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Relativistic temperature-dependent Hartree-Fock calculation of spherical nuclei
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The temperature-dependent Hartree-Fock approach is extended to the relativistic quantum-field-
theory framework; exchange of o, co, p, and m mesons and photons are included. Application is made to
two spherical nuclei, ' 0 and Ca. Temperature dependences of excitation energies, single-particle spec-
tra, charge densities, and entropies are evaluated and compared to corresponding nonrelativistic calcula-
tions. We find a considerably larger thermal response for these nuclei when compared to the nonrela-
tivistic results.

PACS number(s): 21.60.Jz, 21.30.+y, 21.10.—k, 21.10.Dr

In recent years, stimulated by the heavy-ion physics
and astrophysics, there has been a growing interest in the
properties of highly excited nucleus [1-3]. At the labora-
tory level, these nuclei can be produced efficiently
through the compound-nucleus reactions in heavy-ion
collisions. Early attempts [4] of studying highly excited
nuclei were carried out by statistical mechanical
methods, level densities were calculated on the basis of
single-particle levels obtained by schematic models, or
more realistic models such as Woods-Saxon. Such a cal-
culation is not self-consistent in that the result of level
densities does not feed back to the single-particle ener-
gies, and also only the zero-temperature energy levels are
used in the calculation. Later a temperature-dependent
Hartree-Fock (TDHF) theory was developed for the
Schrodinger equation for nonrelativistic nucleons in-
teracting through static, two-body potentials. In most of
these calculations [5,6] phenomenological effective zero-
range forces were used. As the energies of experiments
have been increasing, especially at energies attainable in
the Relativistic Heavy-Ion Collider (RHIC), it is neces-
sary to extend these studies to the relativistic realm. A
recent covariant mean-field calculation [7] of nuclear
matter at finite temperature is such an effort. In this
work, however, we are concerned with a temperature-
dependent relativistic approach for the finite nucleus.

Quantum relativistic field theories of nucleons, coupled
to explicit mesonic degrees of freedom, have been suc-
cessfully applied to a wide range of nuclear phenomena
such as nuclear matter, neutron stars, finite nuclei and
hypernuclei, as well as dynamic processes like nucleon-
nucleus and electron-nucleus scattering [8]. In the nu-
clear structure problem, self-consistent Hartree (H) and
Hartree-Fock (HF) calculations in relativistic mean-field
theory have been shown to reproduce many ground-state
and low-excited-state properties of the spherical nucleus.
Recently these calculations [9—12] were successfully ex-
tended to the nonspherical nuclei. Examples range from
light deformed nuclei in the sd shell to heavy deformed
nuclei in the rare-earth region and include both even-
even and odd-A nuclei.

In this work, using the framework of relativistic quan-
tum theory, we extend the relativistic mean-field theory

to a relativistic temperature-dependent Hartree-Fock
(RTDHF) calculation to study the highly excited nuclei.
We calculate results for two representative nuclei' 0 and

Ca, with special attention paid to the thermal response
of these two nuclei.

It has usually been assumed that in the heavy-ion col-
lision process these highly excited nuclei can reach
thermal equilibrium, thus the method of quantum statist-
ical mechanics can effectively be employed to study prop-
erties of hot nuclei. There are arguments about the valid-
ity of standard methods of quantum statistics mechanics
when applied to a system which has a small number of
particles, such as a nucleus. However, recent model stud-
ies of quantum spin chains have demonstrated that a
quantum system with few degrees of freedom displays
quantum-statistic behavior and can be described properly
by the canonical ensemble in spite of the fact that only 2
states are presented in Hilbert space. So the validity of
the quantum statistics mechanics in the present study is
assumed.

In the mean-field approach, usually the grand canoni-
cal ensemble is employed. The use of grand canonical
equilibrium for the description of excited nuclei is mean-
ingful only when the nuclear temperature T is small com-
pared to the chemical potential, so the occupation proba-
bilities for unbound states are not so large as to lead to
the nonequilibrium processes of particle emission; under
this condition T is usually constrained below 5-6 MeV.
This is also the limit we adopt for our study in this paper.

