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Pairing correlations studied in the two-level model
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We study the pairing energy in the ground state of a system of N particles occupying a symmetric
two-level model space with a level degeneracy A. Assuming a pairing Hamiltonian, we calculate
the energies of the projected BCS states, using the exact, the Kamlah, and the Lipkin-Nogami
particle number projection methods. We And that conclusions regarding the quality of the B.C.S.
approximation as well as various approximate projection methods, drawn from studying the N=A
case alone, are not valid in the more general N g 0 case when the pairing interaction is weak.
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I. INTRODUCTION

It is well known that pairing correlations are impor-
tant in a nucleus with one or more open major shells.
The Bardeen-Cooper-Schrieffer (BCS) theory of super-
conductivity [1] is commonly applied to a nuclear system
to simulate such correlations. The theory is quite satis-
factory when the number of valence nucleons is large and
the pairing interaction is strong compared to the level
spacing. But in a nucleus with a relatively small num-
ber of valence nucleons or whose level gap is large, the
BCS approximation either has no solution or introduces
a non-negligible error to the pairing energy due to the
particle number fluctuation in its wave function.

Various prescriptions have been introduced in the past
to approximately project out a state with the right num-
ber of particles. These include the work of Kerman, Law-
son, and Macfarlane (KLM) [2], Unna and Weneser (UW)
[3], Kamlah [4], Lipkin [5], Nogami et aL [6, 7], and un-
doubtedly many others (see Ref. [8]). These projection
methods were often validated by considering an exactly
solvable symmetric two-level model [9] with the particle
number N equal to the level degeneracy 0 [10—12]. In
this special case, it was found that the BCS wave func-
tion has only a trivial minimum in energy when the pair-
ing strength (G) is less than a critical value (G,). In the
strong pairing limit, the BCS pairing energy is a frac-
tion [(N —1)/N] of the exact result where the pairing
energy is de6ned as the difference between the total en-
ergy and the Hartree —Fock energy for the ground state.
It was also found [11) that the KLM and UW approxi-
mations are very accurate when the pairing strength is
strong. However, since both the KLM and the UW are
variation-before-projection (VBP) methods, they are not
reliable when the pairing strength is close to or smaller
than the critical value. On the other hand, second-order
perturbation was found to be a very good approxima-
tion in this region [13]. Pradhan, Nogami, and Law [12]
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claimed, again by studying the special N=O case, that
the Lipkin-Nogami prescription [5—7] works rather well
for the entire range of the pairing force strength.

Interesting results can be obtained by considering the
more general case in which N g A. For example, Bishari,
Unna, and Mann [11] showed that the critical behavior
of the BCS solution is not present when N g 0 since
the BCS wave function always has a nontrivial minimum
(i.e., an extremum). They also examined the KLM and
UM methods in this context.

In this work we will restrict ourselves to the symmet-
ric two-level model but allowing for N g 0 as well as
N=A. We will focus on the variation-after-projection
(VAP) method of Kamlah [4] and the Lipkin-Nogami pre-
scription [5—7]. These two projection methods have been
shown to yield a non-trivial minimum even in the N=A
case for all values of the pairing strength. And, like the
VBP methods of KLM [2] and UW [3], they are also very
accurate when the pairing correlations are strong. For
completeness, we will also include the independent pair
approximation, the BCS approximation and, in the case
of N=A, the BCS solution with exact particle number
projection.

We will concentrate on the ground-state pairing en-

ergy, which is the difference of the total energy and the
Hartree-Fock (HF) energy for the ground state. This is
justified because in the case of a weak pairing force, the
pairing energy is only a small fraction of the total energy;
even the HF energy is not a bad approximation to the
total energy (i.e., the relative error is small). It would
therefore be difficult to judge the quality of an approx-
imate method if one were comparing the total energies
only. In addition, one must not forget that low energy
nuclear collective motion is influenced as strongly by the
variation of pairing energy as by the HF energy although
in medium and heavy nuclei the former is often at least
three orders of magnitude smaller than the latter.

