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Multiple-scattering effects in quasielastic a- He scattering
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A multiple-scattering series for describing the quasielastic peak in nucleus-nucleus collisions is derived
using the high-energy optical model. The effects of multiple knockout of target nucleons and internal ex-
citation of the projectile are studied and found to be important for large energy loss and momentum
transfers in inclusive a- He scattering at 7 GeV/c. An approximate evaluation of higher-order inelastic
collision terms is considered for forward-peaked wave functions and is demonstrated to be accurate.
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INTRODUCTION

Inclusive inelastic-scattering data for hadron-nucleus
collisions are often described using the inelastic sum rule
of Glauber and Matthiae [1]. In the original work [1],
only the distribution in momentum transfer to the projec-
tile in inelastic scattering is considered, using closure to
sum over the target's final states. Additional considera-
tions of energy conservation in multiple-scattering theory
allow for a description of the projectile's energy loss
[2—5] and the quasielastic peak in the cross section. In
recent years inelastic-scattering data for light projectile
nuclei have become available [6—8]. When compared
with proton projectiles, we expect contributions from
multiple scatterings to increase. Also, for energy
transfers below pion production thresholds, the role that
internal structure of the projectile plays is not clear when
the quasifree picture of nearly free nucleon-nucleon col-
lisions between projectile and target nucleons holds.

One approach to describing this data has been to con-
sider the projectile as "elementary" and to modify the
hadron-nucleus scattering expressions by using a rigid-
projectile assumption, where the internal structure is
neglected [4,9,10]. In this paper we follow a more funda-
mental approach by starting from the nucleus-nucleus
scattering amplitude and formulating the inclusive cross
section for the projectile when it receives both energy loss
and momentum transfer without a change of state. Pre-
viously [11], we have shown that eikonal-approximate
solutions to optical-model [12,13] coupled-channel equa-
tions, derived from Watson's form of the nucleus-nucleus
scattering series, are equivalent to the Glauber-Matthiae
model of the scattering amplitude [14]. The coupled-
channel amplitudes appear as a matrix representation of
the Glauber-Matthiae model. We begin with the eikonal
coupled-channel amplitude in formulating the projectile
energy-loss cross section. Assuming a mean field for cou-
pling to diagonal states, we consider a multiple-scattering
series for inclusive reactions. The leading-order correc-
tion for internal excitation of the projectile appears as an
incoherent contribution to second-order terms.

We consider calculations for a- He reactions at 4 GeV.
The importance of multiple scattering and internal pro-
jectile excitation are then analyzed by comparing to ex-

periments. An approximate treatment of higher-order
terms is considered for forward-peaked wave functions.
Previously [15], the a- He inclusive reaction was ana-
lyzed using the Monte Carlo method, with the normaliza-
tion of calculations fitted to experiments. An important
conclusion was that the data could be explained by con-
sidering the incident a to elastically scatter on substruc-
tures of the target. For simplicity, we use uncorrelated
single-particle wave functions in our calculations. Clus-
tering effects could be considered in our analytic ap-
proach at a later data by introducing overlap functions in
evaluating the target response function.

MULTIPLE INELASTIC COLLISION SERIES

In the Eikonal coupled-channel (ECC) model [11,12]
the matrix of scattering amplitudes for all possible
projectile-target transitions is given by

f(q)= ' 2fd'S e'q'[e'z"' —T],
277

where barred quantities represent matrices, b is the
impact-parameter vector, q the momentum-transfer vec-
tor, and k the projectile-target relative wave number. In
(1), 2 is an ordering operator for the z coordinate, which
is necessary only when noncommuting, two-body interac-
tions are considered. The phase elements of y are defined
by matrix elements of arbitrary projectile-target states of
the operator

j(b)= g f d q e'q e
"

e 'f~~(q),2K (2)

where a spin-independent two-body amplitude is assumed
and where a and j label the projectile and target constitu-
ents, respectively: s is the projection of the internal nu-
clear coordinate onto the impact-parameter plane, fez is
the nucleon-nucleon (NN) amplitude, and kzz is the NN
relative wave number.