We start with the following Lagrangian which couples
nucleons to four mesons (o, to, tr, and p) and the photon
(A"):

L,=g %o-% —g %~1'y„% — Cy, @~~%8„~
m

g~'Pp"ry„%' e%'y—„2(1+v3) A "0—' . —

Note that we adopt the pseudovector (PV) coupling for
the pion, since the relativistic nuclear matter HF calcula-
tion and other considerations favor this coupling scheme
[13]. From this Lagrangian the Hamiltonian can be ob-
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tained by the usual procedure; then by using Green's
functions to express the meson fields in terms of the nu-
clear sources, the Hamiltonian can be expressed in terms
of the nucleon fields only [10]. Then quantizing the nu-

cleon field we get the following Hamiltonian:

H= y &alTlp&c'. c,+-,' g &aplvlny&c'. c',c,c, ,
aP aPy5

(2)

showed that a good basis can reduce the number of terms
required in the expansion when the convergence test is

performed. Another merit of our basis is that it has a
realistic asymptotic behavior. %'e employ the same basis
states as we used in Ref. [10],namely, the set of Hartree
solutions for the same nucleus. For the highly excited
states, it is crucial that the continuum should be properly
included. The basis states in the continuum have been
discretized by confining all wave functions within a large
sphere (R =10 fm}, then imposing the linear boundary
condition of the MIT bag model. Our results showed for
the nuclear ground state ( T =0) that the artificial bound-

ary condition had a very small effect for states near the
Fermi surface when compared with states satisfying the
true boundary condition; for those deep inside there are
almost no effects at all. By extension we believe that the
eftect of the boundary will be similarly small for the self-
consistent states resulting from our calculation, and this
gives us a convenient way to deal with the continuum.

VVe consider the ground state of an A particle system is
in the form

y, (1)y,(1)y"(1)y (2)
a=1

(5)

—m r

X y 5(2)y „(2)B„(1)8'(2)
4mr

In the finite temperature we have the following con-
tractions [15]:

V, =—,'[1+~3(1)][1+r&(2)]eyo(1)yo(2)y (1)y"(2) 1

P 4ar

C Cp=n 6p,
Cite ' =(1 n)5 p

—.
(6)

The retardation effect in the exchange terms of Eq. (3)
is neglected for simplicity; however, according to our cal-
culation [14] this effect is small for the light nuclei, and
for the purpose of this investigation its effect should be
negligible.

The greek letters in Eq. (2) denote the set of quantum
numbers characterizing the single-particle states. Since
we consider spherical nuclei, j (angular momentum), and
its third component m are good quantum numbers, along
with t3 (third component of isospin) and ~ (parity}, i.e.,
a=a (t3, m, j, tn). Single-particle states are expanded in a
spherical basis li ) as

G„,(r)
i P„~(r )

r

Here n is the mean occupation number for the single-
particle state n.

The grand potential can be written as

n=((H)) —
i (&X)&—TS .

Here ((H)) and ((H)) are the ensemble average of the
Hamiltonian and the number operator, JM is the chemical
potential, S is the entropy, and T is the temperature. As
is conventional, temperature T is given in energy units in
this work.

200

la&= gc, li &—= gc„ F„„(r)
(r) .

r 150—

In principle, we can choose any complete orthogonal
set for the basis functions, for example, spherical har-
monic oscillator wave functions. However, in this work
we choose a basis which is the set of so1utions of a Dirac
equation with a potential as close as possible to that of
the nucleus in question, since our earlier study [10]

tt0
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520 783 770 138 100.0 141.6 5.89 0.9771

TABLE I. Parameters of Lagrangian. The meson masses are
in MeV, the coupling constants are dimensionless.
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FIG. 1. Excitation energies of Ca. Dotted line is four,

dashed line is six, dot-dashed line is eight, and solid line is ten

major shell basis.
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In the HF calculation, the entropy 5 is given by the
forni for a system of noninteracting fermions:

S=—g In inn +(1—n )ln(1 n—)J .

By minimizing the grand potential 0 with respect to

the mean occupation number we are able to obtain the
distribution function (9); and by minimizing the grand
potential with respect to the single-particle wave func-
tions (in our case the expansion coefficients), with the
constraint that the wave function be normalized, we can
get the finite temperature Hartree-Fock equation (10):

1

1+exp[(e, p—)/k, T]
' (9)
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Now at a certain temperature T, for a given set of
single-particle states, and restricting the average particle
number to be the number of nucleons in the nucleus,

&N)=gn

we can determine the chemical potential p, . Therefore
Eqs. (9)—(11) form a set of equations which can be solved
self-consistently by the method of iterations. A stable
solution can usually be reached within 30 iterations; the
criterion for a stable solution we used is that the
difference of all single-particle energies during several
successive iterations should be less than 5 keV. In actual
calculations, we determine the proton and neutron chem-
ical potentials separately from proton and neutron num-

ber Z and N.
Before we solve the HF equation (10), we must deter-

mine the parameters in the Lagrangian (1). In this work
we use parameters fitted to nuclear matter data [16];they
are also successfully used to calculate both spherical and
nonspherical nuclei at zero temperature [11,14]. These
parameters are shown in Table I.

