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Using our previously developed crossing and duality consistent model for kaon photoproduction
and radiative capture, we investigate the kaon electroproduction processes p(e,e’ K¥)Y for Y = A,
% and A(1405). Because there is no electroproduction data near threshold, consistency requires
extending the energy range of our photoproduction model parametrization from an upper bound of
Elfb = 1.4 to 2.2 GeV. We find that baryon resonances with spin greater than % are necessary to
describe the higher energy photoproduction data (1.4< Ef,“b < 2.2 GeV). We also extend our use
of duality by representing these higher-spin s- and u-channel baryon resonances with the low-lying
t-channel vector, K*(890), and pseudovector, K1(1270), mesons. Using this extended crossing and
duality consistent model, we obtain reasonable agreement with the data for both photoproduction

and electroproduction processes.
PACS number(s): 13.60.—r, 11.50.Jg, 12.40.Lk

1. INTRODUCTION

Electroproduction processes are widely recognized as
important for investigating the electromagnetic struc-
ture and excitation of the nucleon. Although clearly
related to photoproduction, electroproduction reactions
have several distinctions which make them particularly
useful and interesting. The most notable feature is that
electron scattering is mediated by “massive” virtual pho-
tons (¢ # 0). By specifying the electron beam en-
ergy and final-state electron angle, the experimentalist
can fix the virtual photon’s invariant mass (¢?) and de-
gree of transverse or longitudinal polarization. Prob-
ing hadronic systems with virtual photons provides ad-
ditional insight into the basic reaction mechanism (res-
onance formation, polarization and interference effects,
etc.) and also to fundamental hadronic structure infor-
mation (electromagnetic form factors).

In this paper we extend our crossing and duality con-
strained hadron pole model for kaon photoproduction,
p(v, K*t)Y for Y = A, %, and A(1405) [1], to higher en-
ergies while generalizing it for the corresponding electro-
production processes, p(e,e’ K*)Y. In Sec. II, we review
the dynamical content of our model which implements
crossing and duality constraints. The electroproduction
formalism is summarized in Sec. III. Here we emphasize
covariance which directly facilitates analytic continuation
necessary for incorporating crossing. In Sec. IV we com-
pare our numerical results with available electroproduc-
tion data and discuss the significance and consistency of
our fitted parameters. Finally, we conclude in Sec. V
with a discussion of our model limitations and future
directions for hyperon electromagnetic production phe-
nomenology.

II. MODEL DETAILS

We employ a relativistic hadron pole model, which is
based on an effective field chiral Lagrangian evaluated at
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the tree level, and establish a consistent phenomenology
by utilizing crossing and duality constraints. Crossing
and duality impose restrictions which limit the number
and type of diagrams allowed. The model parameters
are the electromagnetic and strong coupling constants,
which, in general, have not yet been uniquely determined.
In a recent analysis [2], we reported a crossing and dual-
ity constrained set of parameters that were determined by
simultaneously fitting kaon photoproduction and radia-
tive capture data in both the A and X° reaction channels.
In this analysis, we will test these parameters by general-
izing our calculations to compare with the existing elec-
troproduction data, which fortunately includes the pro-
duction of not only A and £°, but also the A(1405) (in
constrast with photoproduction). These reaction chan-
nels are interrelated and complimentary, with each pro-
cess involving diagrams with different combinations of
the same coupling constants, therefore a comprehensive
analysis should provide a more reliable set of parame-
ters. Before discussing our numerical results we detail
the distinguishing features of our model.

A. Duality and crossing

Duality is a hypothesized property of hadronic interac-
tions that has well-established phenomenological support
and far-reaching theoretical implications. Dolen, Horn,
and Schmid [3] found that interference models, which
include resonances in both s (u) and t channels simul-
taneously, entail double counting and are therefore an
overcomplete description for the low-energy n-N scat-
tering. Moreover, they were able to infer several fea-
tures of the high-energy amplitudes utilizing analytic-
ity via the finite-energy sum rule (FESR). Specifically,
they were able to extract the t-channel p Regge trajecto-
ries, which govern the asymptotic high-energy behavior,
based purely on the s-channel N* resonances of their low-
energy model. This curious result lead to the concept of a
“duality” between s- (u-) and t-channel resonances in 7-
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N scattering, and eventually to the speculation that all
hadronic interactions may share this property. Mathe-
maticians formalized the duality principle and developed
so-called “dual models,” such as the crossing symmetric
Veneziano amplitude [4], that exhibit duality exactly.
The analytic description of duality is intimately related
with Regge pole theory. Poles in the ¢ channel, which
in Regge theory determines the asymptotic high-energy
behavior, arise from divergences in the fixed-t dispersion
integral in the s channel (i.e., the FESR). These diver-
gences appear in the amplitude because an infinite num-
ber of resonances are implicitly summed along each Regge
trajectory. In this way, duality relates families of reso-
nances on Regge trajectories in the s (u) and ¢ channels.
For a comprehensive review of duality, we refer the reader
to Refs. [5] and [6].

Although the extent to which duality is satisfied is not
experimentally clear for all hadronic reactions, duality
does have a long history of phenomenological applica-
tions, with several notable successes. With regard to hy-
peron electromagnetic processes, the most extensive du-
ality based study was made by Renard and Renard (7],
who applied the FESR to K+ A and K*3° photoproduc-
tion processes. They found that their low-energy ampli-
tude, which included only s- and u-channel graphs (with
several resonances up to J=7/2}, successfully reproduced
average features of the high-energy amplitude based on
Reggeized K* and K** t-channel exchanges. Encouraged
by their results, we have incorporated duality into our
model describing hyperon production. In our previous
low-energy study [1] we performed a passive application
of duality by simply requiring that all resonances in the ¢
channel should be excluded as they are “dual” to s- and
u-channel resonances. This type of duality constraint has
also been implemented in other investigations [2, 8], but
is too restrictive for higher-energy studies, which require,
in general, resonances with spin greater than 1/2. With-
out such resonances, the model will develop a deficiency
in partial waves at higher energies. We present a more
detailed discussion of this point in Sec. IV. Because of
the necessity to include many higher-spin resonances to
simulate ¢t-channel poles, only nonminimal models such
as in Ref. [7] that include every possible resonance up
to arbitrarily large spin can consistently apply a passive
duality constraint over a wide range of energies.

In order to preserve simplicity and phenomenological
efficiency (i.e., to describe the largest set of data with
the fewest possible parameters) we now choose to apply
duality more aggressively by including the low-lying t-
channel K* resonances which, when combined with the
poles of our model s- and u-channel graphs, generate
an improved intermediate energy behavior. In particu-
lar, we include the lowest-mass t-channel resonances [the
J™ =1~ K*(890) and the J™ = 1% K;(1270)] along with
the kinematically enhanced, spin-1/2 s- and u-channel
resonances. Our use of duality is fundamentally moti-
vated to optimize truncation and minimize double count-
ing. Because only a few low spin resonances on differ-
ent Regge trajectories are included in our new minimal
model, double counting is not a problem. Further, the
passive use of duality (i.e., to neglect all t-channel graphs)
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leads to deficiencies in models limited to the lowest-spin
resonances, because the higher-spin resonances, which
are important for simulating the t-channel poles, are
never incorporated. In this way, our original photopro-
duction model was somewhat oversimplified and only ap-
propriate near threshold (where t-channel poles have lit-
tle effect). However, in our new extended model we no
longer passively apply duality by attempting to sum on
the higher-spin resonances of specified Regge trajecto-
ries, rather, we add only kinematically enhanced spin-
1/2 states (i.e., across trajectories with poles inside the
energy range of our database), and include the vector
and pseudovector kaons which simulate the higher-spin
baryon resonances which have been omitted. We still
view this use of duality as a constraint which simplifies
the model by reducing the number of necessary diagrams
required for a consistent phenomenology. More funda-
mentally, duality provides a theoretical framework for
identifying the equivalence of K* t-channel resonances
with a collective average of the neglected s- and u-channel
(N*, A*, and Y*) states. We acknowledge that other
researchers also have demonstrated the importance of
these spin-1 kaons in electromagnetic hyperon produc-
tion (within the same pole model formalism) [9].

