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A microscopic approach to the alpha decay problem in deformed nuclei is presented. The nuclear

wave functions are calculated in the frame of the Nilsson+ BCS approximation, making use of a realistic
deformed mean field. A large configuration space has been employed in the calculation of the formation

amplitude while the penetration process has been treated within the WKB approximation. The calculat-

ed widths agree with the experimental data within a factor of about 3. ES'ects due to deformation are
also discussed. Applications are presented for Ra, Rn, and Th isotopes.

PACS number(s): 23.60.+e

I. INTRODUCTION

Alpha-decay processes are among the oldest branches
of microscopic physics. Their analysis, the study and in-

terpretation of the rich amount of data provided by them,
has been fundamental since the beginning of this century
to build up modern physics. Yet, many questions remain
still unanswered in the understanding of the mechanisms
that induce the decay of the a cluster. Thus, it is not
clear whether the Pauli principle acting between the con-
stituent nucleons in the a particle and those in the
daughter nucleons has any importance [1—3]. An estima-
tion of the amount of the correction due to the Pauli
principle can be found in Ref. [3]. Within a shell-model
basis which includes up to 13Aco excitations an enhance-
ment was found of about a factor of 6 in the reduced
width for the ground to ground transition
' Po~ Pb+o, . It is also found that this enhancement

decreases as the dimensions of the shell-model basis in-
creases. Another question which has been only recently
partially clarified, and one which is relevant for this pa-
per, is the role played by high-lying configurations in a
decay [4]. In the study of a decay of spherical nuclei it
was found that the mixing of single-particle levels with
opposite parity and the use of a pairing interaction
strongly clusters pairs of nucleons [5]. In addition, this
produces an enhancement in two-particle transfer cross
sections [6] as well as in absolute a-decay width [4].
From a microscopic point of view, the pairing collectivity
is induced by many two-particle configurations a11 con-
tributing about equally and coherently to the two-particle
transfer form factor [6]. There are many manifestations
of the clustering among nucleons produced in this way;
double charge exchange reactions [9] is one of them.
Even the neutron-proton clustering in the formation of
the a particle might proceed through a high-lying collec-
tive pairing state in the nuclear spectrum [7], i.e., a "gi-

ant pairing resonance" which, however, would be difficult
to observe by means of two-particle transfer probes [8].

Both neutrons and protons are affected in the forma-
tion of the a particle. Thus, it was not accidental that
just the microscopic study of a decay revealed the role
played by pairing excitations on clustering of particle
pairs.

The absolute values of a-decay widths increase by
many orders of magnitude by including a large enough
number of configurations in the calculation of the mother
nucleus wave function. This is necessary because of the
surface of the nucleus, where the a particle is formed, the
continuum part of the single-particle representation (or
very high-lying shells in a bound representation) is impor-
tant. But even including up to 13 major harmonic oscil-
lator (h.o.) shells the absolute decay width is smaller than
the experimental one in some spherical nuclei [3,4]. This
deficiency was ascribed to a deficient treatment of the
continuum [4]. To remedy this a complex representation
in terms of outgoing single-particle resonances (Gamow
resonances [10]) was introduced. This is being used in
other processes, like the study of particle decay of giant
resonances [11].

The richness of information provided by microscopic
studies of a decay has been mainly restricted to spherical
nuclei. In deformed nuclei microscopic treatments have
been hindered by the formidable task of computing the
mother nucleus was function (including high-lying
configurations) in terms of a realistic (e.g. , Woods-Saxon)
single-particle representation. But with the experience
gained in the study of spherical nuclei, it may be time to
realize such a treatment. Besides the pure academic
value of this task, one can try to learn something new

about nuclear processes in deformed nuclei, as was the
case in spherical nuclei. In particular, it would be in-

teresting to analyze recent works on anisotropic alpha
emission [12—14] from a microscopic point of view, in

1346 1992 The American Physical Society



ALPHA WIDTHS IN DEFORMED NUCLEI: MICROSCOPIC APPROACH 1347

order to obtain information about the structure of nuclei
rotating at high spin [15,16]. This is one of the most in-
teresting questions in discussing alpha decay from de-
formed nuclei.

