
precise distribution of strength is tied to the potential
model that one uses. A larger short-ranged repulsion
give even slower convergence. In our phase-shift model
this relates to increased repulsive phase-shifts at high en-
ergy. It should also be realized, however, that the "nu-
cleons only model" that we use becomes unphysical at
these high energies; internal degrees of freedom of the nu-
cleons, particle production, etc. , would set in.

Occupation numbers p(p) are calculated from Eq. (17)
and shown in Table I. Comparing with the EQP (or
Brueckner) approximation p'(p) calculated from Eq. (20),
one sees a difference with the approximate being
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TABLE I. Units are in MeV and fm.

0.0
0.23
0.45
0.68
0.90
1.12
1.35
1.57
1.80
2.03
2.25

—74.1
—73.5
—67.8
—62.1
—50.7
—38.5
—24.4
—7.1

12.4
35.1

61.7

rh(p)

104.6
103.5
96.6
86.2
70.4
53.2
34.4
79.7

101.1
113.4
125.8

rz(p)

114.7 (107.8)
113.4 (106.6)
106.2 (99.6)
94.9 (88.9)
79.0 (73.0)
60.8 (55.4)
39.7 (35.6)
69.7
76.4

100.0
111.2

V("(p, coo)

—107.7+ iO
—107.7+ iO
—103.6+ iO
—98.2+ i0
—89.4+ iO
—81.2+ iO
—73.1+iO. 5
—65.2+ i2. 1
—59.1+i6.3
—52.7+ i 12.2
—45.4+ i 16.8

P'(2)( p ~ )

33.7+ i 24.7
33.1+i23.7
31.8+ i 19.3
26.8+ i 15.0
22.3+i8.9
16.9+i4. 3
11.3+i1.3
7.0+ iO. 1

4.3+ iO

2.9+ iO

2.0+ i0

p(p)

0.87
0.87
0.87
0.87
0.85
0.82
0.77
0.06
0.03
0.01
0.01

p'(p)

0.83
0.83
0.83
0.82
0.79
0.76
0.74
0.11
0.05
0.02
0.01

N(p)

0.99
1.00
1.00
1.00
0.99
0.98
0.98
1.00
0.97
0.96
0.99

-0.04~0.06 too small when going from the bottom to-
wards the top of the Fermi sea. At the Fermi surface it is
0.03 smaller. Similar differences are seen for states above
the Fermi momentum, but the approximate values are
now as expected larger to make up for the larger de-
pletion below the surface. Similar results for occupation
numbers calculated by the approximate method was al-
ready shown in Fig. 5 of Ref. [3]. That calculation was
independent in that the computer program was rewritten
to accommodate the full ~ dependence. Nevertheless it
agrees closely with the present result. The only numeri-
cally noticeable difference is at the Fermi surface. For
states just above we now find p'(p) =0.13 instead of the
previously found value =0.2f so t5at tBe discontinuity
(in the EQP approximation) now is 0.61 instead of the
previously found value of 0.52. Some difference is in fact
to be expected between these new calculations and the
previous. In the previous calculations the quasiparticle
energy defined by Eq. (10) did not include V' ' but only

V'" so that the derivatives with respect to co in Eq. (20)
are calculated at diff'erent values of co in the two cases (see
also Sec. III, Pt. 3).

Figure 3 shows that the spectral functions are peaked
closely to the quasiparticle values coo (indicated by short
vertical lines) except for the smallest values of momen-
tum p where the width is very large and the spectral
function actually is double peaked. The centroid (or re-
moval) energies rh(p) are indicated by the arrows in Fig.
3. They are seen to be shifted down in energy from coo

especially for states above the Fermi momentum so that
some of the latter actually lie below those that are in the
Fermi sea. This was also pointed out by Koltun [14]. It
was shown above that this shift according to both
Koltun's analysis and the EQP approximation should be
given by Eq. (23) and this is listed in Table I as rP(p).
One sees that this approximation in general gives -10%
too large removal energies. The values within
parentheses are obtained by setting p(p)=1 in Eq. (23)
for states below the Fermi surface and these actually
agree better with the numerical results r&. Thus the nu-

O
CO+o-

N
~~
CQ

a0 o—
Z

x0

35+ O
CO

p po
TM

O

C)
I I I I I I

-300 -100 100 300 600 700 900
Energy ~ Mev

FIG. 2. The normalization integral equation (8) as a function
of the upper limit co for the three momenta p=0.0, 1.35, and
2.25 fm ' (from left to right). Notice the slow convergence due
to the high-energy strength of the spectral function caused by
the short-ranged correlations.

I

-$0
I

0
Energy au gUleV)

FIG. 3. The spectral function as a function of (p, co). The
short vertical lines indicate the quasiparticle energy coo defined

by Eq. {10). The arrows indicate the removal energy rI, (p)
defined by Eq. (18). The three functions at, below, and above
the Fermi momentum 1.35 fm ' are strongly peaked and are cut
off. The actual maxima are from left to right 0.08, 0.16, and
0.13 MeV
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merical result agrees quite closely with the statement
made above in Sec .II saying that the Brueckner second
order rearrangement energy does not contribute to the

mean removal energy.