The other dynamic constraint which we incorporate,
crossing, is well appreciated and requires little justifica-
tion. Crossing is an exact symmetry of the S matrix
that relates reactions involving particles (antiparticles)
in the initial/final state with reactions where the corre-
sponding antiparticles (particles) are in the final/initial
state [10]. For this study the crossing related reactions
are kaon photoproduction, (v, K¥), and radiative cap-
ture (K—,v). Because these reactions are governed by
the same dynamical mechanism (i.e., involve the same
set of covariant diagrams), any realistic parametrization
must apply simultaneously for both of these processes.
Conversely, if a model parametrization is incapable of
describing both crossing related channels then it is defi-
cient (i.e., unphysical). All of the parametrizations which
we employ yield calculated kaon capture branching ratios
within the reported errors of the recent data [11] and are
therefore consistent with the crossing constraint. For ad-
ditional details on crossing and on its application as a
constraint in phenomenological studies, the reader is ref-
ered to Refs. [1], [2], and [10].

B. Resonances in a “minimal model”

In our model for low-energy kaon electromagnetic pro-
duction the photon (real or virtual) couples directly to
the proton, kaon, final-state strange baryon, and cer-
tain excited resonances of these hadrons. A meaning-
ful phenomenological description for this type of mech-
anism must identify and incorporate the proper set of
resonances which mediate the production. This is why
the use of duality in a minimal model can be such a pow-
erful principle. Instead of trying to assess the relative
importance of individual resonances, duality allows one
t-channel pole to represent a collective average of an en-
tire set of higher-spin direct channel resonances. This
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produces a much smaller parameter space, and therefore
the phenomenologically extracted coupling constants be-
come very tightly constrained and much more reliable.

Alternative approaches which attempt to include all
possible resonances are plagued with complexity, ambigu-
ity, and uncertainty. Although a complete understanding
of the basic reaction mechanism depends on assessing the
relative importance of each participating resonance, it is
impossible to unambiguously determine individual res-
onance contributions with the presently available data.
Ideally, phenomenological studies should include all pos-
sible contributing resonances, fixing all the known pa-
rameters and then let the fitting algorithm determine
the remaining parameters. However, in practice there
are several problems with this approach. By design, this
type of description is very complicated, requiring several
parameters and an abundance of accurate experimental
information for several observables over a wide kinematic
range. Unfortunately, most of the current cross section
data are concentrated at forward angles and distributed
unevenly in energy (with most of the photoproduction
data ranging from 0.9 < E!** < 1.5 GeV, and the elec-
troproduction data ranging from about 2.0 < E!*® < 2.5).
The available polarization data are scarce and of ques-
tionable quality, which, at best, provides only a weak
consistency check on the fitted parameters. Furthermore,
even with the concentrated historical effort, none of the
strong coupling constants, including the Born K NA and
KNY, are well established and therefore all parameters
should be considered adjustable [confining the Born cou-
plings to be consistent with SU(3)s or hadronic scatter-
ing determinations is suspect due to the uncertainties
of both unbroken SU(3); and severe approximations in
purely hadronic models]. As evidenced by the large num-
ber of existing parametrizations, several equivalent sets
of coupling constants have been found for (v, K*) with
substantially different numerical values. Most of these
competing sets can be ruled out by their lack of con-
sistency with cross-channel data, however we stress the
necessity for new data in both kaon capture and produc-
tion channels, with a special emphasis on polarization
observables which are particularly sensitive to individual
resonance contributions. Nevertheless, progress is still
possible by comprehensively using all of the available in-
formation in every related reaction channel while utilizing
reliable dynamic constraints in a model which captures
the essential physics.

In Fig. 1, we summarize the resonances which define
our minimal model. The criteria for diagram selection is
the following: (a) spin-1/2 baryons with masses that gen-
erate kinematic enhancement for the energies analyzed,;
and (b) low-lying strange mesons having spin 1 which
are treated as dual to baryon resonances with angular
momentum greater than 1/2. We assume that spin-1/2
intermediate states in the direct channel, either below
threshold or with a mass greater than |/Smax, are negligi-
ble. We consider the photoproduction data below |/Smax
= 2.3 GeV (cutoff laboratory photon energy at 2.25
GeV), which is comparable in energy with the electropro-
duction data. For A production, N*(1650) and N*(1710)
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FIG. 1. Diagrams used in our model for (y,K*) and
(K-,7). (N*} = (N(1650), N(1710)}, {A"} = {A(1405)},
(A"} = {A(1620), A(1900), A(1910)}, {K*} = {K*(892),
K1(1270)}.
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are the only resonant s-channel states that qualify (see
Fig. 1). For ¥ production, isospin conservation permits
the additional A*(1620), A*(1900), and A*(1910) states
to enter. In the u channel, we include only the A(1405)
resonance because under crossing the low-energy capture
process is dominated by this state [12].

III. ELECTROPRODUCTION FORMALISM

The formalism for electroproduction is well developed
in other papers [13, 14]; we include a discussion of the
essential details. Here we present a covariant expression
for the transition amplitude and provide relations for the
kinematic invariants in a frame convenient for our calcu-
lations. To establish notation, we write

e(e1) +p(p) — €'(e2) + K¥ (k) + Y () 1)

where the four-momentum for each particle is written in-
side the parentheses and the virtual photon momentum
is defined to be ¢ = e; — e;. Within the one-photon-
exchange approximation, the transition amplitude can be
expressed as the invariant product of leptonic, Jz, and
hadronic, J3;, currents mediated by the photon propaga-
tor:
Je - J-
cq2 H )

These currents are the matrix elements of appropriate
operators:

ty; =
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JZ=<e/|.fZ|e>
=e ﬂe'(ezvsz) ’7# ue(81’31)

=LK, (3)
and
JH=<K Y|J¥|p>

6
=a, (LA) [ D AME T uy(p,A)

i=1

=H, . (4)

The hadronic current operator is expanded in terms of
the Lorentz invariant elementary amplitudes,

J

M) = £Tey (47, 7.9,

Mi(x)=2T(y(l-gp, —p-ql,),

Mi(£)=Ty(p-qv. — 4p,)

Mi(£) =Ty(l-g7, — 41L.),

A;(q?, s,t,u), which are scalar functions of the Mandel-
stam variables s = (¢+p)?, t = (¢—k)?, and u = (¢—1)?,
multiplying the explicitly gauge-invariant bilinear matri-
ces (.ML) The choice of a particular set of bilinear co-
variants is not unique and therefore the hadronic current
operator can be expanded in terms of a different basis
such as

6 6
> AM, =" BNI (5)
i=1 Jj=1

with one particular choice for M and A written explicitly
as

1
Ni(£) = 3L (7 = 7.9,

p-
N2(£) =Ty (p, - B q,),

q

l.
N3(£) =Tay(l, - 7} a.),

(6)

Ni(£) =Tx)(p- 97, — 4p.),

ME(£) =20y (p — 1"(9.9. — @), No(£) =Twy(l-q7, —dL.),

MS(£) =T (1) (4 qu — ¢° 7,);

Ni(£) =T(z)(d g, —*.)

where the matrix I'(+) depends on whether the produced hyperon has even or odd parity:

Vs if Ty =+ {Y——_A:EO},
VT
1if m, = — {Y = A(1405)}.

(M)

The M/ basis is a generalization of the 4 photoproduction covariants, with M® and M® containing the new spin
degrees of freedom for the virtual photon. This basis permits a transparent comparison of the virtual versus real
photoproduction cross section formula. The A7 basis is useful for simplifying the Feynman diagram calculations of
the invariant amplitudes (B;), and therefore we adopt it for this purpose. The 6x6 basis transformation matrix is
given in the Appendix, where we also write the generalized invariant amplitude expressions.

The differential electroproduction cross section involves the spin averaged, squared transition amplitude multiplying
the three-body phase-space kinematic factors:

(2m) =5 M, My M? 2 deadk dl
= E-<|tyl*>6(e;, +p—ex—k—1)0——— . 8
2 (e p2 - bz TP k0 TRy ®
Integrating over the hyperon three-momentum gives
d3 27) M, My M2 k|? E,./
o= z - m)~ M, My exl | <[tril® > ©®
dQe’ dEe’ ko 2 [(61 -p)2 - MzMg]’Ek Ey R
where
k k 1
R=—. . (— —
(k| (Ek Ey)

The spin averaged, squared transition matrix is a covariant quantity, given by the following expressions:
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< |tf'|2 >=1 Z Z et (€, 8,) ue(el, L) M
31,-!2 AN
2
e j; [2H e + 2q2|H|2]

(10)

(11)

derived using the spin algebra trace theorems, current conservation (which eliminates the e, dependence), and various

kinematic relations. Defining the usual electromagnetic fine structure constant a, = % = %, and substituting the
explicit hadronic current [Egs. (4) and (7)] yields the following:

Qe
<l >= (g 3w (@
with
TH =T [ (J+ My) My (B+ Mp)MI' g*]  (13)

and

Ty = (5‘5) Tr [ (J+My)(M'e,) (B+Mp) (M7 e,)] .

