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Relativistic corrections to the triton binding energy
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The inHuence of relativity on the triton binding energy is investigated. The relativistic three-
dimensional version of the Bethe-Salpeter equation proposed by Blankenbecler and Sugar (BbS) is
used. Relativistic (nonseparable) one-boson-exchange potentials (constructed in the BbS framework)
are employed for the two-nucleon interaction. In a 34-channel Faddeev calculation, it is found that
relativistic efFects increase the triton binding energy by about 0.2 MeV. Including charge dependence
(besides relativity), the final triton binding energy predictions are 8.33 and 8.16 MeV for the Bonn
A and B potentials, respectively.

PACS number(s): 21.45.+v, 21.10.Dr

I. INTRODUCTION

One of the main objectives of nuclear few-body physics
is to learn something about nuclear forces. When the few-
body problem can be solved accurately, results can be
related directly to the elementary (two- and many-body)
forces used as input in the calculations. Since the two-
nucleon scattering data determine the nucleon-nucleon
(NN) interaction only on-shell, one has to consider A-
nucleon systems with A ) 2 to test off-shell properties
of nuclear potentials. Similarly, many-body forces can
only be tested in systems with A ) 2. Guided by these
ideas, comprehensive work has been performed for, par-
ticularly, the trinucleon (3N) system. For this system, an
exact and practically feasible theory has been developed
by Faddeev [1].

In recent years, many benchmark calculations of the
triton binding energy employing realistic NN potentials
have been performed [2—4] —with the objective of ob-
taining (indirect) information on the off-shell behavior of
the two-nucleon potential and to assess the size of the
nuclear three-body force. It has been shown that when
two-nucleon forces only are applied, the triton is under-
bound by an amount which varies from 0.2 to 1.1 MeV
(depending on which NN potential is used in the calcu-
lation). The conventional interpretation of this result is
that it "proves empirically" the existence of three-body
forces (which would contribute 0.2 MeV or more to the
triton binding). As shown in many calculations [5], it
is then possible to patch up the discrepancy with exper-
iment by including phenomenological three-body forces
which can easily be fit to any amount of missing binding
energy. Unfortunately, not much physics can be learned
in this ad hoc fashion.

Strictly speaking, most many-body forces are an arte-
fact of theory. They are created by freezing out degrees
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of freedom contained in the full Hamiltonian of the prob-
lem under consideration. This fact suggests how one may
learn some physics from three-body-force calculations:
When a new degree of freedom is introduced (besides the
nucleon), it should be taken into account consistently in
the two- and the three-body problem. The theory of the
NN interaction has shown that isobar degrees of freedom
[particularly the 6(1232)] are crucial for a realistic and
reliable description of the nuclear force [6]. Trinucleon
calculations taking the h, -degree of freedom consistently
into account have been performed first by the Hannover
group [7]. Recently, this type of calculation has been up-
dated and improved [8]. The new result is that the sum
of all three-body-force contributions arising from the 6
isobar is repulsive; the repulsive contribution to the tri-
ton binding energy varies between 0.06 and 0.4 Mev de-
pending on the 6 model [8]. This small total result is due
to a cancellation between an attractive three-body-force
contribution of about 1.5 MeV and a slightly larger re-
pulsive dispersive effect on the 6 diagrams contained in
the two-nucleon interaction. Even if the vr NS-wave par-t
of a 2ir-exchange three-body force [9] (not included in a
6 model) is added, the total result is essentially vanish-

ing. Thus, there is little hope that a consistent theory for
two- and three-body forces will explain the triton binding
energy within the conventional framework.

On the background of the above discussion, it becomes
increasingly important to investigate aspects left out in
conventional three-nucleon calculations. One of these as-
pects is relativity. Most present calculations using real-
istic two-body forces are performed in a nonrelativistic
framework. Thus, one may ask whether relativistic ef-
fects are responsible for the missing binding. Since the
triton wave functions contain high momentum compo-
nents, it is by no means clear that the nonrelativistic
approximation is justified. Furthermore, some nonrel-
ativistic predictions for the triton binding energy (ob-
tained with two-body forces only) are only 0.2 MeV off
the empirical value [4]. Thus, even if relativistic effects
are small, they may be large as compared to the small

gap to be filled by "nonconventional" nuclear physics. In
summary, the current status of the triton binding energy
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program calls for an accurate knowledge of the relativis-
tic corrections.

