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Do nucleons in abnormal-parity states contribute to deformation?
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We consider intrinsic states of highly deformed nuclei in the framework of the universal Woods-Saxon
model and show that valence nucleons in abnormal-parity high-j states contribute -20% to the electric
quadrupole moments of these nuclei. Similarly, we show that in the single-shell asymptotic Nilsson

model this contribution is -25% if reasonable effective charges are employed. We discuss, at some

length, procedures used to arrive at reasonable effective charges. Both models reproduce the measured

B(E2;0&+—+2&+) values in the rare-earth and actinide regions without the need for normalization con-
stants. No support is found for the assumption made in the pseudo-SU(3) and the fermion dynamic sym-

metry models that valence nucleons in abnormal-parity high-j states do not contribute to deformation.
This counterintuitive assumption leads to an underestimate of the B(E2;0,+ ~2&+ ) values, which is com-

pensated in these models by the use of appropriate normalization constants. Once the magnitudes are
fixed, both models do correctly reproduce the B(E2) trends.

PACS number(s): 21.60.Fw, 21.60.Cs

I. INTRODUCTION

A basic property of a nucleus is the probability of elec-
tric quadrupole (E2) transitions between its low-lying
states. In even-even nuclei, the reduced E2 probability
B(E2;0,+~2,+) from the 0+ ground state to the first-
excited 2+ state [1,2] is especially iinportant, and for a
deformed nucleus this probability [denoted here by
B(E2)1'] depends on the magnitude of the "intrinsic"
quadrupole moment (quadrupole moment of the intrinsic
state of the nucleus) and, hence, on deformation. In this
paper we consider nuclear deformation as a given and do
not enquire how it is generated by microscopic interac-
tions.

In a shell-model framework, properties of low-lying
states of nucleus are determined by valence nucleons
moving in single-particle orbits within a major shell
defined by the magic numbers. The contribution of the
core to the intrinsic quadrupole moment (that is, the po-
larizing effect of interactions of a valence nucleon with
core nucleons) is usually taken into account by associat-
ing an effective charge with a valence proton or neutron.
On the other hand, in the case of "universal" models em-

ploying either a folded-Yukawa [3] or Woods-Saxon [4]
potentia1, the intrinsic state is calculated by explicitly in-

cluding all nucleons. Because these models calculate the
total electric quadrupole moment of all protons and not
just valence ones, it is not necessary to employ effective
charges, as is done in a shell model.

Again, in a shell-model framework, the intrinsic quad-
rupole moment of a nucleus is determined by the mass
quadrupole moment of valence nucleons and their
effective charges. The magnitudes of the mass quadru-
pole moment can be different for different models with

the same single-particle valence space, but the effective
charges that simulate the coherent quadrupole polariza-
tion of the core [5] should be the same for different mod-
els with the same core.

An interesting question is the relative contributions of
nucleons in the so-called "normal-parity ( n )" and
"abnormal-parity (a)" single-particle states in a major
shell to the magnitude of the intrinsic quadrupole mo-
ment. For protons (Z) or neutrons (N) in the 28 —50,
50—82, 82—126, and 126—184 regions, the "abnormal-
parity" single-particle states are the 1g9&z, 1h»&2, li, 3/2,
and 1j»zz states with high angular momenta (high-j) em-

bedded within (or intruding into) the bunch of "normal-
parity" states. This question is interesting for the follow-
ing reason. From the simple Nilsson model [6] (with or
without 2A'co mixing) to more complicated universal mod-
els, most models suggest that occupied abnormal-parity
states play an important role in determining the magni-
tude of the quadrupole moment of the intrinsic state.
Mean-field calculations [7,8] also arrive at the same con-
clusion.

By contrast, the pseudo-SU(3) inodel [9] as well as the
fermion dynamical symmetry model [10] require, at least
in their simpler versions, nucleons in an abnormal-parity
high-j state to be coupled to a seniority-zero state even
when remaining nucleons (in normal-parity states) of a
particular valence shell are in a maximally deformed
state. Thus nucleons in an abnormal-parity state do not
contribute actively (via their quadrupole moments) to the
magnitude of deformation while still contributing pas-
sively to its trend by influencing the sequence of occupa-
tion of normal-parity states. It is an aim of this paper to
inquire how we11 this diminished role assigned to
abnormal-parity states in these models is justified. This
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question can be answered only if the same effective
charges are employed ab initio for all models with the
same core.

We have shown elsewhere [11,12] that a variety of
schematic shell models can reproduce deformation trends
in a satisfactory manner so long as the concepts of magic
numbers and effective charges are integral parts of such
models. With a "reasonable" choice of effective charges,
agreement with the magnitude of deformation in each re-
gion can then be achieved through an overall norrnaliza-
tion factor. If this factor is also reasonable (say, close to
unity), it can be claimed that a particular model has
greater validity, at least for this purpose, than if this fac-
tor were significantly different from unity. Therefore, in
this paper, we wi.sh to keep close track of this factor.

This paper is organized as follows. In Sec. II we recap-
itulate basic formulas relating measured B(E2)t values
to mass quadrupole moments of protons and neutrons
and their effective charges. We discuss our choice of
reasonable effective charges. We show that information
obtained in the framework of the universal Woods-Saxon
model (UWSM) concerning intrinsic mass quadrupole
moments of protons and neutrons may be used to deduce
an effective charge for valence neutrons. For a particular
nucleus, the same model gives the fractional contribu-
tions of valence nucleons in abnormal-parity states to its
total intrinsic mass and electric quadrupole moments.
We also describe in this section the procedure followed to
determine whether the Nilsson model or the pseudo-
SU(3) model or, for that matter, any other shell model
gives the correct magnitude of nuclear deformation.

The UWSM does have ten parameters defining the
Woods-Saxon potential, and extensive computations are
required to determine equilibrium deformations; howev-
er, good agreement with 8(E2)f data is achieved in all
regions (see, for instance, Ref. [13] for data in the rare-
earth and actinide regions) without effective charges and
with an overall normalization factor very close to unity.
Moreover, this model does not treat abnormal-parity
states in any special way. In Sec. III we use this model
and expressions given in Sec. II to calculate neutron
effective charges and abnormal fractions of quadrupole
moments for selected nuclei.

In Sec. IV, we consider the single-shell asymptotic
Nilsson model (SSANM). We first show that this model
gives the correct magnitude of mass quadrupole moments
in the sense that measured 8 (E2) f values are optimally
reproduced with reasonable effective charges and an
overall normalization factor close to unity. We then cal-
culate abnormal fractions of the total intrinsic mass and
electric quadrupole moments of selected nuclei using this
model also.