(14)

All traces have been performed using REDUCE, giving the
Ty’ and Ty’ matrix elements listed in the Appendix.

A particularly useful form of Eq. (9) is derived when
the lepton kinematics are evaluated in the laboratory
frame, current conservation is applied to eliminate one
of the current components (scalar or longitudinal), and
the square amplitude evaluated. Choosing the following
coordinate system (see Fig. 2)

A q
Z=-—,
lq |
. e,
= — 15
y=e X o5e (15)
X=yx2
and defining
1
16
2
ELE—%E
e’ K
S
B&//‘Y
e @

Leptonic Plane Y=A, 3% A(1405)

Hadronic Plane

FIG. 2. Laboratory frame kinematics for electroproduc-
tion.

6
Z A3 [T + 1) (12)

which measures the virtual photon’s degree of transverse
and longitudinal polarization respectively as a function of
the laboratory electron scattering angle ¥, the averaged
square amplitude can be re-expressed as

3
<l[trl*>= ( ) > A8y, (1)
4q i,j=1
The © and p matrices are defined by
0i; = ZH*’HJ (18)

Az\’

which is the matrix formed by the independent (spin av-
eraged) hadronic current components, and

v9 0 eO+op
(b) = 0 la-o 0
—[%EL(1+€)]1/2 0 €,

(19)

which is the virtual photon polarization density matrix.
Finally, because all of the leptonic dependence in the
phase space can be factorized, the electroproduction dif-
ferential cross section can be related to the (virtual) pho-
toproduction cross section 3?7"‘

do,

3 _
c°=® a0 (20)
where
eEer .m)2 2M21/2
o CeBella-p) —o°My] (21)
2m2((e, - p)? — M2M2|Y/2¢%(e - 1)
and
ﬂ k2 M My
dQ%  167%[(g-p)% — q2M2]1/2Ek Ey R
3
X Z pije,-j. (22)

® is interpreted to be the virtual photon flux seen in the
proton’s rest frame. In the center-of-momentum frame,
the cross-section formula simplifies further:
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dos™ k| M, My \
dQ%  |q| 1672 s <ITnl" > (23)

where < [7f;[?> > is defined to be the virtual photopro-
duction square averaged amplitude:

< |7;‘1

Zp

%,7=1

(24)

Notice that this squared virtual photoproduction ampli-
tude, which is a Lorentz-invariant quantity for real pho-
toproduction, is not covariant for electroproduction due
to the frame dependence of the polarization parameter
€ (i.e., the degree of transverse or longitudinal polariza-
tion is not invariant under a Lorentz boost). Obviously,
the polarization density matrix and the hadronic current
matrix are evaluated in the specific laboratory frame de-
fined by Eq. (15). We have found a generalized form of
Eq. (24) which clearly demonstrates how the covariance
of the square amplitude for virtual photoproduction is
broken and then restored in the limit as ¢2 — 0. The
square amplitude takes the form

4
(e—1) ) A*8O,,

=1

<|Tul*> = (25)

where the A*” and ©,, are the covariant tensors formed
by the leptonic and hadronic currents, respectively:

2M? Y
Mv=(55) X oL

81,82
=g" + qi(e“e +ete’), (26)
== ZH*
)\z\’
Ay ; ;
(27)

The frame dependence of Eq. (25) is contained in the
polarization parameter (€) as an overall factor. A more
general expression for e relates the degree of transverse
polarization to the z-y asymmetry in A:
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Of course this expression yields Eq. (16) when evaluated
in the laboratory system.

The leptonic tensor can be re-expressed in the following
form:

Yuyy qﬂq”

A = ghv 4 ( p ), (29)
where ¥# is defined by
T = (et +et) . (30)

Before a direct comparison can be made between the vir-
tual and real photoproduction amplitudes, the hadronic
current tensor must first be averaged over all orienta-
tions of the leptonic and hadronic scattering planes (ie.,
virtual photoproduction has an extra degree of freedom
associated with ¢):

1 s
E;;/(; @uud¢.

This integration is equivalent to projecting the off-
diagonal (¢ dependent) elements of © to zero. By apply-
ing current conservation and using the general definition
of €, the following limit can be established:

(31)

Jm [FE+q ()9 Ou =0, (32)
from which it follows that
i, 4 8= i [+ (ZES LT
= (0"~ (—=)9"" ] O
= () 8"Op (33)

where we have used current conservation (q“@u,,_ = 0)
and the fact that |H|? is independent of ¢ ( g*YO,, =
g"¥©,, ). Finally, the virtual photoproduction square
amplitude becomes

1

/ d¢<Isz'2>—" __5 guuH*H
AN

(34)

which is precisely the covariant, real photoproduction re-
sult.
A useful identity for the virtual photoproduction cross

S (28) section involves a decomposition into factors where the
¢ = RTyaA2 ¢ dependence is explicit:
|
do dUU do gp 2 dO‘ 1/2
L= 1)]'/?—=siné 35
a0 - a0 +6ko sin“fcos2¢ + €, —— 0, + [2¢, (e + 1)] kosm cosg . (35)

The U, P, L, and I terms are called the unpolarized transverse, polarized transverse, longitudinal, and interference
cross sections, respectively. By expanding the squared amplitude using Eq. (24), the meaning of this terminology

becomes clear:

<ITpP > = 3 (5UHP + HP) +
AN

%(lelz -

[Hy*) + e |Hal* — [2¢, (e + V)]Y2(H;Hy + HIH:) |-
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The respective correspondence with the terms from the
previous equation is obvious. Most of the experimen-
tal data involves only the U and L terms (i.e., averaged
over all ¢ angles), hence this formula is useful for an ef-
ficient numerical evaluation of the o, cross section, but
it requires a direct calculation of the hadronic current
components in the laboratory frame. Otherwise, if the
covariant expressions are utilized [i.e., Eq. (12)], the var-
ious polarization dependent U, P, L, and I components
can be projected out of the total squared amplitude by
integrating over ¢ [using the orthogonality of cos(ng)].

A. Electromagnetic form factors

Besides requiring additional spin degrees of freedom
in the production amplitude, virtual photons probe the
electromagnetic structure of the participating hadrons
(via form factors). In a phenomenological model, such as
this one, care must be taken to incorporate form factors
which accurately represent the available data. This en-
sures that when model predictions are compared with the
electroproduction data, deficiencies can be attributed to
the dynamics and/or uncertainties in the unconstrained
form factors. Within the framework of a purely hadronic
model, the vector meson dominance (VMD) hypothesis
provides the most natural and consistent description of
the electromagnetic form factors. In VMD, the virtual
photon can directly couple to any vector meson having
the same quantum numbers and 4-momentum (e.g., p, @,
w, etc.). When the photon interacts with a hadron, the
strong vector meson interactions are assumed to “dom-
inate” the direct coupling of the photon to the hadron.
This assumption is known to be satisfied very well in the
timelike g2 region where very dramatic resonance features
are observed in the pion and kaon form factors when the
photon mass is near the mass of a vector meson. How-
ever, the VMD picture must at some point break down
in the spacelike region where, at high g2, the form factors
will be dominated by the photon’s direct coupling to the
quarks [i.e., governed by perturbative QCD (PQCD)].
Therefore, we adopt the extended vector meson domi-
nance (EVMD) model proposed by Gari and Krumpel-
mann, which is able to retain the successful VMD physics
in the timelike region and also permit a smooth transition
to the spacelike, high-¢? scaling behavior of PQCD [15].
We stress that the formulas derived from EVMD mani-
festly respect crossing symmetry and are therefore appli-
cable for both spacelike and timelike photon momentum
transfers. This is difficult to achieve in other models and
is important for our complimentary (K ~,ete™) reaction
studies which we will report in a future publication. It
should be noted that even within the EVMD formalism
there are several possible variations (including the use of
“exact” propagators, radiative corrections, and multiple
vector mesons) which may be investigated [16-18]. For
now, we employ the simplest, phenomenologically accept-
able EVMD form factors.