In the past 25 years, there have been numerous efforts
to estimate relativistic effects in the thre=-nucleon sys-
tem. Roughly, one can distinguish between two lines of
research. In a model independent approach, one starts
from the Poincare algebra for the ten generators of the
Poincare group, expressed in terms of the degrees of free-
dom of n particles only. This framework is applied in
Refs. [10—13] and critically examined in Refs. [14—16].

An alternative approach is to use a field-theoretic
framework and the Bethe-Salpeter equation [17]or one of
its three-dimensional reductions. Pioneering work along
this line has been performed by Tjon and co-workers [18,
19]. In Ref. [19], a Blankenbecler-Sugar [20] three-body
equation for a modified Reid potential is solved. In a se-
ries of recent studies, Rupp and Tjon solved the full four-
dimensional three-body Bethe-Salpeter equation [21,22].
However, to make this tremendous numerical project fea-
sible, finite-rank separable NN potentials had to be used.
In these studies, relativistic effects are found to increase
the triton binding by about 0.3 MeV.

In the present paper, we investigate the influence of rel-
ativity in the 3N bound-state system using the relativis-
tic meson-theoretic Bonn potential [6, 23]. It is impor-
tant that relativistic few-body calculations are performed
consistently. By this we mean that the same relativistic
formalism has to be used for the two- and the three-
body systems. Since the relativistic potential we apply is
constructed in the framework of the Blankenbecler-Sugar
equation [20] (a relativistic three-dimensional reduction
of the Bethe-Salpeter equation [17]),we use an equivalent
relativistic equation for the three-nucleon system.

Various three-dimensional relativistic three-body
equations have been proposed, which all have in common
the elimination of the relative time component in the
original four-dimensional integration over internal mo-
menta. This is usually done by replacing, in the three-
particle Bethe-Salpeter equation, the original Green's
function by one that involves a delta function. This pro-
cedure is carried out in such a way as to preserve rela-
tivistic invariance, three-particle unitarity and, of course,
the correct nonrelativistic limit.

As mentioned above, our study is performed within
such relativistic three-dimensional approaches, combin-
ing, however, a nonseparable relativistic two-body poten-
tial (the Bonn potential), with relativistic Faddeev equa-
tions. Among our objectives is to understand to which
extent, if at all, the type of two-body potential used is
related to the size of the relativistic effect. Finally, our

]

main motivation is that the influence of relativity on the
3N bound-state properties is a basic and fundamental
problem, and we must achieve a solid understanding of
it.

In the next section, we will briefly recall the relevant
equations and describe the relativistic corrections. In
Sec. III we present and discuss our results.

II. FORMALISM

The relativistic two-body problem is described by the
Bethe-Salpeter (BS) [17] equation, which can be ex-
tended to the three-body case. Similarly to the nonrela-
tivistic formalism, the relativistic three-body BS equa-
tion can be cast into Faddeev form [20, 24—26]. Un-

like in the nonrelativistic case, however, one obtains a
four-dimensional integral equation (the additional inte-
gration variable is due to the intermediate particles be-

ing off their mass shell), which drastically complicates
the numerical solution. To avoid this difficulty, various
three-dimensional reductions have bmn worked out as a
practical generalization of the relativistic Faddeev equa-
tions. Here, we just briefly recall the procedure. The
relativistic Faddeev equations are written as

T' = t, + ) t, GQ, T~

jAi

with i,j = 1, 2, 3. t, are two-body scattering operators
describing all interactions between particles j and k, and
Gp, is the free two-particle Green's function of the pair
j, k acting in the three-body space. (In the nonrelativistic
case, it can be shown that Gp] = GQ2 = GQ3 all particles
being on their mass shell. ) The relativistic propagator,
e.g. , for particles j and k, is then

(kz —mz + ie) (kbz —m2+ ie)

with k, the four-momentum of particle i in the three-
body center-of-mass (c.m. ) frame. The usual procedure
is then to replace the relativistic four-dimensional propa-
gators by a three-dimensional one which is derived from a
dispersion integral [18, 19]. This amounts to introducing
a Green's function which produces the proper right-hand
(unitarity) cut. The procedure is, however, not unique,
and many different versions can be found in the litera-
ture.