3. It oltun's sum rule

The total energy of a system is related to the spectral
function by

d3E=4 f dred f [p /2m —co]S(p co) .

(24)

This relation is in nuclear physics known as Koltun's sum
rule [14]. The factor 4 is due to spin isospin degeneracy.
Using our previous notations Eq. (24) can, after perform-
ing the co integration, be rewritten as

E=4—
3 p 2m —rI p pp2 — (2mB)

(25)

Replacing ri, (p) and p(p) in Eq. (25) with r&(p) and

p (p), respectively, i.e., using the EQP approximation one
finds

B.E. /A(EQP)=19. 5 (17.2) MeV .

The value within parentheses comes from using the
parenthesized r&(p) in Table I and is in remarkable agree-
ment with the "exact" value above. It was already noted
above that these rh(p) agree better with the exact values

ri, (p). Setting p(p)-1 in Eq. (23) (for rI, ) is anyway not
inconsistent for states below the Fermi surface as Koltun
also discusses. A related effect is that of the third-order
rearrangement term that was neglected in the present cal-
culations. It is actually proportional to the depletion
1 —p(p). Its inclusion would actually decrease the remo-
val energies by about 10% and this is roughly the
difference h.ere.

The sum rule involves a sum over actual occupation
numbers in the correlated medium. An alternate
(Brueckner) expression for the energy involves a sum over
model occupation numbers and is given by

I'F d pE =4f [p /2m + ,' V'"(p, coo)]n(—p)
o (2M)

(26)

with n(p) =1 below the Fermi surface and zero other-
wise. With V"' given in Table I one finds the expression
to give

With the previously calculated values of rh(p) and p(p)
shown in Table I one finds a binding energy per article

B.E. /A =17.4 MeV .

(B.E. /A)J&~=15. 5 MeV,

as described in Ref. [1]. However, in the present work
only states with J~2 are considered. The contribution
from the states with 2 (J & 5 is at normal density —1.2
MeV as found from the end of Sec. III in Ref. [1]giving

(B.E. /A)&~2=16. 7 MeV

which compares favorably with the result 17.4 MeV
above. But why does the expression in Eq. (26} yield a
binding energy which is 3.3 MeV larger than the earlier
(identical} calculation in Ref. [1]. The answer is that in

Eq. (26) the mean field is defined at co=coo but in Ref. [1]
the Brueckner self-consistent energy co& is defined by

cog =p /2m+ReV"'(p, cos)

so that two calculations are in fact not identical. The
difference between the two co's is the Brueckner second-
order rearrangement energy which is positive. Figure 6
shows that V'" increases with decreasing co and this ex-
plains the discrepancy.

4. E+ect of hole propagation

In Fig. 4 the solid curve shows a spectral function cal-
culated by the Brueckner method, i.e., with V defined by
Eq. (14). The dotted line shows the corresponding result
by the Malfliet method, i.e., with the X'+' defined by Eq.
(12). We remind the reader that the latter includes hole
propagations in the effective interaction. The calculation
is done at p =0 and, because this is a deep hole state, the
difference between the two methods should therefore be
at its largest here. Some difference is noticed but the hole
strengths have on the whole the same shape. The quasi-
particle energies are different in the two cases as shown
by the vertical lines but are rather meaningless quantities
here because of the large width. The mean field for the
two separate cases is shown in Fig. 5 by the solid and dot-

P Po

Tm
P 0.0

0

3 g)
Q I

V)

B.E. /2 =20.0 MeV,

i.e., substantially larger than the binding energies above.
The high-energy extrapolation of the phase shifts with all
J ~ 5 that is used in model M1 were normalized to give a
binding energy

-250 -160 -50 50 150

Energy td (MeV}

FIG. 4. Logarithmic plot of the spectral function as a func-
tion of co at p=O. The solid curve is from Brueckner theory
while the dotted curve is from MalAiet's theory as defined in
Sec. II.
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FIGe 6. These curves are similar to those in Fig. 5 but here
the first- and second-order terms are plotted separately.

ted lines, respectively. The imaginary parts both go to
zero at the Fermi energy as is to be expected and the gen-
eral shapes of the curves are the same. The curves for
real parts cross each other at about the quasiparticle en-
ergy. The relative agreement between these curves
should be contrasted with the significant difference be-
tween the first- and second-order terms compared indi-
vidually in Fig. 6. It should be noticed that the
Brueckner (solid) curve for Im V"' is zero below the Fer-
mi surface while the same is true for ImV' ' above the
Fermi surface, a fact that led to the simple relations de-
rived in the EQP approximation above. On the other
hand, no such simple relation exists with regard to first-
and second-order parts of ImX, in the figure shown by
the dotted lines ImX'" and ImX' ', respectively. The
imaginary part of 2" ' is not even qualitatively similar to