For the proton electric and magnetic form factors,
G%(¢%) and G%,(¢?), respectively, we use the EVMD
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parametrization of Gari and Krumpelmann [15]. Follow-
ing their derivation, the most general EVMD expression
for the kaon [Fk+(g?)] charge form factor is found to be

Fr+(q%) = vFy(d%)
9 My

+ZFv(q2) (fv) M2—q2—ZM F 9

(37)

where M, and I';, are the mass and width of the vector
meson, respectively, v is a normalization constant, g,/ f,
is the effective vector meson coupling of the second graph
in Fig. 3, and F,(¢?) is the intrinsic form factor associ-
ated with the hadronic vertex. F.,(g?) is the form factor
associated with the direct coupling of the photon to the
hadron (first term in Fig. 3), and is therefore responsi-
ble for the transition to high-g> PQCD behavior. Both
F, and F, are normalized to 1 at ¢> = 0. The same
formula applies to the K*K transition form factor (with
possibly different parameters), but it must be multiplied
by the K*K transition moment (due to its different nor-
malization). At g2 = 0, the kaon charge form factor is
normalized to unity, which determines the constant ~:

v+ 2 =1
v v

Notice that the simple VMD model is equivalent to
EVMD with a sum rule on the coupling constants (i.e.,
~ = 0) and all strong form factors taken to be constant.
Obviously, Eq. (37) has much more flexibility than sim-
ple VMD, with the inclusion of strong coupling form fac-
tors and an additional term allowing for direct photon
contributions. This additional freedom is precisely what
is needed to accurately represent the nucleon electric
and magnetic form factors (which follow a dipole scal-
ing law) using a VMD prescription. For spin-0 mesons
(such as K7), the experimental form factor data are
well described by monopole scaling, which is consistent
with simple VMD [i.e., v = 0, and F,(¢?) = 1]. The
three parameters for the kaon form factor are well de-
termined by the known ¢ — K*TK~ decay width plus
two normalization constraints [Fx+(¢g? = 0) = 1, and
Fgo(q? = 0) = 0], yielding charge radii for the K+ and

K?° within experimental uncertainties (< 72 >= 0.335

fm? and < 72 >= —0.058 fm?). The resulting parame-
ters are given in the first column of Table I. To our knowl-
edge, there is no experimental information on the K*K
transition form factor, therefore for simplicity we assume
no dependence on the strong form factor [i.e., F,,(¢?) = 1]
as with the kaon, but allow for direct coupling with the

(38)

I
&

N

+

FIG. 3. Extended vector meson dominance (EVMD) pic-
ture of a physical photon coupling to a hadron.
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TABLE I. EVMD coupling constants for the K™ transi-
tion and K+ charge form factors.

EVMD coupling KtK*ty K*K~y
9.7, 05 05
9./t 0.17 0.17
9,/ 1, 0.33 0.77

Gye /Sy 0.0 0.63

photon (i.e., v # 0). We acknowledge the ambiguity in
the K*K* transition form factor; however, we empha-
size that all other coupling constants and form factors
are well justified. Assuming our model has the correct
dynamical content for electroproduction at intermediate
energies, we can extract the K*K* transition form fac-
tor, taking advantage of sensitivity to the K* graphs, by
fitting the available data with all other parameters fixed.
In addition to the p, w, and ¢ vector mesons, we include
the excited ¢*(1680) meson which has a large decay width
in the K*(890)K* channel. We assume universality of
the nonstrange (p and w) vector meson couplings [19] and
hence there are two independent parameters, g,/f, and
g4e/ £, which we adjust to give the best fit to the elec-
troproduction data. In our calculations, we use the same
monopole form factor associated with the photon used
by Gari and Krumpelmann [i.e., F,(¢?) = 'X’%ﬁ' with
A ~ 0.8 GeV]. The resulting parameter set, represent-
ing our prediction for the K*K™ transition form factor,
is listed in the second column of Table I. For simplic-
ity we have assumed the same ¢? behavior for both the
K*(890)K*~ and K1(1270)K " transitions.
Electromagnetic form factors can be introduced into
our photoproduction amplitudes by the following replace-
ments at each electromagnetic vertex. For the ypp vertex

e — e, =eGh(qd?),

with the anamolous magnetic moment

pp — b [Ghy(d®) = 1).
For the YK+ Kt vertex

e — e, = e Fr+(g?).
For the yK*K™ vertex

Gxoics — Oxcrey FEK (7).
For the yBB' vertex

Ghu(a®)
Mo — Moo (G Gy

It should be noted that we have implicitly used the same
G (g?) for all baryons, which may be regarded as an
additional approximation.

In principle, form factors should also be included at
the strong interaction vertices to account for the com-
posite nature of the hadrons manifest at large momen-
tum transfer. In this study, as a first approximation,
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we neglect this effect and consider only energy indepen-
dent hadronic couplings. This should be a good approx-
imation for the K N*Y interactions since for the ener-
gies considered in this analysis the N* resonances prop-
agate nearly on shell and thus transfer little momen-
tum. However, this assumption may not be well satisfied
for the nonresonant Born diagrams since these graphs
are far off shell even near threshold. The historical ne-
glect of this effect in electromagnetic production stud-
ies may, in part, account for the long-standing discrep-
ancy of the extracted Born KNA and KNX coupling
constants when compared with either SU(3); predictions
(which relate on-shell couplings) or determinations from
low-energy KN elastic scattering (which either extract
these couplings much closer to their on-shell values or
else explicitly include monopole form factors, producing
a suppression of the meson exchange with increasing mo-
mentum transfer [20, 21]). In this study, we do not in-
clude this effect, choosing rather to avoid the ambiguity
and uncertainties associated with introducing additional
parameters into the model. However, because this off-
shell suppression is probably not negligible at the ener-
gies considered here, we regard our extracted g, y, cou-
pling constants to be representative values evaluated at
some average 4-momentum transfer. Of course this is
not a precise definition because this “average” momen-
tum transfer is different for the diagrams in each channel,
< s> —Mg ~ 3 GeV?, <t >—-M} ~ —0.4 GeV?, and
<u>-M} ~ —2.6 GeVZ, but at least we have a quali-
tative understanding for why the extracted couplings are
consistently suppressed relative to the values obtained
from KN scattering or SU(3); predictions.

IV. NUMERICAL RESULTS AND DISCUSSION

In Table II, we compare the effective coupling con-
stants which we have determined in this and our pre-
vious analysis, sets (a) and (b) respectively. All mag-

netic parameters are reported in Bohr magnetons (ie.,

2;;: -). It is interesting that the s- and u-channel res-

onance couplings seem to be fairly stable with respect
to the inclusion of K* graphs. This stability helps ver-
ify that the low-energy photoproduction data is domi-
nated by the influence of only a few spin-1/2 resonances
(those included in our previous model). In other words,
the K* graphs decouple from the low-energy production
mechanism (ignoring the tendency for the K™* graphs to
produce a larger coupling for the proton graph) as ex-
pected from duality. We note that our new coupling
constants are in excellent agreement with the values ob-
tained by Renard and Renard, giving further support
for our implementation of duality. Before our results
for electroproduction are given, we first display curves
which demonstrate the failure of our “naive” low-energy
minimal model and the subsequent success of our new
model which now includes the K*(890) and K;(1270)
in describing the photoproduction data for energies up
to 2.25 GeV. In Figs. 4 and 5, the dot-dash curve rep-
resents our original model whereas the solid curve repre-
sents our new parametrization. The failure of our original
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TABLE II.  Coupling constants for (7, K*) and (e,e’K).
Y=A Y =x° Y = A(1405)
Diagram Effective coupling (a) (b) (a) (b) (a) (b)
p, K+ Ixny 8.427 4.127 -0.968 -0.329 2.508 2.651
A TR -5.166 -2.530 13.359 6.657 1.161 -0.709
x° BysOxne -1.561 -0.531 -0.784 -0.266 0.813 0.281
A(1405) By A r408) 9 N A(1405) 0.358 -0.451 -2.181 -2.237 -1.143 -1.166
N(1650) Koy 1650yp Tk N 1550y 0.213 0.453 -0.437 -0.426 28.062 15.489
N(1710) B royp K N (1710)y 0.323 0.875 -2.329 -2.143 -2.037 -1.915
A(1620) B 63099 T actozoyy - - 0.161 0.161 - -
A(1900) Ko 190095 I 5 1500y - - 0.315 0.315 - -
A(1910) Foa 010y I A 1010y - - 2.757 2.158 - -
K*(892) rce ooy Toge (302 v 2.032 0 -1.375 0 -0.399 0
Ixces92)K Iee (893 N Y -0.984 0 1.774 0 -0.218 0
K1(1270) Iy 270y Ty ramoy -0.236 0 1.684 0 0.581 0
i1 210k IR, 1270y N Y -2.175 0 -0.862 0 2.164 0

model becomes evident at higher (intermediate) energies
whereas, by design, our new model is quite satisfactory
at these energies. The curves for A(1405) are omitted
here because there is no photoproduction data available
for comparison. The extension to electroproduction is
now straightforward. Utilizing the same parameter sets,

p(y.KHA

0.5 T T T T T

do /d0

(ub/sr)

2.25 2.5

FIG. 4. p(v,KT)A photoproduction cross section at
Oc.m. ~ 90°. The solid curve represents our new model pre-
dictions while the dash-dotted curve represents our original
model which excludes the K*(890) and K;(1270) graphs.
Data are taken from Ref. [26] and references therein.

and using the EVMD form factors described earlier, we
calculate the g2, W = /3, and t dependence of our model
for comparison with the data.