II. THE MODEL
As already stated, we consider a two-level model space

with a degeneracy 0 (even) for each level. The pairing
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Hamiltonian for this model space is
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where ey = —e if lkl & 0/2 and eg = +e if lkl ) 0/2.
Thus the energy gap between the two levels is 2e. To each
state lk) there is a time reversed conjugate state

l
k).

The exact solution can be obtained by introducing two
sets of quasispin operators which satisfy the angular mo-
mentum commutation rules, as has been done by many
others [8]:

N = 0+ 2(J, , L + J,,v). (4)

The ground state of the system belongs to the subspace
generated by the tensor product of multiplets of JL and

Jv having maximal J. Since each level has a degeneracy
0, the maximal "total angular momentum" value J of
either JL or Jv is equal to 0/4. The solution is an eigen-
state of the third component of the total quasispin in the
space generated by the kets lML, Mv) which are eigen-
states of J, L and J, U with eigenvalues ML and Mv,
respectively. Here ML and Mv are related to each other
by ML + Mv = (N —0)/2 where ML takes the values

Q 2-A 2N —r1 (f N g g)
L = 0—2N 2+0-2N Q (f N )Q)

4 ) 4 1 ''') 49 y — /7

where N, =N for N & 0 and N, =20 —N for N ) Q.
The problem is thus reduced to the diagonalization of a
tridiagonal matrix of dimension (N~/2+1) whose matrix
elements are given by [recall that ML+Mv = ML+Mv ——

(N —0)/2]

In terms of these operators, the Hamiltonian and the
particle number operator can be expressed as

+ = 2e( Jz,v Jz,L) G (J+,L + J+,U) (J ,L—+J ,—U) i

HM M
——(ML, MUI&IML Mv)

= (2e(MU —ML) —G[(J + ML)(J —ML + 1) + (J + Mv)( J —Mv + 1)])bM~, M~

—GQ(J —ML)(J+ ML+1)(J+ Mv)(J —Mv + 1)6M~ M~~ 1

—Gg(J + ML)(J —ML+ 1)(J—Mv)(J+ Mv + 1)bM~ M~+1.

We will concentrate on the pairing energy which is de-
fined as

Ep = E —EHF,

where E = (QglHlgs) is the total ground-state energy of
the system and EHF the HF energy which is given by

NG
EHF = (Nv —NL)e—

2

where NL=N and NU=O if N & 0; and NL ——0 and
NU=N —0 if N )A.

We will also consider the independent pair approxima-

tion (IPA) for which all pairs occupy the lowest possible
level. The IPA state is an eigenstate of the one-body
term in Eq. (1); its energy expectation value is

G
E1pA = (Nv —NL) e —[N(Q + 2 —N) + 2NLNU]—

4

(8)

Note that in the case of N=O, the IPA energy is equal
to the HF energy but otherwise it is lower than the HF
energy. For 0=10, the IPA and HF energies for different
N are as follows:

N
ErpA

EHF

4
—4e—SG
—4e—2G

6
—6e—9G
—6~—3G

8
—St —8G
—Se—4G

10
—10m—5G
—10m—5G

12
—Se—10G
—Se—6G

14
—6e—13G
—6e—7G

16
—4e—14G
—4e—8G
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In the special case of N=O, the following expressions
for the pairing energy hold in the small (Nx) and large
(Nx) limits, respectively [x = G/(2s)]:

Eexact Gx N (N —2)Gx
(N = A, N «1

8 16

is only one free parameter,
The BCS energy is then

EBcs = (BCS~H[BCS)
A A

= ) 2EkVk —G ) Vk

k=1 k=1

which we choose to be vl, .