In treating inelastic scattering, we assume that the off-
diagonal terms in y, denoted by y„are small compared
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f(q)= d b e' e
277 m=1

[iY.(b}]
mt

with the diagonal one gD, and then expand f in powers of
gp&

We also will make the assumption that the diagonal
terms are all represented by the ground-state elastic
phase y. Using (3), we sum over target final states X
(continuum) to find the inclusive angular distribution for
the projectile when its mass remains unchanged as

k
dQ, „

eiq'(b b ei+ Q Q 1 b mQ g /Q l tb mQ Q
( ()2 P T X P P P T

Equation (4) allows only for a study of the momentum-transfer spectra of the projectile. In considering the projectile
energy loss, energy conservation must be treated. Using continuum states for the target final state, energy conservation
leads to

d2 Ic
AT

f d2l) d2b eiq. (b —b')ei[r(b) —r (b')}
Q fp(b 'b w)

d 0 dEp;„(2m. )

where EI is the energy of the projectile in the final state and m is the projectile energy loss. We define

dk.
II' (»b' )=, , f g ', &(Ef —«)«0 1[x(b)] I0!,&&1,01[x'(b')] I0 0 &(I!) 1-) (2m )

(5)

(6)

where k is the wave-number vector of a knocked-out target nucleon. The functions W are next related to the target
response functions in the cylindrical geometry of the eikonal approximation.

COLLISION TERMS

In evaluating the collision terms W, we will assume an uncorrelated wave function for the target and plane waves
for continuum states. The projectile motion is treated in the coherent approximation with the leading-order correction
considered. We evaluate this term without the zero-range approximation [5], or factorization approximation [4], used
previously in discussing proton-nucleus scattering.

The first collision term is written

A A
2 2

2

W, (b, b', w)= f d q d q'e'q e 'q' F(q)F(q')f)viv(q)fiv)v(q') f 25(w E) Gob( q)
—G„o(q'),

(2mkivtv ) (2n. )

where I is the projectile ground-state form factor and

Gp|f the target transition form factor. We change vari-
ables as

where we have defined

& (q) =F(q)fiv)v(q), (15)

a =
—,
' (q+ q'),

p=q —q',
X=S S

(8)

(9)

(10)

and the target response function is

R, (a,p, w)= f z5(w Ek)Gok(a+p/—2)dk
(2ir )

X G&to(a —p/2) . (16)
y =

—,'(s+ s'),

and also

R=b —b',
S=—,'(b+b'),

(12}

(13)

Following Krimm, Klar, and Pirner [4], we can formally
treat the delta function in (16) by introducing a Fourier
transform pair

R, (a,p, w)= f e' 'Ri(a, p, t},
such that R, (a,p, t }=f dw e ' 'R, (a,p, w ) . (18)

ANAT
W)(R, S,w)= d ad Pe' ' e'~

(2vrk)vN )

X A(a+P/2)A (a —P/2)

Then

R, (a,p, t)= f e "Go&(a+p/2)Gto(a —p/2) .
(2~)

XR, (a,P, w), (14) (19)
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k2
Eg +6B

2m~
(20)

where es is the binding energy. Equation (19}then be-
1

comes, assuming plane waves for the targets final state in

Go

Treating the low-energy target nucleons nonrelativistical-

ly, R&(a,P, t)= f dxdye
dk

(2m. )2

Xe' *e'~ "e'"*4(y+x/2)4 (y —x/2),

—ik t/2m
1 N

(21)

where 4 is the single-particle wave function of the target
ground state. Using Eqs. (21) and (17},we find

R, (a,P, w)= '

f dxdy e' *e'~'"Jo('[2m+(w es —)x ]' )

X4(y+x/2)C» (y —x/2) for w ~ es (22)

0 for w +E'B
1

The second collision term is more complicated because of the enumeration of projectile-target intermediate states
that can occur. A first approximation is to keep only one-particle —one-hole excitations of the target (one for each in-
elastic scattering) and assume that the projectile remains in the ground state (coherent approximation). The coherent
part of the second collision term is found using the notation of (15) to be

ANAT
8'2(R, S,w)= fd a,d azd P,d P e ' ' e ' ' A(a, +P, /2)A (a, —P, /2)

4(2mk~~ )

where

X A (az+pz/2) A (az —pz/2)R2(a), az, p],pz, w ), (23)

R z(a, ,az, P„P2,w ) =,

PB
2 2 2 2 1 1 2 2 t 1 &1 ~2&2d x]d x2d y]d y2e e e e

(2~)
X C&(y&+x&/2)4 (y, —x&/2)4(yz+xz/2)C» (yz —xz/2)