Figures 6, 7, and 8 display the ¢? dependence for A,
%0, and A(1405) production respectively. The A and X°
dependence on ¢2 is reproduced very well; however, the
A(1405) behavior is slightly off, with our model show-
ing dipole-like scaling, whereas the data follows more of

p(y.K*")I°

0.5 T N E— T T T

04F  Bow ~ 28°
do/dn

0.3} 1
(ub/sr)

02}

0.1k

1 1 1 1

1.75 2

£, (GeV)

FIG. 5. p(v,K*)Z° photoproduction cross section at
c.m. ~ 90° with curves labeled (and hereafter) as in Fig.
4. Data are taken from Ref. [26] and references therein.
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FIG. 6. Unpolarized virtual photoproduction cross sec-

tion (o, ) for A as a function of g>. Data are taken from
Ref. [27] and references therein.

a monopole ¢? dependence. We stress that, due to the
large sensitivity to the K* graphs for A and £° electro-
production, our model makes a definite, nontrivial pre-
diction for the K*K™* transition form factor (with all
other parameters previously fixed to the photoproduc-
tion data). Qualitatively, the transition form factor falls
off more slowly than the Kt charge form factor for space-
like momentum transfers. In the timelike region, the ex-
cited ¢(1680) meson is a strong, broad resonance for the
K*K™* transition whereas it decouples completely from
the kaon form factor (g,.,, =0).

It is worth noting that an improved g2 description for
the A(1405) can easily be obtained by readjusting some
of the unconstrained resonance parameters (only Born
graph A(1405) parameters are constrained by the A and
%0 photoproduction fits); however, this undermines the
overall data set description by increasing the total x?2.
This demonstrates, however, that interference between
diagrams can substantially modify the g2 scaling behav-
ior. We believe it is likely that interference from spin-

T T T
oy = doy/dt + € do /dt
e = 0.75
2| 7P - K+ s = 50176 GeV? 4
ouL | t = -0.15 GeV?
(ub/Gev?) |
‘ 1
.
//"*’\‘
oy
¥
0 1 I . 1 !
0 0.1 -0.2 -0.3 0.4 -0.5 -0.6
2\

FIG. 7. Unpolarized virtual photoproduction cross sec-
tion (o, ) for =%as a function of g°. Data are taken from
Ref. [27] and references therein.

3 T T T T
= doy/dt + € do /dt

| SuL

|
| € =066 i
oL 7, +p =+ K' + A(1405) s = 5.3361 GeV? 1
Oy } - 0.03 Gev? !
|
(ub/Gev?)

- ‘

e T
| Tc--- - T |

oL— S I -
0 0.1 -0.2 -0.3 -0.4 -0.5 06

FIG. 8. Unpolarized virtual photoproduction cross sec-
tion (o, ,) for A(1405) as a function of ¢°>. Data are taken
from Ref. [27] and references therein.

1/2 u-channel A* and * resonances which we have ne-
glected may be important for A(1405) production. This
conclusion is supported by the extremely large value we
obtain for the effective coupling of the N*(1650) graph,
which implies our neglect of some important dynamic
resonance(s).

Another interesting result is that while our original
model (dot-dashed curve) underestimates the A and %°
data by a factor of 2 or more (for all ¢?), it is properly
normalized for the A(1405) data, especially at g2 = 0 (see
Figs. 8, 12, and 15), even if all resonance parameters are
set equal to zero. The failure of our former low-energy
model can be understood by examining Fig. 9 where the
relative kaon-hyperon momentum is plotted as a function
of the incident photon’s laboratory energy. This figure in-
dicates, for a given reaction, the necessary partial waves
needed for a specific energy. The partial wave number
L must satisfy the Bohr angular momentum quantiza-
tion condition A|p|A|r| ~ Lk, where A|p| is taken as
the K-Y relative momentum and A|r|, the uncertainty
in position, is the proton rms charge radius. From this
estimation, a model including only s and p waves (as in
our original model limited to spin-1/2 resonances) should
be partial wave deficient at about 1.5 GeV for A and X°
production where d-wave contributions become impor-
tant. For A(1405) production the deficiency energy is
simply shifted upward 0.5 to about 2.0 GeV due to the
difference between A and A(1405) thresholds. This ex-
plains the apparently anomalous success of our original
model in describing A(1405) production near threshold
while failing for A and £° production in the same energy
region. The necessity of the K* and K; mesons at higher
energy is consistent with the need for additional partial
waves at these energies for the A and X° but not for
the A(1405) since the limited A(1405) electroproduction
data exists only for photon energies between 2.0 and 2.5
GeV, where s and p waves are sufficient. Nevertheless,
for consistency, we have also included these K* graphs
and have determined their vector and tensor couplings
which further reduce the x? (given by the solid curve in
Figs. 8, 12, and 15). While this slightly improves the
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FIG. 9. K-Y relative c.m. momentum (Pg™) as a func-
tion of the incident laboratory photon energy (E,l,“b) for each
hyperon [Y = A,EO,A(14O5)]. The horizontal lines give ap-
proximate momenta where the partial waves (labeled by quan-
tum number L) are expected to dominate the production am-
plitude. The points of intersection yield an approximation
to the minimum photon energy necessary to excite the next
higher partial wave.

fit, the K* simulated higher-spin resonances are incap-
able of providing the necessary interference needed to
reproduce the A(1405) ¢?> dependence. Assuming the ef-
fects from higher-spin resonances are being adequately
simulated by these K* graphs, it appears that the neces-
sary interference must be due to some neglected spin-1/2
state(s). In our calculations, we have noticed significant
sensitivity to u-channel interference and that an excellent
fit to the A(1405) data is possible by unconstraining the
Born A and ¥ graphs. However, in this case the coupling
constants become unphysical, but since there are several
other possible spin-1/2 u-channel resonances which have
been neglected, we believe one or more of these states
may be important for A(1405) production.

It is interesting to note that very similar results were
reported in reference [22] where an exclusively ¢-channel
Regge pole model designed for high-energy photoproduc-
tion data, £, = 5.0,8.0,11.0,16.0 GeV, was extrapo-
lated to analyze much lower energy electroproduction
data. They found that their model severely underpre-
dicted the electroproduction data which motivated a sub-
sequent analysis that considered unnatural parity ex-
changes to restore agreement. We believe an alterna-
tive explanation exists, related to the partial wave de-
ficiency discussed above, involving an unphysical sup-
pression of the lowest partial waves in their calculation.
In their approach, the model amplitude is decomposed
into partial waves, keeping terms with total angular mo-
mentum up to J = 20, which are individually multi-
plied by a (J dependent) suppression function (to ac-
count for final-state absorptive effects), parametrized us-
ing an energy-independent coefficient governing the mag-
nitude of absorption (which is in general energy depen-
dent). They achieved a good description of the high-
energy data by adjusting this absorption parameter so
that the lowest partial waves were “almost completely
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absorbed.” Consequently and not surprising, their ex-
trapolation of this same model to lower energies (where
the low partial waves are important) underpredicted the
data by a factor of ~ 1/2. Instead of introducing ad-
ditional Regge trajectories to overcome the suppression,
we believe an alternative approach would be to reanalyze
both the high- and low-energy data using a more realis-
tic, energy-dependent absorption parameter. Then one
could assess whether additional Regge trajectories are
needed. In contrast, our original model did not contain
the correct high-energy physics (truncated at spin-1/2
resonances, producing only s and p waves) and so the
partial wave deficiency we observe must be attributed to
our neglect of higher spin resonances.

In Figs. 10, 11, and 12 the energy dependence of A,
3% and A(1405) is displayed. We find good qualitative
agreement between our new model and the behavior of
the data. The X0 curve, although having the correct
overall magnitude, has a slowly increasing W behavior
whereas the data is decreasing. Also, the A curve shows
very little W dependence while the data decreases over
the same energy range. The A(1405) dependence, which
compares favorably with the data, is primarily due to in-
terference from the N(1650) diagram which has a large,
probably unphysical effective coupling, as discussed ear-
lier. Without this diagram, the cross section is roughly
twice as large and increasing slowly whereas the data ap-
pears constant or slowly decreasing. We note that even
though only semiquantitative agreement exists with the
data, such results are to be expected when a truncated
duality approximation is made. Including only a few t-
channel diagrams, while convenient to incorporate, can
only provide a gross, general description of the s-channel
physics. The detailed behavior arising from many s-
channel resonances can only be represented accurately
by t-channel exchanges if duality is implemented exactly.