A

—G ) tLkVktclVI

k, l=1

E„'""'= — + ¹

— (N = A, Nx » 1).
N~G

¹

(10)

III. BCS APPROXIMATION

The BCS ground-state wave function is

IBCS) = (uk+»~k~) I
)-

where
~

—) is the bare vacuum state, u~&+vk2 ——1 with vk2

the probability that the states ~k) and ~k) are occupied.
In the two-level model space, one can identify all uk and
vk for k & A/2 as uL, and VL, for the lower level and all
uk and vk for k & A/2 as up and VII for the upper level.
Since vol can be related to vr, by (VL2 + v&2)A = N, there

= Ae(v~ —vl )

AG 4 4 A

2
vol + vL, + —('BL,vL, + Qgvg) . (12)2

2

In the special case of N=A, it is easy to show that
the BCS energy has only a trivial minimum if G & G, —:
2e/(A —1). In this case, the BCS energy reaches its lowest
value (not an extremum) when v&2 ——1, and is identical to
the HF energy (and to the IPA energy). One can also
show that in the strong pairing limit, i.e., G » G, =
2e/(A —1), the limit of the BCS pairing energy (EBcs-
EHF) is (A —1)/A of the exact result (10).

However, these observations are no longer true if we go
beyond N=A to a more general case for which N g A. In
the latter case, the BCS energy has a nontrivial minimum
for all values of (G/s). And, in the small G/e limit, the
BCS energy is higher than the IPA energy while it is
obviously lower than the HF energy. In fact, one can
write down for G ~ 0

EBCS EIPA = 'l

i &0 (for N&A),

& 0 (for N & A).
(13)

and

EBCS —EHF = 't

GN(A —N) (2—A) ( p4A

G(N —A) [2(2A—N) —NAj ~ p4A

(for N & A),

(for N & A).
(14)

The equalities hold only when N=A. In this case, the
HF, BCS, and IPA wave functions are equal.

The inequalities (13) and (14) can be understood by
noting that in the N g A case, even in the small G/e
limit, there are several degenerate Slater determinants
available to form the ground state. The exact wave func-
tion, which, when G=O, is also the IPA wave function, is
a proper mixing of sll these degenerate Slater determi-
nants. The HF state is only one of them. The BCS state
contains a configuration mixing of all the components
but it also includes components with a wrong particle
number. We can thus say that for N g A and in the
small G/e limit, the BCS energy is lower than the HF
energy because of configuration mixing in the BCS state;
it is higher than the IPA energy because of the particle
number Buctuation in the BCS wave function.

IV. BCS WITH PARTICLE
NUMBER PRO JECTION

A state with a definite number of particles can be ob-
tained by applying the particle number projection oper-
ator PN to the BCS state. Closely following Ring and
Schuck [8], we write the projection operator as (for N
even)

PN = — dP exp [ig(N —N)].
7l 0

In a system of a finite number of particles, the above
integral can be replaced by a sum [13]. Replacing the in-
tegral by a K-point trapezoid sum leads to the following
operator:
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p(K) ly + i(N —N)n/K + i(N —N)27r/K
K e

i(N —N) (K—1)w/K
1

(uA,. + vt, e '~at„at)~ —).
k&0

where we have used the relation

e'"~~BCS}= (18)

i(N-N)7r

K y e~(N-N)~/K (16)

When applied to the BCS state, this operator removes all
except the N 6 2K, N 6 4K, . . . , spurious components.
It is therefore an exact projection operator for a model
space which can hold less than 2K particles. In the case
of the two-level model that we consider here, we need
K )max( z, z~2 ) for an exact projection.

The projected BCS state with N particles is

IBCS)& = p&~Bcs)

(uk +

verge

a/ ap) i )
k&0

(17)

The wave function (17) is not normalized to unity. The
normalization is given by the integral

27r

(BCS~BCS)~ =—,~~/z (up+ vt, e' ) = Ro.' "
k)0

(19)
Note that the quantity vt, cannot be identified as the oc-
cupation probability of states

~
k) and ~k), which is instead

determined by

(Bcs~a&al, ~BCS)N v&zRii(k)

(BcsiBCS))v R~

In the above equations, we have defined for convenience

Pl

2Ã

R„(ki, kz, . . . , k~) =
2 ~(~/z ~)~

k&0,krak&, k&, ...,k

(u'„+ e'~v„'). (21)

The pairing energy for the projected BCS state is then given by

p„~) (Bcs~+~BCS)N
(Bcs

i
Bcs))v

where
N N

(BCS~H~BCS)pr = ) 2skv&Ri(k) —Gv&R&(k, k) —G ) uvIg uiRv((ki, t).
k, l=1

(22)

