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Fluctuation effects of meson fields on quantum hadrodynamics at finite temperature
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By means of the real-time Green's functions method with a pair cutoff approximation up to the second
order, the thermal fluctuation effects of meson fields on quantum hadrodynamics are investigated. We
find that the fluctuation effects of saturation energy, effective mass of nucleon, and the pressure are con-
siderable in low baryon density regions and/or high temperature regions. The results given by pair
cutoff theory and by mean field theory are compared.
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I. INTRODUCTION

A great deal of progress has been made in nuclear
theory by carrying out relativistic many-body calcula-
tions of the binding energy, equation of state, and other
thermodynamical quantities for nuclear matter [1—7].
They include the Dirac phenomenology [1], relativistic
nuclear mean field theory (MFT) [2—5], especially, the
quantum hadrodynamics (QHD) [3]. QHD can give a
good description of many of bulk features of nuclear
rnatter. In high baryon density regions, the results given
by MFT of QHD are in good agreement with part of ex-
periments.

There are two models, namely, QHD-I and QHD-II in
QHD [3]. The degrees of freedom in QHD-I are baryons
and mesons. In this model, the vector mesons (co mesons)
are coupled minimally to the conserved baryon current,
and the scalar mesons (0 mesons) are coupled to baryons
with Yukawa coupling. Since there is repulsion between
two baryons at short distances by co-meson exchange and
attraction at large distances by a-meson exchange, the
dominant features of nuclear force can be simulated by
this model. By means of these interactions and MFT, one
can find the correct nuclear matter equation of state in
high baryon density regions, because the scalar and vec-
tor field operators can be replaced by their expectation
values in this case and we can solve the equations of
motion of baryon fields and meson fields simultaneously.
In this paper, we employ the QHD-I model as our start-
ing Lagrangian.

As was pointed out by many references of statistical
physics [6], for four-dimensional space-time, MFT is not
a good theory for describing the behavior near the criti-
cal point. The critical point is the point at which the or-
der parameter of a new phase begins to grow continuous-
ly from zero. In the liquid-gas transition, the critical
point terminated the liquid-gas coexistence curve. At
critical point, the two-body correlations become very
strong and the fluctuations become very large. The MFT
do not properly take the effects of short-ranged correla-

tions into account at the critical point and then do not
give the correct results for critical behavior. It is of in-
terest to study the relativistic fluctuation effects of meson
fields, namely, ((hP) ) =(P ) —(P), ((&V„) )
=( V„)—( V„), on the equation of state, the thermo-
dynamical quantities, and the critical phenomena of nu-
clear matter in QHD. This is the first motivation of our
study.

The second motivation of our study is to extend our
real-time finite-temperature Green's function method
with pair cutoff approximation from nonrelativity to rela-
tivity. In a series of previous papers [9—15], we developed
a real-time finite-temperature Green's function method to
investigate the liquid-gas phase transition of symmetric
or asymmetric nonrelativistic nuclear rnatter with
Skyrme interactions as well as Gogny interactions. We
focused our attention mainly on discussing the equations
of motion of nucleon Green's functions. In order to
make the set of hierarchy of Green's functions equations
closed, we introduced a normal pair cutoff (PC) approxi-
mation and proved that the first-order PC approximation
is just the finite temperature Hartree-Fock theory. To in-

vestigate the fiuctuation effects of mesons on QHD at
finite temperature, we first extend our real-time finite-
temperature Green's function method to a relativistic
case. Furthermore, we introduce the PC approximation
up to second order for studying the fluctuations of meson
fields ((4P) ), ((b, V„) ). Using this approach, we can
investigate the thermal correlation function of (P ) and
( V„), where ( . ) denotes the grand canonical ensem-

ble expectation value and is defined as
Tr[ . . exp(Q —PH)], where H=H pX, JLt and X be--

ing, respectively, the chemical potential and the number
operator, and 0 is the thermodynamic potential. We will

prove that the effective mass of nucleon M*, the satura-
tion energy, the equation of state of liquid-gas phase tran-
sition will have a considerable change in low-density re-
gions and/or in high-temperature regions when the
thermal correlation function is taken into account.