Figures 13, 14, and 15 demonstrate the ¢t dependence
for A, £° and A(1405) production, respectively. Again,
qualitative agreement has been achieved. The data
marginally suggests that for |t| > 0.15 GeV? the invariant
cross section declines in value for both A and £°, which
is consistent with the photoproduction angular distribu-

125k 7 +p » KN +A 4
OuL
ik -
(ub/GeV?) ,’_’_/_L_"L_,—/
0.75 ‘ B
q% = —0.40 GeV? j
05+ t = -0.135 GeV? # ]
e =0.68
0.25+ b
0 1 s L 1 - 7' —————— I
2 21 2.2 2.3 2.4 2.5 26 2.7
W (GeV)
FIG. 10. o, for A as a function of W = ,/s. Data are
UL

taken from Ref. [27].
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FIG. 11. o, for £° as a function of W = /5. Data are
taken from Ref. [27].

tions having back-angle suppression. One of the difficul-
ties associated with including massive spin-1 mesons in
a field theoretic model is that the tensor coupling of the
strong interaction vertex introduces a linear ¢t dependence
in the differential cross section. At low energies, interfer-
ence between the various diagrams can produce reason-
able angular distributions; however, at higher energies
the cancellation is incomplete and the linear ¢ dependence
dominates, producing an unphysical back angle enhance-
ment of the cross section. This problem arises due to the
pointlike effective field interactions which permit no sub-
structure for the higher-spin hadrons in the model. Field
theories are only well defined (i.e., formally renormaliz-
able) for spin-1/2 fermions and scalar bosons (unless it
is a gauge theory, in which case spin-1 bosons naturally
arise and do not spoil the renormalizability). Although
higher-order diagrams are not being calculated, the in-
correct energy dependence associated with a nonrenor-
malizable field theory is present even at tree level. In
principle, this problem can be circumvented by introduc-
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FIG. 12. o, for A(1405) as a function of W = /5. Data

are taken from Ref. [27].
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FIG. 13. o,, for A as a function of ¢t. Data are taken
from Ref. [27].

ing a strong form factor to suppress the tensor coupling at
higher energies (the energy-scale dependence of the ten-
sor coupling is evident by its inverse mass dimension).
However, based on the current quality of data and the
level of agreement that we obtain, we have not pursued
this approach even though at higher energies it may be
unavoidable for this type of model. More fundamentally,
the breakdown of this type of quantum hadrodynamic
(QHD) model should not be surprising if a transition to
perturbative QCD dynamics has set in. There is some
experimental evidence for a transition from the s~2 scal-
ing behavior consistent with hadronic model calculations
to an s~7 behavior predicted by PQCD counting rules at
about E, ~ 2 GeV for sufficiently large |t| [23]. It is
possible that the larger-|t| electroproduction data is al-
ready in the transition region between QHD and PQCD,
in which case the breakdown of our model is quite nat-
ural. This interesting region is very important for our
understanding of nonperturbative QCD and is the focus
of proposed future investigations at CEBAF [24].

o | q? = ~0.19 Gev?
W = 228 Gev? |
o5l ¢ =069 4

(ub/GeV?)

FIG. 14. o, for £° as a function of t. Data are taken
from Ref. [27].
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V. CONCLUSIONS

In this paper we have attempted to provide a consis-
tent and comprehensive phenomenological model for hy-
peron electromagnetic production processes. By simul-
taneously studying A, £° and A(1405) production, we
have confidence that the common hadronic and electro-
magnetic coupling parameters are well constrained and
therefore presumably better determined. Our success in
predicting the cross channel capture branching ratios us-
ing the same model strengthens our confidence that the
extracted coupling constants are reliable and physical.
The importance of crossing has led us to concentrate on
developing covariant expressions for the spin averaged,
squared amplitude, which permit a natural analytic con-
tinuation to the crossed channel. These formulas will
be useful when we consider the kaon-induced pair pro-
duction processes, p(K~,ete”)Y, in a future publica-
tion. By incorporating a duality motivated correction
to a low-energy model which contains only kinematically
enhanced, spin-1/2 Born and resonance graphs, we have
extended the energy range where the model is applicable
and ensured phenomenological efficiency by explaining an
abundance of data with a minimal parameter set. The
duality correction ansatz is a method for representing the
collective effects of several higher-spin s- and u-channel
resonances by a few t-channel exchanges. This is not only
very convenient, but more importantly, it also avoids the
complexity of a model having several competing reso-
nances and the attending phenomenological uncertain-
ties associated with a much larger parameter space. The
limitation of this approach is that only gross, qualita-
tive features of the data can be reproduced since, for a
particular energy region, the detailed production mech-
anism is generally governed by an intricate interplay of
many resonances. We anxiously await future data from
CEBAF and KAON which will help clarify the details
of the reaction mechanism which at the present cannot
be further addressed. Furthermore, additional precision

data will help provide insight concerning the speculated
transition from hadronic to chromodynamic degrees of
freedom at energies as low as E, ~ 2 GeV for sufficiently
large |t| [23, 24]. If the transition from hadronic, s~2, to
chromodynamic, s~7, scaling is observed at CEBAF en-
ergies, then a PQCD analysis may be appropriate, such
as the recent large scale computer calculations of Farrar
et al. [25].

Whether or not PQCD is applicable at CEBAF is a
controversial topic which should be resolved one way or
the other with new precise data and additional calcula-
tions. However, everyone agrees that CEBAF will play
an important role in our understanding of nonperturba-
tive features of the strong interaction. Because QCD is
(at present) unsolvable, it is important to develop phe-
nomenological effective potential models (at both the
quark and hadronic level) which avoid the complexity
of the underlying QCD interactions by attempting to
parametrize the nonperturbative QCD physics in a phys-
ically sensible yet tractable formalism. One obvious ad-
vantage with this type of approach is that after all param-
eters have been consistently determined, such a model
has definite predictive power, which can then motivate
and be further tested by new experiments. A novel fea-
ture of the crossing consistent model described in this
paper is that in addition to being able to make definite
predictions for kaon electroproduction reactions observ-
able at CEBAF, we also have justifiable confidence in
our predictions for the low energy p(K~,ete™)Y reac-
tions relevant with KAON experiments (which we detail
in an upcoming work). With complimentary information
coming from these reactions, we expect ongoing progress
and a steady evolution in the development of a consis-
tent and unified description of electromagnetic hyperon
production.

In summary, over the last three decades of kaon elec-
tromagnetic production studies, a variety of theoretical
models have been formulated. Our approach has been
to represent the hyperon production amplitude in terms
of a sum over tree-level Born and resonance graphs cal-
culated from an effective field chiral Lagrangian contain-
ing phenomenological coupling constants. Hadrodynamic
field theories have a long and successful history in nuclear
physics, incorporate the proper symmetries, and contain
the correct degrees of freedom for low-energy phenomena
while providing a comprehensive, yet tractable, general
framework for studying the strong interaction. One of the
main advantages in this type of model is that the formal-
ism is explicitly relativistic and covariant, naturally lend-
ing itself to a simultaneous description of crossing related
reactions in several production channels. Within this
general framework, we have treated A, £°, and A(1405)
hyperon production in a unified and consistent way.
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APPENDIX 1 0 0 000
0 1 1
The different basis matrices are related by a transfor- } 0 2"'%"’5 U D) 088
mation on the invariant amplitudes defined by (R)! = 0 o0 0 010 |
AingBj, qul—p qqlpOOO
001
B;=(R™")] 4,
1 0 0000O

hence the basis matrices transform by the inverse matrix
M}, = (RN
Rt J
N =Ri M,

The transformation matrix and its inverse are given ex-
plicitly by

0 2¢-1 00—¢%0
0-2¢-p00 ¢%2 0

—1\j _

(R )"_ 0 0 1000
0 0 0100
0 0 0001

Furthermore, this transformation can be used to relate
the traces obtained using the different bases:

6 6
<ltrl?>oc Y A AT TY +TY) = > BB [TV + 1Y)