2(w —es )

X
z 2, &2

J& [[2m~(w —es )(x, +xz)]] for w es
[2m~(w es )(xf+xz)]'

0 for w+EB
2

(24)

Using similar coordinate changes as described above, the mth-order collision term is found in the coherent approxi-
mation to be

A2mA m

W' (R,S,w)= f g dadPfe ' e ' A( a+P J/)2Aa
(m!) (2mk~~)

XR~(a». . . »a~»P, ». . . »P~»w}

where

R (a&, . . . ,a,P&, . . . ,P,w)

m m

f g [d xjd yje ' 'e ' '4(y +x./2)4 (y. —x./2)]
i=&

2 '(w —es )

[2m (w —e )g~ x ]' J, 2m~(w —ee } x
m

m mxj
TTJO +0( x ),

(m —1)!2 ' .=) 2' m&i

where R =0 for w & eB . We next consider a simplified representation of the m & 1 terms.
m

Assuming the target wave functions are forward peaked, we approximate

J —iM (X,=i&,')'"]
[g (ym X 2)1/2]tn —I

(25)

(26)

(27)
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where

=+2m~(w —es ), (28)

such that

R (a„.. . , a,P„.. . ,P,w)=
(w e—s )

(m —1}! j ~ 2(m —1 )/2
TTg ~. R.
j=1

(29)

W (R,S,w)=
(w es )

W) R, S,
(m —1 }!(mt )

m

(30)

A numerical test of the forward-peaked eave-function approximation is discussed below. We then have for the energy-
loss spectra, in a coherent projectile model,

"o. k (w es )
d'Rd'Se'q e' '"+ ' ' ' g W, RS,

d QdEp;„(2m )~ = ) (rn —1)!(m!)
' 2(m —1)/2

m

(31)

The coherent approximation assumes that the projectile remains in the ground-state throughout the scattering. The
leading-order correction to the coherent terms occurs in Wz and corresponds to the following replacement [16] for the
projectile form factors in (23},which follows from using closure on intermediate states:

AtF a, + F a, — F(az+Pz/2)F(az —Pz/2)~Ap[[F(2a, )+(Ap —1)F(a,+P, /2)F(a, —Pz/2)]4 p& p& 2

2 2

X [F(2a~)+( At, —1)F(az+Pz/2)F(az —Pz/2)]] . (32)

Physically, the right-hand side of (32) represents the pro-
jectile dissociating in the intermediate state. Further
modifications are necessary when correlation effects
which are not included here are treated. Next, we con-
sider model inputs and application of the above formal-
ism.

CALCULATIONS AND RESULTS

We next discuss physical inputs necessary for evalua-
tion of the cross sections of Eq. (31). We employ a two-
body amplitude of the form

~(I +& )kN~
(33)

where, from Ref. [17], the isospin-averaged parameters
are o.=4.4 frn, p= —0.23, and 8 =0.23 fm at 1 GeV.
For He, a Gaussian wave function is used with a radius
parameter [17] of R =1.33 fm. For the elastic distor-
tion phase g, we use the more accurate charge form fac-
tor [18]

F,„(q)= [1—(0.316q )' ]e (34)

which is corrected for finite proton size by the factor
exp( r~q /6) with the p—roton radius r =0.86 fm.

In the Gaussian model, the response function is simply

R&(a,P, g)=2m+R e e e Io(2R ag),
(35)

where Io is the zeroth-order modified Bessel function.
In evaluating the cross section, we make one further

approximation by expanding the elastic distortion phase

about R=0 and keeping just the first two terms:

y(R+S/2) —y+(R —S/2)

= —2 Imp(S) —iR V~(S), (36)

where the effect of the second term in (36) allows for
momentum to be transferred in elastic scattering [19].
For comparisons to the data of Ref. [7], we note the rela-
tionship

d'o P~ d'o-

d Q de;„EI, d 0de
(37)

Before discussing our comparisons to the experiment
of Banaigs et al. [7], we emphasize the simplicity of our
inputs for the He ground-state wave function. Our com-
parisons thus focus on the magnitude of the various
terms and their effect on the shapes of the spectra. We
also note that a previous study [15] suggested an impor-
tant role for scattering on subclusters in He, which is not
treated here. Scattering on subclusters does appear here
in the multiple-scattering terms. However, for a light
target such as He, the replacement of the single-particle
wave functions by cluster overlap functions is needed to
describe properly this effect.