Section V contains a description of the pseudo-SU(3)
model (PSM), its basic assumptions, and its use in calcu-
lating intrinsic quadrupole moments. We show that the
model assumption of seniority-zero coupling for nucleons
in abnormal-parity states leads to an underestimate of the
intrinsic quadrupole moment. To restore good agree-
ment with measured 8 (E2)1 values, it is necessary to use
a normalization factor that is appreciably greater than
unity The fermion .dynamical symmetry model (FDSM)

treats nucleons in abnormal-parity states in a similar way,
but the contexts in which SU(3) symmetry arises for
normal-parity states are quite different in these two mod-
els. Therefore intercomparisons between them and be-
tween measured 8 (E2)1 values and predictions are also
of interest. A summary appears in Sec. VI.

II. INTRINSIC E2 MOMENTS
AND EFFECTIVE CHARGES

If the nucleus is described in terms of the UWSM, which
includes explicitly core (c) as well as valence (v} nu-
cleons, Qo is just the intrinsic quadrupole moment of all
protons (n }. Therefore

Qo =eQ. =e [Q'.+Q."], (2)

where e is the proton charge and Q„the mass quadrupole
moment of protons, which is split into a Q' part for core
protons and a Q"„partfor valence ones. In this paper we
count as valence nucleons those exceeding the adjacent
magic number. The mass quadrupole moment of neu-
trons (v) also has Q; and Q„"parts which do not contrib-
ute, in the UWSM, to the electric quadrupole moment.

In a shell-model description, Qo is defined in terms of
the mass quadrupole moment Q„" (Q") and effective
charges e (e„)of valence protons (neutrons) by

Qo=e Q'+e„Q"„.
Effective charges e (e, ) may be written as

e =e(1+a ) and e„=ea,,

(3)

(4)

where a and a take into account the effect of the qua-
druple polarization of core protons by valence nucleons.
Using self-consistency arguments, Bohr and Mottelson
[15] have estimated, as a first approximation, that
a =a,=Z/A, but they have also suggested that a„
should be somewhat greater than a because the interac-
tion between a neutron and a proton is stronger than that
between two protons (or neutrons). Therefore we rewrite
Eqs. (4) as

e =e[1+(Z/A)] and e =e(Z/A)e, (5)

where the parameter c, determining the neutron effective
charge, can vary from 1 to 3.2. [When E=3.3, e exceedse„for ' Er, ' Yb, '~Hf ' W, ' Qs, and ' Pt for which
measured B(E2)$ values are known and e„&e is un-
reasonable. ] The average value of E between these two
extremes is 2.1. We consider e =e [1+(Z/A ) ] and
e =e(Z/A}2. 1 to be reasonable effective charges for
heavy deformed nuclei.

What are some semiempirical e and e„values ob-
tained in shell-model calculations for heavy spherical nu-
clei near closed shells? Byrne et al. [16] found that
e =1.5e reproduced the measured quadrupole moment

The 8 (E2)1 value of a deformed nucleus is given to a
good approximation [14] in terms of the electric quadru-
pole moment Qo by

B(E2)$ = (5/16m ) I QO I' .
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of the 2849-keV 11 state in ' Po and of the 2641-keV,
—", + state in ~~'At. In ~2Rn, Warburton and Brown [17]
found that e =1.27e gave the best fit to E2 data. For
neutrons the average of effective charges deduced by
Yoshida and Zamick [18] by fitting E2 data in

' Pb is e =0.80e if the states of these isotopes are
described in terms of single shell-model configurations.
In a later study, Thompson et al. [19] showed that
e„=l. le reproduced the B(E2)f values for ' Pb.
More recently, a detailed calculation [20] has been car-
ried out for Pb in which two neutron holes are allowed
to occupy the six lowest (2p, /2, 2p3/2 If5/p If7/p,
Oh9/2, and Oi&3/2) hole orbits. With wave functions re-

sulting from the McGrory-Kuo interaction, the B (E2)1
value for Pb is reproduced with a state-independent
effective charge e =0.84e. Taking an average, we obtain
e =1.38e and e„=0.91e. This e value is almost the
same as the Bohr-Mottelson estimate [see Eq. (5)] for
these nuclei (which all have ZA '=0.4), but this e„
value implies c, =2.3, which is slightly higher than
c.=2. 1, deemed reasonable in the preceding paragraph.

Problems involved in estimating efFective charges via
perturbation theory have been reviewed by Yoshida and
Zamick [18]. They support the expectation that a„&a
(or s & 1), but do not provide definite estimates. With in-
formation contained in the intrinsic state generated by
the UWSM, we can obtain a nonperturbative estimate of
s by equating Qp expressed in two different ways [Eqs. (2)
and (3)) and using Eq. (5). We write

Qo=e(Q +Q

=e[(1+ZA ')Q'+ZA 'eg"„],

B (E2)1 =(1.02 X 10 ) A C

X[(1+ZA ')Q'+(ZA ' )Q" ] b

(10)

with C,d„and s as adjustable parameters [21].
In previous papers [2,12], we wrote Eq. (10) in a slight-

ly different form as

B(E2)t=(1.02X10 ')A C

X [Q" +(e„/e )Q„"]e b

and treated C,d, ~
(which also absorbs e ) and e„/e„as

parameters whose fitted values were then given in Table I
of Ref. [12]. Comparison of this equation with Eq. (10)
shows that we have now introduced effective charges ex-
plicitly. If the same effective charges are now used with
different models, C,d, &

of Eq. (10) will reflect model as-
sumptions concerning only the mass quadrupole mo-
ments.

We use Eq. (10) with both the SSANM and PSM as fol-
lows. Parameter c is varied from 1.0 to 3.2. For each
value of c., the optimum normalization constant C,d, &

(and its uncertainty) is obtained by a least-squares fit of
calculated B (E2) t' values to measured ones. If the mod-
el space and assumptions are valid, we should find

C,d, i =1 for an agreed upon value of c,. This is the key
procedure that we have adopted.

Finally, contributions of valence nucleons in
abnormal-parity (a) states to the intrinsic electric (e) and
mass (rn) quadrupole moments are expressed by fractions

f defined as follows. In the UWSM

which, when solved for c,, gives

s =(Q' —ZA 'Q"„)/ZA 'Q"„. (7)
and

f:=eQ"'/eQ„ (12)

Qp=C, d,([e„g"+e Q„"]

and Eq. (1) as

B(E2)t=(5/16m. )C,d„[eg" +e Q"„]~.