(23)

For the case of N=A, one has the simplification
vg=uU, vU=uL, . It is relatively easy to work out the
pairing energy for the exactly projected BCS state, which
1S

NzzZ„'" =-N.
~

'
~

~1+( )*
[

(N=n).&4)&
(28)¹fdPA / A —8

f~
dy AN/2

where the functions A(P) and 8(P) are given by

(24)
For large Nx,

E„' " Ne
i

——1+
i (N = 0). (29)

(Nz 1

A(P) = cos P + c sin P, (25)

with

X8
8($) =Ac+ l(N —2)cos /+A] (26)

2 2 2 2
C —VL —Vl —QU —VU ) s = 2vt, uL, = 2v~u~. (27)

As mentioned before, all the integrals which appeared in
the foregoing equations can be replaced by sums using the
trapezoid rule. For 0=10, a sum over K=6 points [see
Eq. (16)j is already sufficient for an exact projection. The
numerical result for E„' ~ for a given set of parameters
(N, e, G) can then be obtained. For small Nx (i.e.,
NG « 2e), we find

The above two expressions are identical to the exact re-
sults (9), (10). Therefore the projected BCS result, al-
though it is not exact, is very accurate in both the small
and the large (Nx) limits. It will be of interest to see
whether this is also true for the intermediate range of
(Nz).

In Fig. 1 we show for the case of N=O the ratio B of
E„' & to E„'"c; the latter is the exact pairing energy from
matrix diagonalization (K=6 solid line). The results of
replacing the integral in (24) by a two-point sum (K=2)
or a four-point sum (K=4) are also shown. One sees that
BCS with exact number projection is accurate in both the
small x and large 2: limits. It introduces a relative error
of less than 3.5%%uo to the pairing energy when x is close
to the critical value of x, = G,/(2e) = 1/(0 —1) = 9.
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The two-point (K=2) approximation (which removes the
N=8 and 12 spurious components from the BCS wave
function) is not good for all values of x. In the small
z limit, with %=2, one obtains about 50% of the ex-
act pairing energy. The four-point (K=4) approxima-
tion (which removes most spurious components from the
BCS wave function but retains N=2, 18 components) is
accurate for small z but not for large x. The superiority
of the K=4 approximation may be connected with the
fact that in this order one takes account of the fact that
the parameters v may be complex. The order parameter
for the pairing transition has dimension two, involving a
gap parameter 6 and a gauge angle P. The K=2 order
projection uses only real values of v, see Eq. (18).

Also shown in the figure are the results for the Kamlah
and the I ipkin-Nogami approximate projection methods
which we will discuss next.

A. Karnlah method

1.2 I I I I I I I I

0.8

ega

0.6

C4
C4
a$ F4

II

0.4

r ,
'

~- ~ i' /
/

~'l
/

l
(

Kamlah /
I

0.2
J

BCS

j

0 Im

&=10, N=10

IPA

In the Kamlah approximation [4], the pairing energy
as a function of (vA, ) is given by

III

0.02 0.1

I I I I I I I I I

x=G/(2s)
10

E„(vt,) = EBcs —h2((») ) (30)

with b,N—:N —N and "(0)" means the expectation
value of the operator 0 in the unproj ected BCS wave
function (11). The parameter h2 in the above equation
is also a function of vL, and is given by

FIG. 1. The ratios of the pairing energy in various ap-
proximations to the exact result as a function of z=G/(2c)
in the case of N~A=10. The black dots signify points at
which calculations were performed. Note that the K=6 curve
is equivalent to BCS with exact particle number projection.
See text for more details.