Instead of the Green's function Eq. (2), one may write
a dispersion integral in terms of the two-particle invariant
energy, cr, (as we choose to do in this work), namely,

g, =4
OO I

b((P,'„/2+ k, b) —m )b((P,'„/2 —k, ) —m ),

where k~1, = (k~ —kI, )/2, o., = (P —k, )2 = P2I, with
P = k, +k~+kj, the total four-momentum, P~I, = k~+kl„
and P'& ——ga,'/cr; P~b. In the three-body c.m. frame,
P = (vs, O) with vs = 3m —Eb the invariant mass

of the three-body system (m denotes the mass of a free
nucleon and Eb the binding energy of the three-nucleon
system). Clearly, this choice cannot be unique, since any
function which does not contribute to the right-hand cut
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of o. can be added without afI'ecting unitarity. Evaluation
of the integral in Eq. (3) results in the three-dimensional
propagator [18, 19] + q'}

j, k

4 1
g =—

(o 4~ + lql
—(~s —cuq)

' (4)

Here, q(q') are the momenta of the spectator par-
ticle in the initial (final) state, respectively,
Qm2+ lpl', p = —

—,'q —q', and ~q ——gm2+ lql'. No-
tice that this is just a more convenient notation which
allows to drop particles indices, namely q = k, , q' = k'g,
where i and k are understood to be the spectator particles
in the initial and final state respectively. Clearly, q and
q' are also the relative momenta between the spectator

—q'

FIG. 1. Graphical representation of the three-body rear-
rangement collision i(jk) -+ k(ij). Double lines represent in-
teracting pairs. The underlying time axis is horizontal, point-
ing left into the future.

and the interacting pair in the three-body c.m. ; see Fig.
l.

Alternatively, one could have written the dispersion
integral in terms of the three-particle invariant energy,
that is,

g, =4
oo d 1

6([(P' —k, )/2+ k, i, ]
—m )b([(P' —k, )/2 —k, g]

—m )
m2 S' —S

~ = (~~ E.)' —lql'— (8)

with Eq = gm2+ lql2, so that vs —E~ is nothing but
the energy of the pair with total three-momentum —q
(right-hand side of diagram in Fig. 1).

Also, the relative momenta of the interacting pair must
be defined in a relativistic way (in a nonrelativistic the-

with k~i as above, s = P, P' = Pgs'/s. The resulting
three-dimensional propagator would then be [18,2l]

2 a~ + u2+ A&3

g =
4 1~2 (~1 + ~2 + ~3)

with vi = gm + Iq I
+2 = gm + Iq+q'I, and

~3 = gm2+ Iq
Other alternatives have also been suggested. pne

could write as well the dispersion integral in terms of
the one-particle invariant energy, or introduce relativis-
tic kinematics in the free resolvent of the nonrelativistic
Faddeev equation; in the latter case, phase space fac-
tors are introduced to make the volume element of the
integration relativistically invariant [18]. All choices are
equivalent in the sense that they satisfy three-body uni-
tarity and preserve the correct nonrelativistic limit. This
nonrelativistic Faddeev propagator reads in our notation

1 1

m Ipl2 + 4lql2 + mE|,

Besides the modifications in the propagator, additional
corrections must be included to properly define the dy-
namical variables. Clearly, in the three-body calculation,
these are defined in the overall c.m. system and must ap-
pear correctly in the input two-body t matrix. The di-
agram in Fig. 1 is a typical graphical representation of
the three-particle reaction i(jk) ~ k(ij). The double
lines represent interacting pairs (with momenta —q, —q,
respectively). The total invariant mass of the two-body
subsystem is

0 = q+s(lql, lq'l, z)q' (9)

(for the lower vertex in Fig. 1). In the last expression, z
is the angle between q and q', and the function p is given
by [26, 27]

q q'
~(lql lq'I z) =(, '" E&+,/,

&q + E. + E~+~ l
(1O)

with (~ = (E~ + E~+~ ) —q' . (A completely analogous
definition applies to the upper vertex, but with q, q' in-
terchanged. ) Notice that Q, Q' are formally identical to
the Galilean invariant relative momenta, if the function

p is replaced by a factor 1/2.
Finally, we mention that the relativistic two-body t

matrix, t„~, is related to the nonrelativistic one, tNR, by

t„i = tNRQE/m/E'/m

withE= gm +Q andE'= gm +Q'. Ifinthe
relativistic Blankenbecler-Sugar (BbS) equation t„i is re-
placed by Eq. (11) and the quasi-potential, V„i, is re-
placed by

V„i = VNRQE/m+E'/m, (12)

then the usual nonrelativistic Lippmann-Schwinger equa-
tion is obtained [28].