(8)

We will evaluate c for selected nuclei in the next section.
Effective charges that simulate coherent quadrupole

polarization of the core should not depend on the choice
of configuration subspace chosen within a major shell to
describe a given nucleus. We expect, however, some
differences between effective charges for valence nucleons
in difFerent single-particle states. These differences have
been ignored in Eq. (3). Mass quadrupole moments do
depend on the configuration space of valence nucleons,
and Q" (Q,") values will vary depending on model as-
sumptions. To compare with experiments, we modify
Eq. (3}as

f. =(Q."'+Q,"')/(Q. +Q, » (13)

and

f;=(e Q"'+e Q„"')/(e Q" +e„g„") (14)

fm —(gu, a+gu, a)/(gu +gu ) (15)

where Q" ~„~is the total mass quadrupole moment of all
Valence protons (neutrons). (In the SSANM the core nu-

cleons, by definition, have zero quadrupole moment. )

When calculating Q values, we have, throughout this pa-
per, ignored the inhuence of pairing correlations.

III. UNIVERSAL WOODS-SAXON MODEL

where Q"'~„~ is the total mass quadrupole moment of
valence protons (neutrons} in abnormal-parity states and

Q ~„~is the total mass quadrupole moment of all protons
(neutrons). In the SSANM

It is convenient to express quadrupole moments (as we
have done throughout this paper) in units of the oscilla-
tor size parameter a ( =Pi/Mao), where M is the nucleon
mass and A'co=413 ' MeV. The numerical value of a
is 0.0101A '/3 b Effective cha. rges are given by Eq. (5).
In the chosen units, Eq. (9) becomes

This model [4] calculates the equilibrium deformation
of a nucleus by minimizing the energy of its intrinsic state
as a function of the shape parameters Pz and P4 of a
Woods-Saxon potential. The total energy of all nucleons
is expressed as a sum of a macroscopic contribution
E „„(Z,N, P2, P4) calculated using the liquid-drop model
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and a microscopic contribution E;„,(Z, N, Pz, P4}
representing the Strutinsky shell correction together with
pairing correction. The Woods-Saxon potential is
specified by ten (constant) parameters whose values are
given in Refs. [4] and [13].

Our interest here is to use the UWSM for three pur-
poses: (a) Calculate parameter e [via Eq. (7)] for 5~ Ces6
and 88 Ra134 which are light nuclei in the rare-earth and
actinide regions, respectively, for which this model gives
a prolate equilibrium intrinsic state that has a minimum
number of nucleons in abnormal-parity states. (b) Calcu-
late abnormal fractions of the total electric and mass
quadrupole moments [via Eqs. (12) and (13}]of highly de-
formed nuclei. For this we consider 58 Ce70, 68 Er&oo, and

9s Cf,5z because their measured 8(E2)l values are
among the largest in three different regions [50 &Z & 82,
50&N&82 (tin region); 50&Z & 82, 82&N &126 (rare-
earth region); and 82 & Z & 126, 126 & N & 184 (actinide
region)]. (c) Determine the extent to which deformed
states of abnormal parity in the valence shell contain the
spherical high-j intruder states of the shell. To do so we
examine in deformed nuclei the structure of the deformed
~k

~

=
—,', —', , and —,

' states originating from the high-j in-
truder states.

A. EfFective charges

We have calculated the properties of the intrinsic
states of ' Ce and Ra needed to determine c and listed

them in Table I. The first part of this table gives the mass
quadrupole moments Q' and Q'„ofprotons and neutrons,
respectively, in states belonging to the shell-model core.
Thus, for 88 Ra, 34 Q' =53.1 is the sum of mass quadru-
pole moments of 82 protons in the deformed states aris-
ing from the ls, lp, ld 2s, 1-f-2p-lg9/z and Ig7&z 2d 3s---
1h„&2 shells. In the second part, we list values of
l
k

l

=
l (j, ) ~

and corresponding mass quadrupole mo-
ments qk=(k, i ~qolk, i) for valence nucleons. Label i
denotes different states with same k, and

qo =v'16m ISr Yo is the single-particle mass quadrupole
moment operator. In 88 Ra134 six valence protons occupy
states with k =+—,', +—,', and +—,', while eight
valence neutrons occupy states with k =k —,'+, k —,'+,
6—,'+, and +—,', the last of which is an abnormal-parity
state. In the third part, we list the Q"„~,

~
value for

valence protons (neutrons) obtained by summing the qt
values and then split this Q" ~„~ value into normal
(Q„'~„~) and abnormal (Q' ~, ~

) contributions. In the last
part, we give values of s calculated via Eq. (7) and of f,'
and f, calculated via Eqs. (12} and (13}, respectively.
The values of 2. 1 (' Ce) and 1.8 ( Ra) for e deduced
from the UWSM are close to the adopted value of 2.1,
thereby confirming that our choice in Sec. II is reason-
able indeed. (Effective charges e„,e„for valence particles
implied by the UWSM are 1.40,0.85 for ' Ce and
1.40,0.71 for Ra.)

TABLE I. Quadrupole moments (in units of a =0.0101' '~' b) of selected barely deformed nuclei
according to the UWSM.

144
58Ces6

Pz = 0.112,P4 =0.024

22288~134
Pz = 0.112,P4 = 0.056

Q» = 27.7

protons (n)

Q~ = 46.4

neutrons (v)

lkl'

Q» = 53.1

protons (zr)

Qv = 74.5

neutrons (v)

lkl'

1+
2
3+
2
1+
2
5+
2

5.03

2.58

3.42

—0.16

1—
2
3-
2

7.35

3.90
2
3
2
1—
2

5.88

3.84

5.17

1+
2
1+
2
3+
2
1—
2

8.99

6.90

5.96

7.82

Qv = 21.9
Q»'" = 21.9
gva p

Q„"= 22. 5

Q„"'"= 22. 5

gv, a

Qv = 29.8

Q»'" = 29.8
gV,a

Q„"= 59.3

g,""= 43.7
QY' = 15.6

e= 2.1
e 0a

Ill 0a

e= 1.8

fa p

f, = 0.07
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TABLE III. Probability that low-lying abnormal-parity deformed states in different regions contain the high-j intrUder state.

protons (x)

J~ —&v*

128ss«vo
neutrons (v)

J.—&v

168
68Er100

protons (x) neutrons (v)
aJv= .aJ~= li

~ aJy J15/2

250
98Cf152

protons (m) neutrons (v)

2
Ca

2
Ca

J y

2
Ca

J x

2
Ca

J

2
Ca

J x

2a
J y

0.69 0.68 0.64 0.60 0.64 0.61

0.74 0.74 0.70 0.65 0.68 0.65

0.81 0.81 0.78 0.72 0.75 0.69

B. Abnormal fractions of quadrupole moments

We next proceed to estimate abnormal fractions of the
quadrupole moments for ' Ce, ' Er, and Cf (see Table
II, which is similar to Table I). Consider, for example,
the properties of &8 Er&00. According to the UWSM, even

though only eight valence protons (-12% of the total
number of protons) are in abnormal-parity states, they
contribute f,'=0.28 or 28% to the total electric quadru-
pole moment. These eight protons together with six
valence neutrons (for a total of 14 valence nucleons in
abnormal-parity states representing -8% of the total
number of nucleons) also account for f, =0.23 or 23%
of the total mass quadrupole moment. The correspond-
ing f,' and f, values for ' Ce and Cf are given in
Table II. We conclude from these values that, according
to the UWSM, nucleons in abnormal-parity states con-
tribute typically -20% to the deformation of highly de-
formed nuclei.