In a practical calculation, the expansion basis (4) must
be truncated after a fixed number of N basis states. Any
reliable results should be independent of N, so the num-
ber N must be large enough to ensure that satisfactory
convergent solution is reached. One should notice, how-
ever, that as the temperature increases more highly excit-
ed single-particle states will contribute in the distribution
function (9); thus it is conceivable that a larger basis is re-
quired for a higher temperature. Therefore to test con-
vergence we first calculate the Ca excitation energy
E'(T)=E(T)—E(0) from T=O to 6 MeV by using

0.08
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0.04
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0.00
0 4

Radius R (fm)

FIG. 2. Neutron single-particle spectrum of ' O.

I

bases of four, six, eight, and ten major shell wave func-
tions, respectively. The result is shown in Fig. 1. As one
can see by using the eight major shell basis the results
converge nicely within the temperature range considered
in this work. We remark that at T =0 a four major shell
basis is good enough for Ca, which is about one-fifth of
the number of states in an eight major shell basis. In the
following all the results are obtained by using eight majo~
shells.

We display the neutron single-particle spectra of ' O
and ~Ca as a function of temperature in Figs. 2 and 3.
One can easily notice that the thermal response of ' O is
greater than Ca. This can be understood if one realizes
that most contributions of thermal response come from
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FIG 3G. 3. Neutron single-particle spectrum of "Ca.
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the last filled shell near the Fermi surface at zero temper-
ature, since the particles of last filled shell of ' 0 compose
a large proportion of the total number of particles, this
nucleus is prone to get excited. When compared to the
nonrelativistic self-consistent calculations [1,5], our re-
sults show a greater thermal response for the same nuclei.

In Figs. 4 and 5 the proton charge densities of 0 and
Ca are shown with T=O, 2.5, and 5 MeV. One interest-

ing feature of Ca is that as temperature increases from 0
to 2.5 MeVo . e, the charge density in the central region is

significantly depressed; however, as T goes from 2.5 to 5

MeV it picks up again. This can be explained in the fol-

lowing way: When ~Ca is moderately heated (T =2.5

MeV) the 2si&2 state, which has a large contribution to
the density at the center and is very close to the Fermi
surface at T =0, becomes greatly depopulated, thus leav-

ing a "cavity" in the center of the nucleus; as T reaches
higher values (T=5 MeV) there are higher ns, ~i states
participating in the excitation; thus the "cavity" is some-
what filled in. We also observe that as higher single-

particle states join in when T increases, the nuclear sur-

Q

—40—
K I ps jz

face is pushed out, which indicates a possible dissolution
o t e nuclear surface. Our results contrast sharply with
the nonrelativistic calculation using a zero-range nuclear
orce [5], where nuclear surface does not change at all,

even at T=5 MeV, as compared to T=0, and the proton
density is unchanged beyond R =3 fm. Our results are,

owever, qualitatively in agreement with the nonrelativis-

althou
tic ca cu ation using realistic effective nucle r f [1],ear orces
a ough we find a greater thermal response. For exam-

p e, the excitation energy found at T = 5 MeV is 83, 100,
and 123 MeV in Ref. [5], in Ref. [1],and in this work, re-
spectively. This seems to confirm the conclusion that the
phenomenological zero-range nuclear force shows a
smaller thermal response.

The last point we have investigated is the importance
of self-consistency in the temperature-dependent calcula-
tion. To do this, we calculate the entropy S in two ways;
one is in a completely self-consistent manner (Sl), the
other (S2) is calc
b

u ated using the set of occupation num-
ers n obtained from Eq. (9) but with a fixed single-

en o e t e zero-particle spectrum, which is chosen t b th
temperature spectrum. The results are shown in Fig. 6
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FIG. 5. Charge densities of ' Ca. Solid line is zero, dotted
line is 2.5, and dashed line is 5 MeV temperature.

—20—

C4

1p
40—

td)
—40—

0

e —60
0 2 3

Temperature (T)

20—

0
0 2 4

Temperature {T)
arge densities of O. Solid line is zero, dotted lineFIG. 4. Ch 16

is 2.5, and dashed line is 5 MeV temperature. FICx. 6. En tropy of Ca as a function of temperature.40
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for Ca. We find S1 and S2 are almost identical at low
temperature ( T & l. 5 MeU); however, at higher tempera-
ture there is substantial deviation, especially when T is
greater then 5 MeV. We stress that self-consistency is
important in the temperature-dependent HF calculations.
Entropy is particularly interesting due to its relation with
the nuclear energy level density. According to this calcu-
lation, we conclude that at low temperatures, T &1.5
MeV, one could use the zero-temperature spectrum to
calculate the level density, as in some earlier works [4].

To summarize, we have extended the TDHF to the rel-
ativistic framework. We have performed a thorough con-

vergence test to validate our calculation in the tempera-
ture range 0-5 MeU. Our results predict substantially
greater thermal response for light nuclei as compared to
the previous, nonrelativistic TDHF calculations.
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