The rest of this paper is organized as follows. In Sec.
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II we will describe our approach briefiy, especially, we
will show how to extend our method to relativistic quan-
tum hadrodynamical model QHD-I. In this section, we
will use the second-order PC approximation to find the
correlation functions (P ), ( V„) of meson fields. The
main formulas for thermodynamical quantities are
presented in Sec. III. In Sec. IV we will give our numeri-
cal results for effective mass, saturation energy, and equa-
tion of state and some discussions.

where P, V„are, respectively, neutral scalar meson field
and neutral vector meson field. We get the Hamiltonian
density corresponding to the grand canonical ensemble to
be

H=H pN=Q[iy. —V+M g, P+g„y—V py ]p-
—a,ya'y —

—,'a.ya y+-,'m,'y'

+F~()B V +—,'F pF —
—,'m„V V (2)

where p is the chemical potential. The real-time baryon
Green's function is defined as

6 ti= ((g (x); hatt(x') )) = i TrI—pGT[g (x)gati(x')]]

i Tr [pG [P—(x)it ti(x')8(t t')—
pe(x')P (x)—8(t' t)]], — (3)

where P= g y, g (x)=P (x, t) =e' 'g (x)e' ' is the
Heisenberg picture field operators; pG =exp(Q —PH ) the
grand canonical ensemble density matrix, and
K= Jd xH the Hamiltonian operator. The equation of
motion of baryon Green's function is

—G. ( — ')=5(t-t')([g.( ),g ( ')J). a

II. REAL-TIME GREEN'S FUNCTION

Our calculations are based on the framework of the
real-time finite-temperature Green's function method.
The details of this method can be found in Refs. [9] and
[11]. Here we write down some essential steps of this
method which are necessary for the present calculations.

Starting from the Lagrangian density of QHD-I [3]:

L =f[y„(i8" g„V") —(M —g, P)]P—+ ,'(B„JB"$—m,P )—

((V"( )tp( ); y( ')))=V 5„,((lg ), y( ')&), (6)

«p( )g( ); g( ')&)=p,«g( ), g( ')», {7)

respectively, and solve the Green's function 6(x —x') by
taking the Fourier transformation in Eq. (5), we will find
the mean field results.

But if we want to discuss the fluctuation effects of sca-
lar meson field, we cannot stay in the first-order step. We
must consider the higher-order corrections. The equa-
tion of motion for scalar baryon Green's function
((P(x)f(x); P(x'))) is

(ty„i}"—M +pyo)((((}(x)y(x); 1{(x')))

')yo+g„y„«y( )V"( )tp( ); 1)(( ')»
—g, ((y(x)y(x)y(x); y(x') )),

where $0=(P(x)). A similar equation for vector
meson-baryon Green's function is

( y„a" M+p—yo)«V ( )y( ); y( ')»
=5(x —x'}5 V +g, y„(( V (x)V"(x)y(x); y(x') ))

—g, (( V (x)y(x)y(x); y(x') », (9)

=&/( )y( )&«y( ); y( ')&), (10)

(( V (x)V&(x)y(x}; y(x')))

=(V ( )V"( )&«y( ); y( ')»5", (11)

(( V (x)P(x)g(x); g(x') ))

=POV 5 ((P(x); g(x'))) . (12)

Under this approximation, we get three self-consistent
closed equations in energy momentum representation

(y k+y p —M)6(k}=1+g„y+ (k) g,F(k), —(13)

where V = ( V"(x))5" . In Eqs. (8) and (9) we have as-
sumed that the meson fields P(x), Vi'(x) change slowly
with time and space and the terms including 8"P,B"V,
can be neglected.

Obviously, Eqs. (5), (8), and (9) do not form a closed set
of equations for ((P(x )f(x ); P(x') )), (( V"(x)P(x );
P(x') )), and 6(x —x'). To make these equations closed,
we introduce the second-order PC approximation and
make replacements as follows:

((y(x)y(x)1{(x); IP(x') ))

+«[y ( ),H]„y ( '))) (4)
(y k +y p M)F(k) =Qo+g—„yopoVOF(k)

Using Eq. (2), Eq. (4) becomes

(iy„B" M+py —)6(x —x')

=5(x —x')+g„y„((V"(x)g(x); gati(x') »
—g, ((y(x)y(x); IP(x') » . (5)