At first sight the low c values deduced for these highly
deformed nuclei (see Table II) appear to be at variance
with the adopted v=2. 1. In the UWSM abnormal-parity
states in the valence shell acquire large quadrupole mo-
ments as a result of coherent mixing with other single-
particle states with the same parity that belong to the
shell above. These additional quadrupole moments lead
to low c values, which will be appropriate only for a shell
model in which the entire 2Am single-particle space is in-
cluded for abnormal-parity states. If the quadrupole mo-
ments of nucleons in abnormal-parity states given in
Table II were to be replaced by corresponding moments
from a single-major-shell Nilsson model (in which
abnormal-parity states are restricted to be pure single-j
states) with the same k value, the resulting s values will
be closer to 2.1.

C. High- jcontent of abnormal-parity states

Finally, we determine for ' Ce, ' Er, and Cf the
content of abnormal-parity states yk that lie outside the

major shell. These states can be expanded in terms of the
single-particle states g.k with definite angular momentum
jas

pk —g CJkgJk .
1

(16)

The probability that a deformed state yk contains a
spherical state p k with angular momentum j (with k be-
ing the projection of j along the axis of symmetry) is
given by ~C~k ~

. We want to determine the probability
that abnormal-parity deformed states pk in the S0-82,
82-126, and 126—184 regions contain the spherical states
1h11~2, li13/2 and 1j»&2, respectively. These probabili-
ties as determined by UWSM wave functions are listed in
Table III.

From Table III we see that abnormal-parity states of
the UWSM, and presumably of these nuclei, contain ap-
preciable admixture of states from the next shell. This
table essentially provides an estimate of the goodness
(and the limitation) of the assumption often made in prac-
tical shell models (such as the PSM or FDSM) that the
structure of deformed nuclei can be well described within
a model configuration space consisting of a major shell
with only the high-j state as the abnormal-parity state.

IV. SINGLE-SHELL
ASYMPTOTIC NILSSON MODEL

A. SSANM for three dift'erent regions

In Refs. [11]and [12], we used the ansatz that "a nu-
cleus is as deformed as it can be in a single shell" to cal-
culate intrinsic quadrupole moments for nuclei in
different shells. If the deformation of a nucleus, and
hence of the Nilsson potential, is large, the differences in
the energies c of the spherical single-particle states may
be ignored and the deformed single-particle states y'k be-
come, to a good approximation for axially symmetric
quadrupole deformation, eigenstates of the quadrupole
moment operator. These eigenstates were constructed by
diagonalizing the matrix (P,k~qgtP k ), where g.k are
the spherical single-particle states. The eigenvalues qk of
this matrix for each of the eigenstates y'k are just the
mass quadrupole moments of these deformed single-
particle states.

Table IV gives a partial list of qk in three different
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TABLE IV. Partial list of the quadrupole moments (in units of a =0.01012 ' b) of the asymptotically deformed states in the
SSANM. The quadrupole moments for abnormal-parity states are underlined.

50-82 shell, j, = h, ~ 82 —126 shell, j, = i,„, 126—184 shell, j, =j„„
1+
2

1+
2

3+
2

2

3
2
5-
2

3+
2

7
2

1+
2

5+
2

74

.5

3.2

2.6

1.5

.2
—D. 1

—0.2

1

2
1—
2
3—
2

1+
2

3+
2
3-
2

5+
2

1—
2

5—
2

7+
2

.2

5.

3.7

3.2

2.7

2.

2.2

2.2

0.

1+
2

1+
2

3+
2

3+
2

1+
2

3+
2

1

2

3—
2
5—
2

3+
2

11.7

.4

8.2

5.0

4.6

45

4.2
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shells. Abnormal-parity states are considered here as
pure high-j states. Consequently, the quadrupole mo-
ments of the abnormal-parity l

k
l

=
—,', —,', —', states are much

smaller than the quadrupole moments of corresponding
states in the UWSM. Consider, for example, such states
of the i13/2 intruder in the 82-126 shell. The quadrupole
moments of 3.7, 3.2, and 2.3 for these states in the
SSANM (see underlined values in Table IV) are much
smaller than the corresponding values of 9.29, 8.14, and
6.29 in the UWSM (see Table II). The normal-parity
states, on the other hand, have similar quadrupole mo-
ments in both models. Therefore the summed Q"'" and
Q"" values contributed by nucleons in normal-parity
states are similar in the UWSM and SSANM, whereas
the corresponding values due to nucleons in abnorma1-
parity states are much greater in the UWSM than in the
SSANM. It is this enhancement that accounts for the
small c. value deduced from the UWSM (see Table II) for
these nuclei.

For a nucleus with prolate deformation, the intrinsic
state with the largest mass quadrupole moment is formed
by sequentially putting valence nucleons (consistent with
the Pauli principle) in the asymptotic Nilsson states with
decreasing moments. For the few nuclei that are known
experimentally or theoretically to be oblate, the states are
filled in reverse order, starting with the state with the

smallest moment. We then follow the key procedure out-
lined in Sec. II to obtain C,d, 1 vs e shown in Fig. 1. At
a=2. 1, which we take as a reasonable value, the CssANM
values are 0.80+0.07, 1.01+0.08, and 1.00+0.04 for the
tin, rare-earth, and actinide regions, respectively. These
normalization factors are indeed close to unity If, on the.
other hand, c, is forced to be unity, the resulting Css„NM
values (see Fig. 1) for the tin, rare-earth and actinide re-
gions are 0.89+0.15, 1.29+0.16, and 1.37+0.06, respec-
tively, which would imply an overestimate of quadrupole
moment in the tin region by —11% and underestimates
of quadrupole moment by -29% and -37% in the oth-
er two regions. In the tin region [see Fig. 1(a)], CssANM is

not unity for any 1.0~ c ~ 3.2 value unless the uncertain-
ty in CssANM is taken into account. Even though nuclei
in the "tin" region (50~ Z, X ~ 82) are not as deformed
as they are in the rare-earth region (50 Z 82,
82 N~12~6), we have continued to employ asymptotic
values that tends to overpredict quadrupole moment in
the tin region —hence CssANM + 1.