4,5=1

1,7=1

where

TP =Tr [(J + My) ML ($+ MM ¢ |,

T = () T [+ M) (M ) (4 MM ),

TP =Tr ([ + My)NL(B+ Mp)NG g* |,

Ty = (5) T [+ M)V -e) (3 + M)W )l
hence,

TH=Y RFR. TP,
zyzl
(i,j,k,lzl,Z,...,G; q:1’2)

The traces have been performed using REDUCE and found to be consistent with our hand calculations. Explicitly,
we find for the Hermitian 777 (%) and 73’ (+) matrix elements (where the + labels the produced hyperon parity):

T} (£) =161 - qp- g + 4¢*(£3My M, —p - 1),

T2 (£) = —8[M3(p- q)* + M2(1-q)* —2p- U -qp- g,

TP (£) = —4Mpg*(p - 1 £ My M) — 8p - q(M,l - q = Myp- q),

T4 (%) = —(£)4My*(p - | = My M,)
T (%) = —4*[l - q(p- 1 — M2) +p-q(p- | — M2)],

T)°(£) = 12¢*(Myl - g = Myp- q),

— 8- q(Myl-q+ Myp-q),
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TP (£) =—16(p - L = My M,)[M3(p- q)* + MZ(1-q)* —2p-ql - qp- 1],

T3 (£) = —8Mp[2p-ql - qp- | — MZ(p- q)* — MZ(L- g)?,

TP (£) = —(£)8My(2p-ql - qp- | — ME(p- q)* — MZ(1-9)?,

TIPS (£) =8¢%(p- 1 — (£) My Mp)[MEp-q+ M2L-g—p-U(p-q+1-q)),

leﬁ(i) =8¢°(p-1 — (£)My M,)[Myl - g+ Myp-q),

T3 (£) =4(p- 1+ My M,)[2(p- q)° + ¢ M),

TP () =4(Mpl - g+ Myp-q)2 +4p-l(p- | £ My M),

TIPS () = —4Mpg?[l - q(MZ —p- 1) +p- ¢(MF — p-1)],

TP0(+) = —4¢*[p- q(£3My M, + 2p - 1) + M?L - g],

TP (£) =4(p - | £ My Mp)[2(1 - 9)* + ¢* M3,

TP (£) = £4My ¢®[l - q(p- 1 — M2) +p-a(p- | — M})),

T} (+) = —4¢?[l - g(£3My M, + 2p - 1) + Mip - g),

TPO(£) = —4¢2(p - 1 — (£)My M) (> (M2 + M3 —2p- 1) +2p-ql-q— (p-9)* — (I~ 9)?),
TIPS (£) = —4¢%[q* (M = My)(p- 1 — (£) My M) — g - (p — ))(Mpl - g — (£)Myp- q)],
T8 (+) =4¢*12p - ql - ¢ + ¢*(£3My M, +p-1)],

T (2) = _<§1§)(iMYM,, —1-p)(g-e,)? - *M?]

l- l-e
—32(—q§><p-elq e = Mip-g) = 32—*)pag e, —a"p-e),
1,2 32 2
Iy (£)=- F)(l-e,p‘q—%qp-el) ,

16
T3 (x) =— 2o e,q* —p-qq-e,)(xMyp-e, + Myl-e,)

+(M2p-q—p-e,q-e)(EMyp-q+ Mpl-q),

T34 = (I e = 1-aq-¢ )Myl €, £ Myp-e,)
+(MZ2l-qg—1-e,q-e,)(Mpl-q+ Myp-q)],

T35 (&) = () ep-a-1-ap-e)ld, - (-~ g e+ (b= 1)

T}0(8) = ~() Myl 0% Myp- 9l(a-e,)* - M)

T3HE) =~ () 1~ My My)(p-al e, — L-qp-e, ),

32M,
pe EY(1-gp-e, —p-ql-e,)?,
+32My
q2

T95(£) = —(%)(p- l— (£)MyMy)[(p-ql-e, —1-gp-e,)(qg-e,q-(p—1)— g%, - (p—1))],

TE(&) = (

T34 () = (

Y(l-gp-e, —p-ql-e,)?,

32
T7%(£) =~ ;15)(l-qp-e1 —p-ql-e)[£My(¢’p-e, —p-qq-€,) — Mp(q®l-e, —1-qq-e,)],
16
T3 (£) =— q—g)(p-liMyMp)[z>-q(zo-elq-e1 —M2p-q)+p-e(p-aqg-e, —¢°p-e)],
16
T34 (%) = F)(l-qp-el—p-ql‘el)2

16
- 'q—z)(p'l:tMYMp)[p'q(l'elq'el _Me2l'q)+p'e1(l'qq'el —l'61q2)],
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T3S (4) = —(1—6—%>(z-qp- e, —p-al-e)lg%
T“(i)—le( P21+ My M,)[(q- e1>2—q2M21—(
T24,4(i) = '—(—)(p S MYMP)[l : q(l “€,9-€
TH5 () = —( *IGMYW e —p-gl-e)d,

THO(4) = 16(2—';% Uk My M,)((g-e,)? -

TES(4) = — ;—Sxp A= (D)MyMy)g- (p-Dg-e, -
T3%(%) = —(g)[q -e,q- (p—1) — g,
TEO(£) = —16(p - L+ My M,)[(g - €,)? — M?] — ({j%

These matrix elements are functions of the kinematic in-
variants formed by products of the available 4-momenta.
For completeness, we list expressions for the 4-vector
components in both the laboratory and c.m. systems.
The laboratory system (p = 0):

qlab = (Q6v 0,0, Iqll)»

Dlab = (Mp) 0,0, 0)’

kiab = (kg, 0, |K'| sin @', |k’| cos 6")

lab = (15,0, —|k'| sin€’,q" — |k’| cos8’).

The (yp) c.m. system (q+p =k+1=0):

Gc.m. = (QO’ 0,0, lq |)y
Dem. = (p070)0a —|q l)7
ke.m. = (ko, 0, k| sin 8, |k| cos 6),

le.m. = (lo, 0, —|k| sin 8, —|k| cos 6).

The leptonic 4-vectors are determined from the pho-
ton’s 4-momentum and the scattering angles ¥ and «
defined in Fig. 2. The following expressions are valid in
either system:

€= (60,61,63/,62)
e, = (ep, €, e e5),

where
2
do q 1/2
==[1 1———
2[ +( qosm2‘§’) )
1 1+e€
=5le+lal(;=)"?],
%—%—%

= [ ~q0 +lal(;— +€)1/2]

e. = |e|cosq, e, = e;—|dq|,
Ey = 0, C:,u = eyy
e; = |e|sinaq, e, = e,
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—Mfl-q)+l-el(l-

=0 —q-eq-(p-1),

)(p qq-e, —q’p-e,)(p-ql-e, —l-gp-e,),

qq-e, —q*l-¢,)),

‘p=D-q-eq (p-1)),

¢*MZ] - —)(l 99-€, —¢’l-e,)(l-qp-e, —p-ql-e,),

%e, - (P =D,

"= Dllg-e,(Mpl-g— (£)Myp-q) — ¢*(Myl - e, — (£)Myp -¢,)],

)p-qq-e, —q°p-e,)(l-qq-e, — ¢°l-¢,).

and neglecting the electron mass
Mf—.o

le l = €9,

€z
@+

2

q0 q
1= )

" lal 2e0g0”’
€x

(62 + 62)1/2

- (1

" la

The 4-momentum components are functions of the Man-
delstam variables:

cCosa =

sina=

|2( - ) ]1/2

26040

s=(g+p)? = (k+1)%
t=(p-1* = (k-9?
u=(g-1°* = (k-p)°

and are given by

1]

_os+¢d-My (s — M2 — %)
g0 = 2\/5 y Qo = 2Mp )
2 2
s—q¢°+ M
po = —5—\/3—'—1), po = My,
— s—MP+ Mg, _ (M2 + Mg —u)
0 = 2\/‘; 3 0o — 2Mp )
o - SEMEoME (M2
0 = 2\/; ) 0o — 2Mp )
with
lal = (@G- 1d] = (d0-a)"?
k| = (k-ME?Y?, K| = (k2 - Mg)'/?

and the transformation between the lab and c.m. kaon
angle given by
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la | Ik| (goko — g - k) l__l 2 2

Pl =s(M;+ M —t),
QTR (aoko — g %) 2 T =Y
Expressions for the invariant products appearing in the
T* elements are

cos® = cosf [

p-k=%(Mg+M}"{—u),
1 2 2

g-p=5(s =My -¢%)
2 R0 k~l=%(s—M}"(—M§).