In Fig. 1 we illustrate the accuracy of the approxima-
tion of Eq. (30) for the term Wz for a-a scattering at
3.63 . This angle is chosen because here the contribution
from 8'z is large in comparison to the other collision
terms. The dotted line is obtained using Eq. (30), and the
dash line is the exact result using Eq. (23). Also shown
are corrections for internal excitation of the projectile,
with the solid line the exact result and the dot-dashed line
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FIG. 1. Comparison of contributions of second collision term
8"2 to the cross section using various approximations for a- He
scattering at 3.63'. The solid line is the exact incoherent result,
the dot-dashed line is the incoherent result with a forward-

peaked wave-function approximation, the dashed line is the ex-
act coherent result, and the dotted line is the coherent result
with a forward-peaked wave-function approximation.

the forward-peak wave-function approximation. In-
coherent effects are shown to reduce significantly the
second collision term. The reduction in the cross section
that occurs through incoherent contributions from the
projectile suggests that correlations effects in the projec-
tile may be important.

Theoretical calculations for quasielastic a- He scatter-
ing at 1 GeVinucleon are cotnpared with experiment [7]
in Fig. 2 for several scattering angles. The calculations
shown are made with the approximation of (31), where
the dotted line is the 6rst co11ision term, the dashed line
the second collision term, the dot-dashed the sum of the
first and second terms, and the solid line the sum through
the third collision term. For consistency, we show only
the coherent contributions since we have not formulated
the corrections for incoherent projectile motion beyond
8'z. The multiple-scattering structure is apparent with
single inelastic collisions dominating at a small momen-
tum transfers and the higher-order contributions increas-
ing in importance with q. In Fig. 2 the positions of the
peaks in the cross sections as a function of energy loss for
the first and second collision terms can be compared as
the scattering angle increases. At 0=3.63' and 4.552' in
Fig. 2, the second collision term is dominating. The posi-
tion of the quasielastic peak no longer appears at
w =q /2m, as the energy loss is shared between at least
two scatterings and, as a result, is shifted to smaller
values. This effect keeps the position of the theoretical
peak in good agreement with the experiment. The
strengths of the distributions compare fairly well with ex-

104 =

103 =—

d2a/dp dQ,
mb/(GeV/c) sr 1p2—

6 = 3.63 103 = e=4.552

1p2—

101

periment except at the largest momentum transfers,
where, at lower values of momentum, energy losses
suScient for pion production [7] are reached, which is
not included in our calculations. The discrepancy be-
tween experiment and calculations increases for the
larger angle data of Ref. [7] (not shown) and is attributed
to our use of a Gaussian wave function for the He
ground state and the neglect of pion production.

CONCLUSION

We have used a coupled-channel representation of the
nucleus-nucleus scattering amplitude in the eikonal ap-
proximation to develop a multiple collision series for
describing the quasielastic peak in nucleus-nucleus col-
lisions. Leading-order corrections for internal excitation
of the projectile were discussed and found to make

significant corrections to double scatterings in a- He col-
lisions. A forward-peaked wave-function approximation
was found to be quite accurate and to lead to consider-
able simplicity in the calculations. Multiple inelastic col-
lision contributions were shown to provide the correct
positioning with energy loss of the quasielastic peak in
comparison to experiments for 4 GeV a- He scattering.
Future calculations should use more realistic ground-
state wave functions than the Gaussian model used here
and should include higher-order corrections for in-
coherent projectile motion.

1p1 =( ] 1p0
6.4 6.6 6.8 7.0 6.4 6.6 6.8 7.0

p~ab, GeV/c pJaQ GeV/c

FIG. 2. Momentum spectra of a particles in a-"He collisions
at 1A GeV for scattering angles of 2.112' (q = 1.31 fm '), 3.094'
(q=1.92 fm '), 3.63' (q=2. 25 fm '), and 4.552' (q=2. 82
fm '). Experimental data are from Ref. [7]. The dotted line is
the first collision term, the dashed line is the second collision
term, the dot-dashed line is the sum of the first and second col-
lision terms and the solid line includes the third collision term.
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