Obviously, if we introduce the first-order PC approxirna-
tion as was done in a nonrelativistic case [9], replace the
vector meson-baryon Green's function (( V"(x)P(x);
g(x ') )) and the scalar meson-baryon Green's function
(( P(x)g(x); g{x'))) in Eq. (5) as

—g, 4 G(k),

(y k+y p M)D (k)=V05 —+g„yiC "6(k)
—g, poV 5 G(k},

(14)

(15)

where 4 = (P(x)P(x') )„„;C = ( V (x) V (x') )„
6(k), F(k), and D {k) are the Fourier transforms of
6(x —x'), ((P(x)f(x); P(x'))), and (( V (x)P(x)g(x};
P(x') )), respectively. After some calculations, we obtain
the function G(k), F(k), and D (k) from Eqs. (13)—(15).
The result for 6 (k) is
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G (k) =GF(k)+ G~(k), (16)

y k+M —g, poGF(k}=
k o

E—*(k)f+ie
(17)

Gz(k) = (8+$0)(y"A+M —g, 8) {5[ko—E*(k)&]n &
+5[ko+E*(k)

& ]n, jE*(k)

+(0—
(( )(y k+M+g, 8) {5[ko—E'(k)2]n2+5[ko+E*(k)2]n2j

E'(k)2

where ko =ko+ v, v=p —g„VO, k=k, and

0= [@'—(g„/g, )'( «&&„)—&,')]'", (19)

1 1n&= n]=
exp(P[E'(k), —v])+1 exp(P[E*(k), +v])+1

(20)

1 1n2= n2=
exp(P[E'(k)2 —v])+1 exp(P[E'(k)2+v])+1

(21)

E"(k),=[it +(M —g 0) ]', E'(k) =[It +(M+g 0~)21'" (22)

Furthermore, in order to find the scalar field correlation function 4, we must consider the scalar meson Green's
function. Define this Green's function as

b(x —x') = ((P(x); P(x') )) = i Tr{—po [8(t t')P(x)P(x—')+8(t' —t)P(x')P(x)] j . (23)

On shifting the field

((l =4o+ 0' (24)
h(k) = 1

Pls + lE'
2nin, (k—)5(k m, )—

where $0= (P ) is the Gibbs ensemble average of scalar
field

where

im, go(2m. ) 5 (k)

k 171~ + l E'
(27}

and ((}' represents the thermal fiuctuation effect of scalar
meson field, we can calculate the fluctuation of scalar
field.

((gy)2) (y2) (y)2 @2 y2 (26)

by A(x —x'). Substituting Eq. (24) into the equation of
motion of b, (x —x') and using the same treatment as Ref.
[9], we find the Green's function b, (x —x') in energy-
momentum representation as

n, (k)= 1

exp [P(lt +m, )
' ~

]
—1

(28)

is the scalar meson distribution function. At zero tern-
perature, n, (k)=0, Eq. (27) reduces to that given by
QHD with a "tadpole" diagram approximation [3]. The
second term of the right-hand side of Eq. (27) comes from
( P' ) and represents the thermal fiuctuation.

Similarly, the vector-meson Green's function can be
found by the same procedure. The result is

k„k
D„,(k) = —g„+

Plv k —m +i@

im, V205„O5~(2m) 5 (k)
2min, (k)5(k —m„) +-

k —m +is
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where

n, (k)= 1

exp[P(k +m„)' ]—1

and

v, =
V

III. THERMODYNAMICAL QUANTITIES

(30)

(31)

the latter treatment, as was argued by one of the present
authors [17], is inconsistent with large N, QCD expan-
sion. Hereafter we use the latter treatment and discuss
the integrals that involved GD(k) only.

Using Green's functions given by Sec. II, and the
correlation function formula [9]

F»(t t')—=(8(t')A (t))

G„tt(E+iO+) G„—s(E i—O )=l~

~ ~

00 e~E—g

Now we are in a position to calculate the thermo-
dynamical quantities. It can easily be seen that the in-
tegrals of GF(k) are divergent and must be carried out by
renormalization. This can be done by considering the
vacuum fluctuations as in QHD [3]. An alternative treat-
ment which had been taken in QHD is to drop all terms
arising from integrals over Gz(k) [3]. To leading order,

where

Xe ' " ''dE, (32)

Gqs(E) = f G„tt(t)e' 'dt (33)

is the Fourier transform of G„tt(t), and ri=+1 or

g = —1 for boson or fermion, respectively. We find

(2n. ) (k +m, )'i (34)