and the leptonic invariants (evaluated in the laboratory

_1 2
gl = -2—(q + My —u), system):

q-e, =eo(qo — |q'| cos ),

b-e =60Mp7

l-e, =eo[ly+ |K|siné cospsina — (|q'| — [k'| cos ) cosar ],
k-e, =eol ky — |Kk'[sin6'q’ cos ¢ sin o — [k’| cos 6’ cos o ]

The invariant amplitudes (B;) defined in the text are obtained by applying the Feynman rules to the graphs
displayed in Fig. 1. The result of this calculation gives for the production of an even parity hyperon (i.e., Y = A, X0)

for Born graphs (p, K", A, £°):
B?om _ 9xny (e+ 2Mppp) + Byar9rna (Mp £ My) + Bys,9uns (Ms £ My)
s— M2 u— M3 u— ME ’
29y ny (q2 + M}2’ —u)
(s=M2)(t - M%)

—2eg
BBorn — KNY
3 t — M}z( )

BBorn — 2#P9KNY
4 s — Mg ’

Born __
32 —

BBorn — 2ll’YAquNA 2/“‘Y2-ngNE
s u— M} u—MZ

BBorn _ “HpIxny | Pyar9xna | HysyIxns
8 s — M2 * u— M32 + u— ML’

for s-channel graphs (N*):

BNGE) _ BnepyIxney (My- + M, — iTy)
' s — MZ%. + iMy-Tn- ’

B, # o,
w1
By ¥ —o,
BN-(%:E) — :t2/'l'N'p'ngN"Y
4 s — MZ. +iMpy.Ty.'

BY 3~

b

BN'(%i) _ _(i) Hyepr Ixney )
6 s — M%. +iMpy-Tn-

The s-channel A*(1+) invariant amplitude formulae associated with 3° production have the same form as the N*( % +),
hence they are trivially generated by mass, width, and coupling constant substitutions into the above expressions.

for t-channel graphs (K*):

T
K*(1%) _ [li(—l)] Ix+xy \4 M- M. gK'NYt
By = o S ME + M T Fweewy My + My) + S0Pt ]
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BK'(H:) — _(i)gK‘K‘ygﬁ‘N}’ (q2 + M2 _ u)
2 2MMp(t — M. + iMg-Tk-) Y ’
. + T
K*(1%) _ 9k+kIK*NY — % M2
Bs T 2MM,(t — MZ. +iMK.I‘K.)(S q p)
K*(1+) _ Ireky v + My — M, +
Bi M(t—Mz.-l—iMK-FK.)[gK'NY ( 2M, )gK“NY]’
K*(1£) _ —(£)9k- ks v My —Mp, 7
B5 _M(t—M2‘+iMK:FK.)[gK'NY+( 2Mp K‘Ny]’
B =,

for u-channel graphs (Y*):

BY'(é-:i:) _ Byey,Gxny= (MY' + My — 22}2(—‘)
t U — M}z/. + ’I:MY‘FYt '
B ¥ ~o,

BY"4®) g,

Y () _

B4
BY'(:}:&:) _ i2“y-yﬁgx1vy*

° u— Mg, +iMy-Ty.’
_ il"ywqgmvy-

u — M]z/- + iMYtFY- '

By 4

To obtain the invariant amplitudes for the production of an odd parity hyperon, such as Y = A(1405), simply make

the following replacement everywhere:

B;(My) — Bj(—My).

The total amplitude is a sum of contributions from each diagram:

B]-(q2,s,t,u) = B;»3°"‘(q2,s,t, u) + ZBJN* (¢°,s,t,u) + ZB}”(q2,s,t,u) + { ZB}K‘ (@®,s,t,u) }ouaticy
N* Y* K*

correction

where the low-lying t-channel K* resonances have been included to give a duality motivated correction to the truncated

amplitude (spin-1/2 limited s- and u-channel graphs).

(1] Robert A. Williams, Chueng-Ryong Ji, and Stephen R.
Cotanch, Phys. Rev. C 43, 452 (1991).

[2] Robert A. Williams, Chueng-Ryong Ji, and Stephen R.
Cotanch, Phys. Rev. D 41, 1449 (1990).

[3] R. Dolen, D. Horn, and C. Schmid, Phys. Rev. Lett. 19,
402 (1967); Phys. Rev. 166, 1768 (1968).

[4] G. Veneziano, Nuovo Cimento A 57, 190 (1968).

(5] M. Fukugita and K. Igi, Phys. Lett. 31C, 237 (1977).

[6] V. De Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Cur-
rents in Hadron Physics (North-Holland, Amsterdam,
1972), pp. 571-662.

[7] F. M. Renard and Y. Renard, Nucl. Phys. B25, 490
(1971); Y. Renard, ibid. B40, 499 (1972).

[8] W. Schorsch, J. Tietge, and W. Weilnbock, Nucl. Phys.
B25 179 (1970).

[9] R. A. Adelseck and B. Saghai, Phys. Rev. C 42, 108
(1990); R. A. Adelseck and L. E. Wright, tbid. 38, 1965
(1989).

(10] C.-R.Jiand S. R. Cotanch, Phys. Rev. C 38, 2691 (1988).
[11] D. A. Whitehouse et al.,, Phys. Rev. Lett. 63, 1352
(1989).

[12] G. Y. Korenman and V. P. Popov, Phys. Lett. 40B, 628
(1972); J. O. Eeg and H. Pilkuhn, Nuovo Cimento A 32,
44 (1976); H. Burkhardt et al., Nucl. Phys. A440, 653
(1985); J. W. Darewych et al., Phys. Rev. D 32, 1765
(1986); K. Maltman and N. Isgur, ibid. 34, 1372 (1986);
R. L. Workman and H. W. Fearing, ibid. 37, 3117 (1988);
Y. S. Zhong et al., ibid. 38, 837 (1988); H. Burkhardt and
J. Lowe, Phys. Rev. C 44, 607 (1991).

[13] J. S. Ball, Phys. Rev. 124, 2014 (1961); P. Dennery, ibid.
124, 2000 (1961); M. Gourdin, Nuovo Cimento 21, 1094
(1961); F. A. Berends et al., Nucl. Phys. B4, 1 (1967).

[14] Shian-Shyong Hsiao, Ph.D. thesis, North Carolina State
University, 1986; Nucl. Phys. A450, 419¢ (1986).

[15] M. F. Gari and W. Krumpelmann, Z. Phys. A 322, 689
(1985); Phys. Lett. B 173, 10 (1986); Phys. Rev. D 45,
1817 (1992).

[16] M. Gourdin, Phys. Lett. 11C, 29 (1974).

[17] F. Felicetti and Y. Srivastava, Phys. Lett. 107B, 227
(1981).

(18] C. L. Hammer, T. A. Weber, and V. S. Zidell, Phys. Rev.
D 9, 158 (1974).



46 HYPERON ELECTROPRODUCTION IN A CROSSING AND. .. 1635

[19] J. J. Sakurai, Ann. Phys. (N.Y.) 11, 1 (1960). [23] R. L. Anderson et al., Phys. Rev. D 14, 679 (1976); A.
[20] B. Holzenkamp, K. Holinde, and J. Speth, Nucl. Phys. M. Boyarski et al., Phys. Rev. Lett. 22, 1131 (1969).

A500, 485 (1989). [24] J. Napolitano et al., CEBAF proposal to PAC5, 1991,
[21] J. M. Lagett, Phys. Lett. B 259, 24 (1991). private communication.

[22] N. Levy, W. Majerotto, and B. J. Read, Nucl. Phys. B55, [25] Glennys R. Farrar et al., Nucl. Phys. B349, 655 (1991).
493 (1973); N. Levy et al., ibid. B55, 513 (1973); A. Bartl [26] P. Feller et al., Nucl. Phys. B39, 413 (1972).
and W. Majerotto, ibid. B90, 285 (1975). [27] T. Azemoon et al., Nucl. Phys. B95, 77 (1975).



s- channel graphs:

o Y

WK
~
~
~

p

Y P

t- channel graphs:

u- channel graphs:
+

+
K

N L BN 2
S B Ng B N (8T,
’JJ’ .\'\._\ '.rf’ N . \
¥ P ¥ N Iy -3

FIG. 1. Diagrams used in our model for (y,K") and
(K=,7). (N} = {N(1650), N(1T10)}, {A"} = {A(1405)},
{A*} = {A(1620), A(1900), A(1910)}, {K*} = {K"(892),

K,(1270)}.



Leptonic Plane Y= A, 22 A(1405)

Hadronic Plane

FIG. 2. Laboratory frame kinematics for electroproduc-
tion.
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FIG. 3. Extended vector meson dominance (EVMD) pic-
ture of a physical photon coupling to a hadron.