For each s the percentage of the calculated 8 (E2)T

values that overlap within one standard deviation with
the measured values (when uncertainties are applied to
both sets of values) is also shown in Fig. 1. This percen-
tage does not depend strongly on c,. Therefore it is futile
to rely on least-squares fits to deduce best unique values
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for CssANM and s simultaneously. (The same conclusion
applies to other models discussed below. )

B. SSANM restricted to deformed nuclei

Because the PSM discussed in the next section treats
only nuclei that are deformed, it is appropriate for later
comparison to carry out another set of fits with the
SSANM for a restricted set of such nuclei. The results
are shown in Fig. 2. In the rare-earth region, CssANM
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FIG. 2. Variation of the normalization constant C (solid
line), C' (dashed line) or C" (dotted line) of the SSANM with
the parameter s. The solid line is carried over from Fig. 1(b),
the dashed line (with error bars) denotes fits restricted to 38
highly deformed nuclei in the Ce-Hf region with measured
B(E2)f values, and the dotted line (with error bars) denotes fits
to the same number of nuclei while contributions of nucleons in
abnormal-parity states are deliberately switched off in calculat-
ing model B(E2)f' values.

( s =2. 1 } is now l.07+0. 11, slightly larger than
1.01+0.08 found earlier. In the actinide region, omitting
the only nucleus ' Ra, which does not have a rotational
spectrum, from the set of nuclei included in the previous
fit [see Fig. 1(c)j have negligible influence either on the fit
or on the conclusion that the SSANM gives correct
8 (E2) I' predictions in the rare-earth and actinide regions
with a=2. 1 and CssANM =1.

We now calculate abnormal fractions of the quadru-
pole moments for ' Ce, ' Er, and 250Cf considered in
Sec. III. We use values given in Table IV to calculate the
various quantities (see Table V) that go into Eqs. (14) and
(15) that determine these fractions. The resulting f; and

f, values (with a=2. 1) for these nuclei are given at the

TABLE V. Abnormal fractions f of electric and mass quad-
rupole moments (in units of a ) of selected nuclei in the SSANM
for a=2. 1.
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8
FIG. 1. Variation of the normalization constant C [see Eq.

(10)] of the single-shell asymptotic Nilsson model (SSANM)
with the parameter E [see Eq. (5)] defining the neutron effective

charge. The proton effective charge is taken as e[1+(Z/A)].
Solid curves (with error bars) give C (and its uncertainty) for the
(a) tin region [which contains 45 nuclei with measured B(E2)t
values], (b) rare-earth region (96 nuclei), and (c) actinide region
(30 nuclei). Dashed curves denote the percentage of cases where
calculated B(E2)f values overlap within one standard devia-
tion with measured values.
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bottom of Table V. We conclude from these values
(which are relatively insensitive to s) that, according to
the SSANM, nucleons in abnormal-parity states contrib-
ute typically —25% (compared with —20% in the
UWSM) to the deformation of highly deformed nuclei.

Also, for later comparison, we introduce artificially
into the SSANM the assumption that nucleons in
abnormal-parity states do not contribute to deformation.
This is done simply by removing the amount contributed
by nucleons in abnormal-parity states from the total in-
trinsic quadrupole moments of valence protons and
valence neutrons for each nucleus. These smaller quad-
rupole moments are then substituted into Eq. (10), and
the resulting variation of Css~&M vs c is shown in Fig. 2.
We note that Cs's~NM (E =2. 1) is now 1.49+0.09. In oth-
er words, any relegation of abnormal-parity states to a
minor role and the resulting underestimation of quadru-
pole moments can be offset by an increase in the overall
normalization constant.

The spherical single-particle shell-model Hamiltonian
is often written as [6]

&=HO+ Cl.s+Dl (17)

The unitary transformation from the real to the pseudo-
states maps the Hamiltonian & into % given by [9]

%=HO+(4D C)l—.s+Dl +(firo+2D —C) .

Because pseudo spin-orbit doublets with j=I+—,
' are ob-

served to be approximately degenerate (4D =C in terms
of Nilsson parameters), the normal-parity part of a major
shell with a large spin-orbit interaction is transformed
into a pseudo oscillator shell with a small spin-orbit in-
teraction. In addition, detailed calculations have shown
[9] that the dominant qq interaction in the normal space
is also transformed into a dominant pseudo qq interaction
with small corrections. A many-body Hamiltonian with
effective Q Q interaction,

V. PSEUDO-SU(3) MODEL &=+h(')'+C pl, s, +D pl, —
—,'yQ Q, (19)

A. Introduction

Because interest in the pseudo-SU(3) model with sym-
plectic extensions [9] has been revived in recent years as a
useful microscopic model for understanding collective ro-
tations of deformed and superdeformed nuclei, we recapi-
tu1ate briefly the main features and assumptions of this
model and explain how B (E2)1 values can be readily cal-
culated.

Elliott [22] showed that the dominance of the
quadrupole-quadrupole (qq) component of an effective in-
teraction between nucleons, together with a harmonic-
oscillator description of single-particle states, leads to a
nuclear Hamiltonian with SU(3) symmetry having rota-
tional spectra. This single-oscillator-shell symmetry is
broken by a spin-orbit interaction and is rendered useless
as a practical truncation scheme in calculations for heavy
nuclei in which this interaction pushes down the highest-

j state of the shell to intrude into and become part of the
lower major shell.

The pseudo-SU(3) model (PSM) [9] starts with the ob-
servation that normal-parity states in the 50—82, 82 —126,
and 126—184 shells occur in "approximately" degenerate
doublets. For example, in the 50—82 major shell,
normal-parity single-particle states are the 1g7/2, 2d5/2,
2d3/2, and 3s, /2 states. The 1g7/2 and 2d5/2 states are
close in energy and so are the 2d3/2 and 3s, /2 states.
Thus the states with j =l +—,

' and j =l +2—
—,
' are found

to be approximately degenerate. The pseudoscheme in-
troduces a pseudo angular momentum l defined as the
average of the orbital angular momenta of the degenerate
doublet: l =l +1. The 1g7/2 2d5/2 doublet is considered
to be the f7&2, f~&2 pseudo spin-orbit doublet with l =3
and &he 2d3/2 3s&/z doub1et to be the p3/2 p'j/2 doublet
with l =1. Thus the four normal-parity states with oscil-
lator quantum number N =4 and l =0, 2, and 4 in the
50—82 major shell are associated with the four states with
a pseudo oscillator quantum number X=%—1=3 and
pseudo angular momenta l = 1 and 3.

is thus transformed into a pseudo Hamiltonian:

%=%0+Dg l; —
—,
' fQ Q+corrections, (20)

which has pseudo-SU(3) symmetry to a good approxima-
tion. The Hamiltonian & takes into account, analytical-
ly, the strong quadrupole correlations among normal-
parity states of a major shell.