(2n)3 (k +m, )'i

p=p =s(g g) = f [(8+go)(n
&

—n )+(8—$0)(n2 n2)], —d k
(2~)'

(35)

(36)

p, =(gf) = f (8+$0)(M —g, 8) (n&+n, )+(8—$0)(M+g, 8) (nz+nz)
28 (2~) ' E"(k), ' E'(k)2

(37)

The energy density e and the pressure p at a given temperature can be found by the ensemble average of energy-
momentum tensor:

=—'m V +—'m y + (k +m )' n (k)+ (k +m )' n (k)d k d k
v 0 T s 0

(2 )3 S S
(2n )

U U

d k+ ~ f [( 8+/ )0E'(k)&(n&+n&) +( 8—$0)E'(k)z(n2+n2)],28 (2m. )

i ( f ii ) + i ( g ii ) + i ( f ii )

d k k d k k
m„VO 2

m Ijf0+ 3 3 p 2 ~yp ng(k)+ 3 2 2 ~y2 nU(k)
(2n. ) (k +m, ) (2n. ) (k +m, )

(38)

+
3 (8+go), (n&+n, )+(8—Po) (n2+n2)

(2n. ) E'(k), E'(k)2
(39)

The effective mass of baryon is given by
M*=M —g 8 (40)

Equations (34)—(40) form a closed set of equations for
calculating thermodynamical quantities self-consistently.
The second term of the right-hand side of Eqs. (27) and
(29) represents the fluctuation of meson fields

(&P) =@ —$0, ((&V„) ) =(V„)—( V„) . If we omit
this term, our results will reduce to that given by the
MFI'. The equation of state for relativistic symmetric

Bp

Bp

a2
0

~P T
(41)

Our results are summarized in Sec. IV.

nuclear matter is given by Eq. (39). We can calculate the
pressure-density isotherms from the above equations.
The critical temperature KT, and critical density p, for a
liquid-gas phase transition are determined by the condi-
tion
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increase considerably as temperature increases, and the
equilibrium density increases very slowly. This is of
course very reasonable.

The pressure-density isotherms of relativistic nuclear
matter are shown in Figs. 6 and 7. In Refs. [9,11,14], by
employing the Skyrme interactions as well as Gogny in-
teractions, we calculated the pressure-density isotherms
for nonrelativistic nuclear matter. By using the same PC
method given by the QHD-I model for relativistic nu-
clear matter and that given by Skyrme interactions as
well as Gogny interactions for nonrelativistic nuclear
matter, we see that the isotherms have generally the simi-
lar behavior. The shapes of isotherms look similar to
each other, because all interactions (Skyrme interactions,
Gogny interactions, or interactions of the QHD-I model)
have the same typical forms as the Van der Waals in-
teraction which determines the general behavior of
liquid-gas isotherms.

Although the shapes of isotherms for relativistic nu-
clear matter and nonrelativistic nuclear matter look simi-
lar, the detail values of saturation density, saturation
pressure, and the critical point are quite different. In
fact, these values depend not only on the interactions of
the nuclear matter, but also on the treatments whether
the relativistic corrections, especially the fluctuation
effects, are taken into account or not. To show the
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FIG. 6. Relativistic nuclear matter pressure-density iso-
iherms.

thermal fluctuation effects of the meson fields transpar-
ently, we draw two isotherms, one corresponds to PCT
and the other to MFT, in Fig. 7 for comparison. We find
that the pressure given by PCT in low-density regions is
larger than that given by MFT.

The critical point is determined by Eq. (32) and can be
calculated numerically. The results are: critical tempera-
ture KT, =20.56 MeV, critical density p, =0.087 fm
critical pressure p, =0.643 MeVfm, and the effective
mass at critical point (M'/M), =0.781.

In summary, we would like to point out that the fluc-
tuation effects of meson fields are important in low-
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FIG. 7. Pressure-density isotherms at KT=100 MeV for

PCT and MFT.
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density regions and/or high-temperature regions. The
real-time 6nite-temperature Green's function method
with pair cutoff approximation gives us a very useful tool
to discuss the thermodynamical quantities as well as the
fIuctuation effects in both nonrelativistic and relativistic
cases.
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