FIG. 7. This curve is similar to Fig. 5 but is at p =0.90 fm

the imaginary part of V'". So the two methods give
quite different results at this level of comparison. The
agreement is so much closer when looking at the sums of
first- and second-order fields. It should be noted that for
~=co„one should have ImX" '= —ImX' '. This is
satisfied to a good accuracy as seen from Fig. 5 and is a
good test of the numerical accuracy of the calculations
and in agreement with the Brueckner result. It is of
course expected because the lifetime of a particle at the
Fermi energy should be infinite at zero temperature. The
agreement between the two methods is somewhat closer
at a larger momentum exemplified by Fig. 7 at p=Oe90
frn ' although the ImX potential is not exactly zero here
at the Fermi surface as it should be. It was already
shown that the two methods agree exactly to second or-
der in K so that any difference is of third order and in-
volve hole-hole interactions [12]. These are included in
the Brueckner second-order rearrangement term V' ' but
only to a lower order from which the difference arises.

One may argue that for the Green's-function formal-
ism used here, the real-time formalism is awkward as
compared to that of some other works [5,20,21] at zero
temperature. But an important purpose of the present
work is to gain experience with the real-time formalism
applicable to nonequilibrium systems, where the other
formalisms fail as discussed repeatedly in past publica-
tions [11,16,18,19].

IV. SUMMARY AND DISCUSSIONS

A main purpose of this continuing investigation (with
previous work referenced above) is the exploration of the
kinetic theory in the Green s-function formulation given
by Botermans and Malfliet. It is believed to be important
to do this in a systematic fashion by first establishing con-
tact in the equilibrium limit with the more studied
method of Brueckner. Some formal comparison was
made in an earlier paper [12] and also discussed above in
Sec. II. The numerical comparisons found in Sec. III
essentially substantiate the earlier formal results. It is
found that the hole propagations missing in the



SPECTRAL FUNCTIONS IN NUCLEAR MATTER 1695

Brueckner E matrix are essentially contained in the
Brueckner second-order rearrangement energy. There is
some numerical difference between the two methods as
regards the total mean field. This is of course expected.
The difference that was pointed out above with reference
to Figs. 4—7 is of course subject to some numerical uncer-
tainty. It is felt, however, that the difference is real and
outside the limits of numerical accuracy. The Green's-
function method with the hole state propagator in the
effective interaction should in principle be the most accu-
rate of the two.

It is noted that the sign of the imaginary part of the
second-order term in Eq. (14) is opposite to that of other
works [5,20,21] using the Lehmann-Galitskii formalism.
As pointed out above this is of no consequence for the
present T=O calculations. The difference in sign be-
tween the chronological and retarded single-particle for-
malisms at zero temperature was pointed out by
Danielewicz [18]. The numerical differences for T)0
are not known. The real-time formalism, however, has
an advantage of being simpler to apply for this case and
of course for nonequilibrium situations where the other
formalisms do not apply or become awkward.

A complete solution of the Green's-function many-
body problem requires a self-consistent iteration involv-
ing spectral functions as seen from Eqs. (1), (2), etc. The
comparison discussed above was made in a first iteration
using the quasiparticle approximation. Using the com-
puted spectral functions in the next iteration would lead
to a much more computer intensive calculation involving
numerical integrations over the co variable. This may still
be a possible task using the separable phase-shift method
utilized in this paper. It was also found, however, that all
tests of the relatively simple EQP approximation suggests
this to be a more than adequate approximation to be used
for a second iteration. This will be explored further in a
forthcoming publication. The third-order rearrangement
energy [shown by the diagrams in Figs. 1(c) and 1(d)] is
absent in Eqs. (13) and (14) but will, as an example, be in-
cluded by this second iteration. It was already pointed
out above that this energy does not qualitatively affect
the results but it does have quantitative effects resulting
from energy shifts and this has an implication for exam-
ple in relation to Koltun's sum rule as discussed in Sec.
III, Pt. 3. It is a direct consequence of correlations and is

often referred to as a renormalization due to depletion of
states. The first iteration of Eqs. (1), (2), etc. , with the un-
correlated QC approximation for the spectral function
does not contain this renormalization but it is generated
by this first iteration, i.e., contained in a second iteration.
This of course has been well known since the early days
of Brueckner theory and with discussions of a fully renor-
malized theory (see, for example, Refs. [23—25)). The
Green's-function method appears to provide a scheme to
accomplish such a renormalization consistently.

The EQP approximation is found to be quite good at
normal density and zero temperature. If either of these
variables are increased, the imaginary part of the mean
field increases and this approximation may become less
useful. Its range of validity therefore still remains to be
explored (numerically).

The EQP approximation was furthermore found to
provide a direct proof of Koltun's results on centroid en-
ergies as was discussed above in Sec. III, Pt. 2. This is
not surprising in view of the fact that this approximation
for the spectral function establishes a link between the
Green's-function and Brueckner methods as shown in
Ref. [12]. Koltun's work was based on a diagrammatic
analysis while our results were derived directly from the
EQP approximation for the spectral function. In a fol-
lowing contribution in this series of papers it will be
shown that this approximation also is very helpful for
clarifying the connection between higher-order
Brueckner and Green's-function methods in particular as
regards the definition of single-particle (-hole) propagator
energies.
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