For further simplicity the PSM assumes that nucleons
in an abnormal-parity high-j state are coupled to states
with definite seniority. Such an assumption would be
reasonable if the (2j+1) substates of the high-j state
were approximately degenerate as in spherical nuclei.
However, at large deformations, this assumption may not
be a priori reasonable because the splitting of these sub-
states is quite large. Nevertheless, it does greatly simplify
computations.

The yrast band of a deformed nucleus is, in the sim-
plest version of this model, constructed by coupling the
pseudo-SU(3) band belonging to the highest representa-
tion [X,p] of nucleons in normal-parity states to the
seniority-zero state of nucleons in an abnormal-parity in-
truder state. The PSM uses the Nilsson scheme to deter-
mine the distribution of valence nucleons among norma1-
and abnormal-parity states.

Our current interest is limited to B(E2)f given in the
PSM by the representation [A, ,p] associated with the
yrast band. We describe in the following subsections how
this representation is obtained. We follow this with a de-
tailed comparison between measured B (E2)1 values and
those calculated with the PSM and FDSM because both
models treat nucleons in abnorma1-parity states the same
way for similar reasons. In addition, for the deformed
nuclei under consideration, both models assume SU(3)
symmetry for nucleons in norma1-parity states. However,
the underlying structure of the SU(3) symmetry and the
specific SU(3) representations which the two models as-
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cribe to a given nucleus are, of course, different. There-
fore it would be interesting to see whether the 8(E2)f
data can distinguish between these two models.

B. Determining the SU(3) representation

First, we consider real SU(3) in harmonic-oscillator
shells [22,23]. In the absence of a spin-orbit interaction,
space-spin single-particle states belonging to an oscillator
shell with quantum number N are labeled in the spherical
basis by the quantum numbers nlm&m„where m&= (1, ),
m, = (s, ), and N =2(n —1)+1. Allowed n and I values
are n =1,2, . . . , N —1 and l =N, N —2, . . . , 1 or 0. To
determine SU(3) representations, it is better to relabel
these states in a deformed basis by the number of quanta,
n3, n, , and n2, along the body-fixed z', x', and y' axes
and k, ={s,). Here N =n3+n, +n2, and a state labeled

by N and n3 has a mass quadrupole moment q =3n3 —N.
It is further convenient to relabel these states with
definite values of k&

= ( l, . ) and, hence, of total
k =(j, )=k&+k, . For given N and n3 values, allowed

k& values are N n3, N —n3 —2—, . . . , (N —n3). —The
mass quadrupole moment is again given by qk =3n3 N,
where i labels different states with the same k. The states
now carry the quantum numbers n3qkk&k, . The space
parts of the single-particle states in a major shell N (see
Table VI for N =3) labeled by nlm&, n3n, n2, and n3qkk&
can be expressed as linear combinations of each other.

An intrinsic state is obtained by putting particles
sequentially in n3n, n2 states with the largest available
value of n 3, and hence of qk, taking into account the Pau-
li principle. Each state can be occupied by two nucleons
with spin projections k, =+—,'. Let N3, N&, N2 represent
the total number of quanta along the z', x',y' axes for
these particles. The SU(3) representation [A,,p] of this in-
trinsic state is given by A, =N3 —N, and p =N, —N2. We

illustrate the procedure with an example. The intrinsic
state of six particles in the N =3 shell is obtained by put-
ting them in the first three states listed in Table VI.
Therefore N3 =2[3+2+2]= 14, N, =2[0+1+0]=2,
and N2=2[0+0+1]=2. This state has the SU(3) quan-
tum numbers [A,,p, ]=[12,0]. If A, or p=0, the intrinsic
state is axially symmetric; if p =0, it is prolate; if A, =0, it
is oblate; if A, ,p+0 and A, )p, it is prolate triaxial; and if
A, ,p,+0 and k&p, it is oblate triaxial. The most prolate
state of eight particles in the N=3 shell has N3=16,
N, =6, and Nz =2 with [A,,p]=[10,4]. This state is pro-
late triaxial. By constructing a table for N =4 similar to
Table UI, it is easy to show that the most prolate six- and
eight-particle states in the N =4 shell will have
[A,,p] = [18,0] and [18,4], respectively.

Now we connect this to the determination of the SU(3)
representations [A,,p] in the PSM. Recall that in this
model normal-parity 1g7/p 2d5/2 2d3/g and 3s&/2 states
(the N =4 oscillator part of the 50—82 major shell) are
mapped into f7/2 f5/2 p3/2 and p, /z states (the full
N=3 pseudo oscillator shell). The SU(3) representations
for N=3 and N=3 shells are the same. Hence we can
use Table VI (for N=3) to determine the most prolate
pseudo-SU(3) representations P.,p] for particles in
normal-parity states in the 50—82 major shell. In gen-
eral, the SU(3) representations for a given number of par-
ticles in the pseudo oscillator shell with quantum number
N are the same as those for the same number of particles
in the oscillator shell with quantum number N=N.
Thus, for six and eight particles in normal-parity states of
the 50—82 major shell (N=3), the pseudo-SU(3) repre-
sentations are [12,0] and [10,4], respectively. Similarly,
for six and eight particles in normal-parity states of the
82—126 shell (N=4), the pseudo-SU(3) representations
for the most prolate states are [18,0] and [18,4], respec-
tively.

TABLE VI. Different ways of labeling single-particle states of the N =3 shell.

Spherical basis

n Z m

Deformed basis

n&

Deformed basis

—3
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TABLE VII. Spectra of the mass quadrupole moments q& (in
units of a') of the asymptotically deformed states of the %= 3
and 4 pseudo oscillator shells.
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For heavy, deformed nuclei in the rare-earth region,
normal-parity states of protons and neutrons belong to
the pseudo oscillator shells N =3 and N„=4,respective-
ly. For the actinides they belong to the N =4 and
N„=5pseudoshells, respectively. If [A, ,p ] and [A, ,p„]
are pseudo-SU(3) representations, the intrinsic state of
the nucleus has [A, ,p]=[A,„+k„,p +p,„].

The quadrupole moments for the N =3 and N =4os-
cillator shells are given in Table VII. We note here that
in the PSM the quadrupole moment of nucleons in the
~k~ =

—,', —,', . . . normal-parity states are smaller than the
corresponding values in the SSANM containing the same
normal-parity states. For example, in the PSM, qk values
are 6, 3, and 3, respectively, for ~k

~

=
—,', —,', and —', states in

the 82-126 region compared with 9.6, 6.2, and 5.9 in the
SSANM (see Table IV). Therefore, relative to the
SSANM, we expect the PSM to underestimate the quad-
rupole moments of nucleons in normal-parity states.