In summary, the relativistic calculation of the triton
binding energy differs from the nonrelativistic one in
three points: (1) The relativistic Faddeev propagator,
Eq. (4), is used instead of the conventional nonrelativis-

ory, they would be the Galilean invariant relative mo-
menta). It has been shown [26, 27] that the relativistic
relative momentum (which reduces to the momentum of
one of the particles in their c.m. system) is given by the
combination
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TABLE I. Triton binding energy (in units of MeV) obtained in nonrelativistic and relativistic
calculations using two versions of the relativistic Bonn two-nucleon potential.

Potential

Bonn A

Bonn B

Number of
channels

34
5

Nonrelativistic

8.37

8.32
8.16

8.14

Relativistic

8.53

8.51
8.33

8.34

Relativisitic and
Charge Dependent

8.35

8.33
8.15

8.16

tic propagator, Eq. (7). (2) The kinematical variables of
the two interacting nucleons are defined in a covariant
way [cf. Eqs. (8) and (9)]. (3) An invariant two-body f,

matrix is used, cf. Eq. (11).
It will turn out that the last point (invariance of the t

matrix) has the largest quantitative effect and is respon-
sible for the increase of the triton binding energy.

III. RESULTS AND DISCUSSION

In Table I we present our results for the nonrelativistic
and relativistic calculations of the triton binding energy
taking 5 and 34 three-body channels [29] into account.
We apply the Bonn A and Bonn B potentials [30] for the
two-body interaction. The relativistic calculations are
based upon the formalism outlined in the preceding sec-
tion, with the three-nucleon propagator given in Eq. (4).
For the solution of the nonrelativistic as well as relativis-
tic Faddeev equation, we use standard momentum-space
techniques [31].

We find a relativistic correction to the triton binding
energy of 0.19 MeV for the Bonn A and 0.20 MeV for
the Bonn B potential. As indicated above, the largest
effect comes from the use of an invariant t matrix; this
increases the binding energy by 0.26 MeV. The effect of
using covariant kinematical variables is very small and
further increases the binding energy by 0.07 MeV, while
the relativistic Faddeev propagator, Eq. (4), reduces the
binding energy by 0.14 MeV. (The numbers given here
for the partial effects refer to the 34-channel calculation
with Bonn A. )

Using the Bonn A potential, the nonrelativistic 34-
channel result of 8.32 MeV is increased to 8.51 by rel-
ativity. These numbers refer to the charge-independent
calculation in which the neutron-proton potential is used
for all states. If the well-established charge dependence
in the So two-nucleon potential is taken into account,
the triton binding energy is reduced by 0.18 MeV, yield-
ing the final result of 8.33 MeV for the Bonn A potential.
For Bonn B, the final result, including relativistic effects
and charge dependence in the i So state, is 8.16 MeV (cf.
Table I). In our calculations, charge dependence is taken
into account as described in Ref. [32].

The relativistic effect we find is small but not negli-
gible. Another subtle effect that is usually neglected in
triton binding energy calculations is charge dependence.
Accidentally this effect is of the same magnitude as the

relativistic effect. For this reason, we also consider charge
dependence in our calculations. Thus, we can provide
rather "complete" final results for the triton binding en-

ergy predictions from the two-body force only. This final
result is that the triton is underbound by 0.15—0.30 MeV
depending on the choice of the relativistic two-nucleon
potential. This means that these potentials almost com-
pletely explain the triton binding energy in terms of just
the two-nucleon force.

At this point, one may raise the question whether it is
reasonable to obtain almost all the triton binding energy
from the two-body force alone. The crucial issue here
is what to expect from three-body forces. As mentioned
in the Introduction, the recent investigations by Pickles-
imer et at. [8] have confirmed the earlier findings by the
Hannover group [7] that a consistent treatment of two-
and three-body-forces results in an almost vanishing total
contribution to the triton binding from three-body forces.
In this light, the triton binding can only be understood
as resulting essentially from the two-nucleon interaction
(unless one wants to invoke subhadronic degrees of free-
dom).