(H [(bN) 2 —((»)2)]) —(H») ((»)2)/((») 2)

((»)') —((»)')' —((»)')'/((»)')

(u2 + v2e2lg)

To evaluate h2, we make use of the following identity [cf. Eq. (18)]:

(BCSle'~ ]BCS) = (32)

and difFerentiate with respect to P. In this way we obtain

((») ) = 4 ) u„vA2,

Ic&0

((»)')=8) ':(l- '),
A:&0

((»)4) =3((») ) +4((») ) —6) (2ui, vt, )4
A:&0

Furthermore me have

(at&aI, (AN)) = (at&~t&aI, (EN)) = 2u&vt„

(at ararat(KN)) = 2uyvyu(v)(1 —vg —v( ) (k g l),

(33)

(34)

(35)

(36)

a~aA, LN — LN — a a~ g LN — 4N —4u e u

a&a&ala~ (hN) —((AN) ) =4u~vtau~v~ 1 —3(vt, +v&) +2(v~+v&)+2v&v~

where the last equation holds for k g I,. Therefore

(39)
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(H(b, N)) = ) eg(2uI, vA,, ) —G) (2ul, vt, ) + 2G ) ul, vt, ) ugvy(v& —uI, ),
k&0 k&0 k~&o ) ~&o

(40)

H (bN) —((6N) ) = —8) eg(ugvg) (v& —u&)+8G) u&vt, (vt, —2ui, )
k)0 k&0

+2G ) uA,.vt, ) uA,.vt, (8vt, ul, —1) —2G ) ul, vt, (vg —uk)
k&0 k)0 (L&0 )

(41)

Equations (33)—(41) are all we need to evaluate h2(vt, )
and Ef (vt, ). The (VAP) Kamlah pairing energy is then
obtained by minimizing E„(vr,) with respect to vr„ i.e.,

(30). But to obtain the LN pairing energy, one performs
a variation of the energy E„(vt,) with respect to vg white

keeping hz constant, i.e. ,

EK EK( K)

with vf determined by

(42)
E"~ = EK(v"~)

with v&+ determined by

(48)

dEK(vg)

VL=VLK

= 0. (43)
BEK (vt„hz (v~~) )

Bvr,
LL =VLN

= 0. (49)

For N=A, it is easy to show that

c —(N/2 —1)x+ (N —3/2)xs2
2+ (N —3)sz (44)

(N = 0). (45)

Note that when N is large (but Nx « 1), the Kamlah
pairing energy is about &~ of the exact result (9) .

For Nx » 1, we find

E„Ne ~

—1+—
~

(N = Q).
/Nx 1

(46)

This agrees with the exact result (10).
It should be mentioned that, in the Kamlah method,

it is only an approximation to identify (vf )
2 which min-

imizes the energy (30) as the occupation probability of
the lower level. A more consistent expression for this
probability is given by

nf = (vf)' —&2((&N)')

where the parameter A2(vf ) is given by the right-hand

side of Eq. (31) with H replaced by the operator (azar. )
and evaluated at vl. =v&~.

B. Lipkin-Nogami method

At first glance, the Lipkin-Nogami (LN) projection
method I5—7] is formally quite similar to the Kamlah
method. The expression for the pairing energy is also

where c and s have been defined in Eq. (27). When (Nx)
is small (Nx « 1) the Kamlah pairing energy is approx-
imately

( N2x2 l ( N(3N —4)(N —2)xl
(8(2N —3)) ( (2N —3)2 )

(N = 0). (52)

When N » 1 (but Nx « 1), this is only about 1/(2N)
of the exact pairing energy (9). For large (Nx), we have

E„""= N.
~

—1+-~ (N =n).
q 2 2N —1x) (53)

This agrees with the exact result (10).
Also in the LN method, a consistent expression for the

occupation probability of the lower level n~&+ is given by
Eq. (47 with vf replaced by v&+ and A2 evaluated at

L
Vl, =VI

Therefore for the special N=A case, in the small x,
large N limit (with Nx « 1), the Kamlah pairing energy
is about 4 of the exact result while the LN pairing energy
is only about 1/(2N) of the exact one. In the large Nx
limit, both methods give very accurate energies. One
therefore may conclude that the Kamlah method is better

The LN pairing energy is therefore always higher than
the Kamlah pairing energy.

In the case of N=A, Eq. (49) leads to

hz 1 (N —1)x
2c 2

With this Eq. (44) can be simplified to yield:

hq (N —s2)x
e 2(N —1)sz

'

Note that Eqs. (50) and (51), when combined, determine
the value of c, s, or vz"+ to be used to evaluate the LN
pairing energy (48) for the case of N=A.