C. Quadrupole moment of the intrinsic state

In the real oscillator SU(3) model, the expectation
value of the mass quadrupole moment Q of the most de-
formed intrinsic state belonging to a representation [A,,p]
is given by Q =(2A, +p). Because the real ~ pseudo uni-
tary transformation does not affect radial motion, the
same relation gives the Q of the intrinsic state belonging
to a pseudo-SU(3) representation [A,,p]. We showed in
the previous subsection that the representation is [12,0]
for the six-particle state in the N =3 shell; therefore, the
total Q is 24. The same value of Q =2(6+3+3)=24 is
obtained by summing qk of the occupied single-particle
states listed in Table VII.

D. Pseudo-SU(3) representation for a given nucleus

For a nucleus under consideration, its SU(3) represen-
tation in the PSM is determined only by the number of
nucleons in normal-parity states N„which can be ob-
tained by appealing to the Nilsson diagram. The
prescription is to look up the sequence of Nilsson states
corresponding to a deformation parameter in the range
P2-0. 20 —0.2S, put in valence nucleons in these states,
and count the number N„and N, of nucleons that occu-

py normal- and abnormal-parity states. Abnormal-parity
states play no further role. The appropriate representa-
tions for protons and neutrons in normal-parity states,
[A, ,p ] and [)(,„,p, ], are then coupled to the highest
resultant representation [A,,p]. The mass quadrupole
moment Q is then simply 2A, +p. A similar procedure is
also used in the FDSM.

In Table VIII we have listed N„and N, values for a
given number N of valence nucleons in three different
shells. In constructing this table we considered only the
Nilsson states belonging to the single-particle states
within the major shell and ignored other states intruding
from the shells above and below the shell under con-
sideration. In Table VIII we have also listed the pseudo-
SU(3) representation corresponding to the number N„of
nucleons in normal-parity states and the intrinsic quadru-
pole moment Q for this representation.

We use the representation [A, ,p] listed in Table VIII to
determine the final SU(3) representations for different nu-
clei. Consider, for example, 64 Gd90. The representation
[A, ,p„]for 14 protons in the 50—82 shell is [10,4] and
[A,„,p ] for 8 neutrons in the 82 —126 shell is [18,0]. The
overall pseudo-SU(3) representation [k,p] for the yrast
band of ' Gd [24] is thus [28,4] and Q =60. The intrin-
sic quadrupole moments Q and Q of the protons and
neutrons for this nucleus are separately 24 and 36, re-
spectively.

5—
2
7-
2
9-
2

E. 8(E2)f values: Comparison with measurements

To calculate 8 (E2)1 values given by the PSM, we sub-
stitute into Eq. (10) the Q" and Q" values for different nu-

clei following the procedure just described for ' Gd. As
before, we vary c and determine CpsM by a least-squares
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TABLE VIII. Partition of N valence nucleons into N„in normal-parity and N, in abnormal-parity states. The SU(3) representa-
tions [A,,p] corresponding to 1V„andthe resulting intrinsic quadrupole moments Q =2k, +p (in units of a2 ) are listed.
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FIG. 3. Variation of the normalization constant C [see Eq.
(10)j of the pseudo-SU(3) model (PSM) with the parameter e.
Solid curves (with error bars) give C (and its uncertainty) for
highly deformed nuclei in the (a) rare-earth region (38 nuclei)

and (b) actinide region (23 nuclei). Dashed curves denote the

percentage of cases where calculated B(E2)f values overlap
within one standard deviation with measured values.

fit to the measured values. The results are shown in Fig.
3. If e is taken as e[1+(Z/A)], CpsM is greater than
unity for 1 ~ c ~ 3.2; only for an unreasonable value of c
does CpsM approach unity. Alternatively, if c=2. 1,
agreement between the PSM and measured values is ob-
tained with the helP of CpsM = 1.8S+0.08 and

CpsM = 1.66+0.03, respectively, for the rare-earth and
actinide regions. These values are to be compared with

CSSANM
= 1.07+0.04 and CssANM 1'o0+0 04 «sp

tively, obtained earlier. We conclude that the PSM un-
derestimates mass quadrupole moments by —85% in the
rare-earth region and -66% in the actinide region.

In Sec. IVB we generated a Cs's~NM vs s curve (see
dotted curve in Fig. 2) for selected rare-earth nuclei with
a special SSANM in which the quadrupole moments of
nucleons in abnormal-parity states were deliberately set
to zero in mimic the assumption of the PSM. This curve
is reproduced in Fig. 4 as a dotted curve. Comparison of
the two curves shows that the PSM also underestimates
the electric quadrupole moments of nucleons in normal-
parity states by about 35%%uo compared with the SSANM.
This loss can be absorbed in the definition of the PSM
quadrupole operator [25]. The remaining —50% reduc-
tion in quadrupole moments is, therefore, due to the as-
sumption of the PSM that nucleons in abnormal-parity
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FIG. 4. CpsM curve of Fig. 3(a) is reproduced here as a
dashed line and compared with CssANM (solid line) from Fig.
1(b) and CssANM (dotted line) from Fig. 2.

states do not contribute to it.
For deformed nuclei in the rare-earth region, we re-

quired CpsM=1. 85 to obtain good agreement between
the PSM and measured B(E2)1' values if the effective
charges were chosen as e„=1.41e and e =0.86e. On the
other hand, Castanos, Draayer, and Leschber [26] have
shown that both good agreement and CpsM 1 can be ob-
tained with a different choice of effective charges, e =2e
and e, =e. The importance of agreeing ab initio as to
what the effective charges should be becomes immediate-

ly clear —otherwise, there is too much flexibility (three
adjustable parameters) in making comparisons between
theory and experiment, and little physical insight is

gained. Especially, the role played by nucleons in
abnormal-parity states can be evaluated only if difFerent

shell models employ, as we have done, the same effective
charges. Based as they are on quite general arguments
(see Secs. II and III), plausibly our e„and e, values and

certainly our procedure of varying c are preferable in any
intercomparison of the results of different models within
a single-major-shell configuration space.

The pseudosymplectic scheme [25] of extending the
single-major-shell PSM allows explicitly for deformation
of the core, thereby obviating the need for effective
charges, but it still assumes that valence (as well as core)
nucleons in abnormal-parity states do not contribute any
quadrupole moment. We have shown [12,13] that the
UWSM, which also has no effective charges, is successful
in reproducing nuclear deformation without the need for
significant renormalizations. This model gives equal
weights to nucleons in normal- and abnormal-parity
states. Hence the key assumption concerning nucleons in

abnormal-parity states in the pseudosymplectic scheme
should lead to a loss of quadrupole moment, certainly rel-

ative to the UWSM, which has to be somehow compen-
sated for. In the case of B (E2) t for U, good agree-
ment between theory and experiment has been obtained

[25] within this scheme by introducing appropriate verti-
cal nkcu mixing —a procedure that completely obscures
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the role played by nucleons in abnormal-parity states,
which is the central theme of this paper.