Thus, crucial for the understanding of our result is the
nature of the two-body force. It is well known [23] that a
weaker tensor force component in the two-nucleon force
implies more attraction in few- and many-body systems.
This is why Bonn A predicts more binding than Bonn
B; and, even more so, this is the reason why both Bonn
A and B give substantially more binding energy than
other conventional potentials which, in general, predict
only about 7.5 MeV. On the other hand, the tensor force
should only be as weak as allowed by the requirement
that the potential be "realistic. " The usual interpreta-
tion of the term "realistic" is that the potential should
reproduce the two-nucleon scattering data up to pion-
production threshold. This is, in fact, true for both Bonn
A and B, with the exception of the ci mixing parameter
at energies larger than 100 MeV, which is insufficiently
reproduced by Bonn A, but correctly predicted by Bonn
B [33]. On those grounds, one may be tempted to cast
some doubt on the Bonn A three-body result.

To properly discuss this issue, let us first focus on the
Bonn B predictions. The Bonn B potential is with no
doubt realistic (in its predictions of all two-body bound
state and scattering observables, including the ei) and
nevertheless predicts substantially more triton binding
than other realistic potentials. For example, the Paris



F. SAMMARRUCA, D. P. XU, AND R. MACHLEIDT 46

and the Bonn B potential yield almost identical predic-
tions for phase shifts, e parameters, and observables [34];
i.e. , they are as identical on-shell as two difI'erent poten-
tials can be. However, the triton binding energy predic-
tion by Bonn B is about 0.4 MeV larger than the one by
Paris (the charge-dependent Paris result is 7.59 MeV [3]).
This clearly reveals off-shell differences between the two
interactions. The Paris potential is, apart from a p op-
erator, a local potential, while Bonn A and B are de6ned
in terms of the relativistic momentum-space Feynman
amplitudes for one-boson-exchanges (which are clearly
nonlocal expressions). These off-shell differences can al-

ready be seen in the D-state probability of the deuteron
which is 5.8% for Paris and 5.0% for Bonn B.

Concerning now the Bonn A potential, one has to un-
derstand the relevance of the eq parameter for nuclear
ground state predictions. In Reference [35], a family of
potentials has been considered that has the same low D
state probability of the deuteron as Bonn A, but larger
eq parameter at intermediate energies. It is found that
the triton binding energy is always the same and, thus,
is not affected by the behavior of the eq above 100 MeV.

Finally, some comments are in place concerning the rel-
ativistic framework we use. Given the fact that our rel-
ativistic one-boson-exchange two-nucleon potentials are
constructed within the BbS scheme, the relativistic three-
body equation derived within the BbS framework cer-
tainly is the most consistent choice.

On the other hand, for the relativistic three-nucleon
problem (unlike the nonrelativistic case), predictions
from state-of-the-art calculations do not corroborate and
are, in fact, quite method dependent. For instance, Rupp
and Tjon have shown [21, 22] that the BbS approxima-
tion yields about 75% of the relativistic effect as obtained
from the four-dimensional BS equation. The reason for
this difference may be the effective three-body forces due
to retardation which are automatically included in the
four-dimensional BS equation and do not exist in static

approaches [21,22].
Naively, one would believe that the BS equation is a

priori the "best" equation. Based upon this belief, the
quality of a relativistic three-dimensional equation would
then be determined by how close it reproduces results
obtained from the BS equation.

However, as pointed out by Gross [36], there are phys-
ical reasons why this seemingly most plausible approach
may not be correct. For example, the BS equation in
ladder approximation (that is, with a kernel which is re-
stricted to one-boson exchanges) does not generate the
desired one-body equation in the one-body limit (i.e. ,

when one of the particles becomes very massive), while

a large family of three-dimensional relativistic reductions
of the BS equation does have the correct one-body limit.
If the sum of all crossed ladders is added to the ladders,
then the correct limit is obtained in the BS equation.
As a matter of fact, in almost all applications in nu-

clear physics (including the present work) the kernel is
restricted to one-boson exchanges. Furthermore, when

going beyond the second-order kernel, there is no rapidly
converging series of irreducible kernels in the BS frame-
work [36]. Better convergence is obtained for some three-
dimensional equations.

Thus, the BS equation may not be the optimal choice
for relativistic investigations in nuclear physics. Given
the problems intrinsic to relativistic approaches, three-
dimensional relativistic equations and results obtained
from them may be equally meaningful or even superior
as compared to the four-dimensional BS theory.

The authors are indebted to R. A. Brandenburg for
his momentum-space Faddeev code. This work was sup-
ported in part by the NSF-Idaho EPSCoR program un-

der Grant No. RII-8902065, the NSF Physics program
under Grant No. PHY-8911040, and by the San Diego
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