For Nx « 1, the LN pairing energy is

( N x l ( 2N(N —2)xb
(8(N —1)z ) ( N —1 )
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than the LN method in the N=0 case. However, as we
will show in the next section, numerical calculations for
the N g 0 case indicate the opposite is true, i.e., the LN
method is generally better than the Kamlah method for
N g 0. We will also show that in the N g 0 case, the
Kamlah and LN energies are even larger than the exact
energy in the small x region.

I I I I I I II

Kamlah
0- - g

It

I I I I I I III I I I I I I I I

0=10, N=6, 14

V. RESULTS AND DISCUSSION

The results for the BCS approximation, the Kamlah
VAP method, and the Lipkin-Nogami prescription (not
quite VAP) are shown in Figs. 2—4 for N=4, 6, and
8, respectively. We again show the ratio of the pair-
ing energy for each approximation to the exact result
(R=EArr""/E„'"~' ) A ratio of R = 1 would mean that
the approximate pairing energy is exact. As noted in the
figures, the curves for a given N )0 case are the same as
those for the 20—N case. The results for selected values
of z=G/(2e) are also given in Table I. In our calculations,
we fix G at 1 MeV and vary e to give a range of z from
0.01 to 10.

Our first observation is that, as pointed out by Bishari
et aL [11],the BCS wave function does yield a nontrivial
minimum for all values of z in the case of N g 0. In
the small z limit, this minimum is higher than the IPA
energy but it is lower than the HF energy. One sees in the
figures that the BCS curve and the IPA curve intersect
at a certain value of z below which the IPA energy is a
better approximation to the exact energy than the BCS.
In the large z limit, the BCS pairing energy is about 10%
(independent of N) smaller than the exact pairing energy.
Note that for N=0 as well as N g 0, the deviation of the
BCS pairing energy from the exact result is always about
one part in 0. We also see both the Kamlah and LN
pairing energies are very accurate in the large z region.

04
c4 0 9

II

0.7
0.02 0.1

I I I I I I I II

x=G/(Pe)
10

FIG. 3. Same as Fig. 1 but for the case of N=6 or 14 and
0=10.

We then find that in the small z region the Kamlah
pairing energy is too great in magnitude (R ) 1). Al-
though the overestimation is small for N=4 (Fig. 2), it
reaches 30% for N=8 (Fig. 4) in the region of z ( 0.013.
This is somewhat surprising if one recalls (see Sec. IV A)
that in the small z limit, the Kamlah pairing energy is
only one-fourth the exact result when N = 0 (see also
Fig. 1).

Also surprising is that the LN prescription works fairly
well for small z in the N g 0 case, unlike the N=0 case
for which the LN pairing energy is only about 1/(2N)
of the exact result when z ~ 0 (Fig. 1). In the N P 0

I I I I I I II I I I I I I III 14 I
' ' '''''I I I I I I I I II I I I I I I I I

Kamlah
0=10, N=4, 16 1.3

1.2

, Kamlah

0=10, N=8, 12

04

II

0.9

0.8 IF-~ ~-o—y-

BCS ~ ~y—e

r

0 C4
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FIG. 2. Same as Fig. 1 but for the case of %=4 or 16 and
0=10.

FIG. 4. Same as Fig. 1 but for the case of N=8 or 12 and
0=10.
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TABLE I. The ratios (R = EP~""/E„'" ") of the pairing energies in various approximations (BCS, Kamiah, LN) to the
exact result for selected values of 2:=G/(2e) in the cases of 0=10 and N=4, 6, 8, 10. Here nr."=(vt.") represents the occupation
probability of the lower level from exact matrix diagonalization; (vr ), (vf), and (vr" ) are the values at which the minimal
BCS, Kamlah, and LN energies were found; nz and nl are the occupation probabilities of the lower level in the Kamlah and
LN methods as determined by Eq. (47).