F. 8 (E2)f values: Comparison with FDSM values

Both the PSM and FDSM operate within the same
model space of a single major shell. In their simplest ver-
sions, both assume that nucleons in abnormal-parity
states do not contribute directly to the total deformation
of the nucleus. Both models rely on the Nilsson model
for the apportionment of valence nucleons into normal-
and abnormal-parity states. Deformed nuclei in the ac-
tinide region are treated in terms of SU(3) symmetry by
both models; those in the rare-earth region are assumed
to have SU(3) "SU(3) symmetry in the PSM and
SO(6)S "SU(3) symmetry in the FDSM. Although SU(3)

symmetry is invoked, for obvious reasons, by both models
to describe deformed nuclei, the physical and mathemati-
cal origins of this use as well as the specific SU(3) repre-
sentations associated with the yrast bands are quite
different in these two models.

If the PSM requires an upward normalization constant
to obtain agreement with measured B (E2}f values (as we
contend it does with our choice of effective charges}, so
will the FDSM. We could quantify this renormalization
in the case of the PSM, but not the FDSM, for the fol-
lowing reasons. In the FDSM the calculated quantities
are the contributions of valence protons and neutrons to
the reduced matrix elements (M' and M„")of the quadru-
pole moment operator and not the intrinsic mass quadru-
pole moment. Equation (3) becomes

1.4

1.2

I
I

I
I

(a) 50& Z&82, 50&¹82-
r a m m.m m m mme ear 80r

r
r

mm

60

40

0.8 — 20

0.6

1.4

1.2

I
I

I
I

I

(b) 50& Z &82, 82 & N &126

80

The B (E2)f trends arise in the FDSM because of what
has been called the "dynamic Pauli effect" specific to the
structure (k i-decomposition of single-particle states) of
its SU(3) symmetry for nucleons in normal-parity states.
Such an effect is not contained in the PSM because, un-
like the FDSM, it does not restrict these nucleons to S
and D pairs. Nevertheless, Fig. 6 shows that good fits to
B(E2)T data in the actinide region are obtained with
both the PSM and FDSM. In the rare-earth region (see
Fig. 7), these two models invoke different groups, but

Qo=e M"„+e„M"„. (21)

~ me
mm& msgr1- 60

Numerical values of M" and M"„(inunits of b) have been
provided by Wu [27], but they have been already normal-
ized to fit the B(E2)l value for ' Te in the tin region,
for ' Srn in the rare-earth region, and for Ra in the ac-
tinide region. The fit to an entire region can still be fine-
tuned by rewriting Eq. (9) as

B(E2 )j=(5/16')CFDsM

X [(1+ZA ')M" +(ZA e)M" ] e b

(22)
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Wu [27] took e =e„=le, whereas we prefer e =1.41e
and e =0.82e, corresponding to c, =2. 1. With our e
value, Eq. (22), when applied to the data, yields C„DsM
values of 0.867+0.009, 0.856+0.005, and 0.985+0.006
in the three regions [28], respectively (see Fig. 5). How-
ever, we cannot read much meaning into this C„DsM as
we did before with other models because the input quan-
tities M" and M", calculated for the symmetry appropri-
ate for each nucleus, are not absolute in the FDSM, nor
are they related in any simple way to geometrical quadru-
pole moment because the FDSM effective quadrupole
operator is quite different from the geometrical operator
r YM.
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FIO. 5. Variation of the normalization constant C [see Eq.
(22)] of the fermion dynamic symmetry model (FDSM) with the
parameter c.. Solid curves (with error bars) give C (and its un-
certainty) for the (a) tin region (45 nuclei), (b) rare-earth region
(88 nuclei), and (c) actinide region (29 nuclei). Dashed curves
denote the percentage of cases where calculated B(E2)f values
overlap within one standard deviation with measured values.
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overall agreement with the data is good in both cases,
thus implying that these B (E2) f trends are not sensitive
enough to the subtleties of the two models [29]. A simi-
lar insensitivity [30] was noted by us in Ref. [12], in
which we presented the predictions of a variety of models
and compared them with each other and with measure-
ments.

VI. SUMMARY

If a nucleus is described in terms of a shell model, its
intrinsic electric quadrupole moment depends on the
mass quadrupole moments of the valence nucleons and
their effective charges. We have argued that effective
charges are usually meant to simulate only the core con-
tribution to deformation (and hence to the E2 transition
probability) and may not be used arbitrarily to compen-
sate for the loss of quadrupole moments of valence nu-
cleons due to restrictive assumptions of specific models

all within the same single-particle space. We have deter-
mined numerical values of "reasonable" effective charges.
We have used them and our B (E2)f compilation to cal-
culate the fraction of the electric and mass quadrupole
moments of deformed nuclei that is contributed by nu-
cleons in abnormal-parity states. We concluded that in
the single-shell asymptotic Nilsson model this fraction is
typically -25%. The universal Woods-Saxon model also
implies that nucleons in abnormal-parity states contrib-
ute about 20% to the electric quadrupole moment of a
typical deformed nucleus.

Whether this amount can be considered negligible is, to
some extent, a matter of choice influenced by necessity.
The pseudo-SU(3) and fermion dynamic symmetry mod-
els make this choice by assuming that valence nucleons in
(the high-j) abnormal-parity states remain in a state of
seniority zero even in the presence of the polarizing effect
of the maximally deformed state composed of the majori-
ty of nucleons which are in normal-parity states.
Significant mathematical simplifications follow that
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FIG. 6. Comparison between measured and calculated (with v=2. 1) B(E2)f values in the actinide region. Solid lines are the
PSM predictions, dashed lines the FDSM.
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enhance the practical utility of these models in terms of
their predictive powers.

Our analyses show that this shunting of nucleons in the
abnormal-parity states to a very minor role leads to a
signi6cant reduction of the intrinsic electric quadrupole
moment in the pseudo-SU(3) model and, by inference, in
the fermion dynamic symmetry model. Good agreement
with measured B (E2)f values consequently suffers, but
can be restored by increasing the overall normalization
constant. This success, in turn, may not be used to vali-

date, advertently or otherwise, the basic assumptions of
these models. In the case of B (E2)f values, the normali-
zation factors, which are often unstated or treated in a
perfunctory fashion, contain interesting physics.
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