N
4

10

6.250
1.105
0.138
0.024
6.250
1.105
0.138
0.024
6.250
1.105
0.138
0.024
6,250
1.105
0.138
0.111
0.024

ex
AL,

0.2057
0.2319
0.3640
0.3988
0.3075
0.3421
0.5450
0.5985
0.4085
0.4483
0.7254
0.7986
0.5089
0.5503
0.9053
0.9515
0.9991

BCS 2

0.2055
0.2307
0.3658
0.3991
0.3074
0.3414
0.5499
0.5990
0.4085
0.4480
0.7353
0.7993
0.5089
0.5503
0.9023
1.0000
1.0000

RBcs
0.898
0.888
0.814
0.796
0.898
0.886
0.788
0.788
0.897
0.883
0.715
0.765
0.897
0.879
0.231
0.000
0.000

Jt)2

0.2051
0.2288
0.3568
0.3977
0.3067
0.3379
0.5331
0.5957
0.4077
0.4434
0.7062
0.7908
0.5080
0.5453
0.8511
0.9146
0.9956

0.2057
0.2319
0.3660
0.3986
0.3075
0.3421
0.5492
0.5982
0.4085
0.4482
0.7320
0.7989
0.5089
0.5503
0.8864
0.9545
1.0034

Rz
1..000
1.000
1.010
1.016
1.000
1.000
1.011
1.044
1.000
1.000
1.000
1.260
1.000
1.000
0.829
0.646
0.315

LN)2

0.2051
0.2288
0.3620
0.3991
0.3067
0.3379
0.5386
0.5990
0.4077
0.4434
0.7038
0.7993
0.5080
0.5452
0.8327
0.8864
0.9916

LN
AL

0.2057
0.2319
0.3708
0.3994
0.3075
0.3421
0.5547
0.5996
0.4085
0.4482
0.7293
0.8002
0.5089
0.5502
0.8641
0.9186
0.9989

RLN
1.000
1.000
1.008
1.004
1.000
1.000
1.009
1.006
1.000
1.000
0.999
1.014
1.000
1.000
0.818
0.597
0.088

' z = 0.111 = I/(N —1) is the critical value below which the BCS wave function has only a trivial minimum in energy, the HF
energy. Note that for N P I1, no such critical value exists.

case, the LN pairing energy agrees with the exact energy
within 5'Fo for all values of z and N considered (N=4,
6, 8, 12, 14, 16). The agreement is unexpectedly good,
considering that we are comparing a small portion of the
total energy, i.e. , the correction to the HF energy due to
the pairing correlations.

As we mentioned in the previous sections, the val-
ues (vf)2 and (v&+)z listed in Table I should not be
directly compared with the exact occupation probabil-
ity nL" (vP) w——hich is also given in the table. More
consistent values for the probability in the Kamlah and
LN methods are determined hy Eq. (47). These are also
listed in Table I under the entries n& and n~& . We see
that nf and nLP are in general closer to the exact re-
sult net than (vf )2 and (v&+)~ especially in the large z
region.

Why should the LN energy be closer to the exact en-

ergy than the Kamlah energy in the N g 0 case but not
in the ¹ 0 case for small x? Recall that the expressions
for the Kamlah and LN energies as a function of vL, are
exactly the same; both are given by Eq. (30). In seek-
ing the minimum of the right-hand side of Eq. (30), one
should vary vt. in all its occurrences, as one does in the
Kamlah method. In the LN method, however, one treats
h2(vr, ) as a constant in computing the slope and there-
fore one does not reach the true minimum of the Kamlah

energy function. Now in the N=A case, we have shown
analytically that the Kamlah energy is higher than the
exact energy and is therefore closer to the exact energy.
In the N g 0 case, however, the Kamlah energy turns
out to be lacquer than the exact energy, giving rise to a
possibility of finding the LN energy closer to the exact
energy (either above or below it). What the calculation
shows is that the LN energy lies only very slightly be-
low the exact energy (ratio R ) 1) and so becomes an
excellent approximation.

It would be of interest to make a more detailed study
of the unexpected behavior we found in this work. It is
also worthwhile to study a more realistic case in which an
arbitrary number of particles occupy a multilevel model
space. Work along this line is in progress.
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