In this paper we will describe the alpha-decay process
in two steps. In the first step we study within the frame-
work of the shell model the behavior of the four nucleons
that eventually constitute the alpha particle. This in-
cludes their clustering on the nuclear surface. In the
second step we describe the penetration of the already
formed a particle through the Coulomb barrier by using
the WKB approximation [17].

The formalism is in Sec. II, the applications are in Sec.
III, and a summary and the conclusions are in Sec. IV.

II. FORMALISM

We will study the alpha decay of deformed nuclei by
assuming that the decay proceeds in two steps. First the
four nucleons that eventually constitute the alpha parti-
cle are clustered at some point close to the nuclear sur-
face. From here the alpha particle thus formed
penetrates the Coulomb barrier. Since these two steps
correspond to quite different processes, we will analyze
them separately.

A. Alpha-formation amplitude

The analysis of a system consisting of two neutrons and
two protons moving in an open and deformed core can
conveniently be made in the framework of a quasiparticle
and deformed shell-model representation. In our case,
that is for the decay process

(2.1)

we want to describe the wave function of the mother nu-
cleus 8 in terms of the wave function of the daughter nu-
cleus A times the two-proton and two-neutron quasipar-
ticle states. It is not obvious that such a description
would be adequate. It should describe correctly the a
clustering around the nuclear surface. A convenient way
of performing the analysis of clustering features of the
mother nucleus B is by studying the alpha-formation am-
plitude, i.e., [18],

FL (R)= fd /~de„[p~(g~)p„(g„) YL (R)]q ~

while b =0.574 fm . It was further assumed that the
particles 1 and 2 (3 and 4) are protons (neutrons}. In the
case of alpha decay only the singlet component of the
spin function contributes. In fact, in spherical nuclei due
to the singlet component of the wave functions particles
will cluster [4,5]. This is indeed the connecting point be-
tween clustering and alpha decay. By increasing the
shell-model space the mother wave function shows that
the two neutrons and the two protons moving in a singlet
state tend to forms a cluster in a region close to the nu-
clear surface. This increases the overlap integral [Eq.
(2.2)] in that region and therefore the formation ampli-
tude increases. Therefore, from the point of view of the
formation amplitude one can say that clustering occurs if
FL(R) increases around R =R +Rz as the number of
configurations is increased. This is the criterion that we
will use to define "clustering. "

As in the spherical case [4] we write the wave function
of the mother nucleus as

Ps(g~) =+X(nv;8)

PA+2(k) r UQ un ~ [ pn (rl) pn (r2)]
Ql (02

(2.5)

where 0, labels the single quasiparticle states and A is
the antisyrnmetrization operator. Below we drop the su-
perscripts, although we assume the form (2.5) in all cases.

The philosophy of the Nilsson+ BCS wave function for
the description of the intrinsic ground state of heavy nu-
clei has been already used in the study of a decay from
deformed nuclei [19]. We have to stress, however, that
the limitations of the Mang-Rasmussen calculations [19]
have been removed in our procedure. As discussed in
more detail below, we use a realistic mean field with no
AX =0 restriction in the diagonalization and a very large
shell-model space.

In spite of the fact that the wave function is factorized

X [ [ PA+2(11T)l [PA +2(fv)] ]BIA(kA } ~ {2'4)

where n. (v) labels proton (neutron) degrees of freedom
and P„(g„}is the BCS vacuum. We assume axially sym-
metric nuclei. Therefore the BCS vacuum can be labeled
by E~. For simplicity in all our derivations we wi11 also
assume E =0 bands, i.e., E~ =K~ =0. The two-
quasiparticle wave function in Eq. (2.4} is

Xfs(fA, rl, r2, r3, r4), (2.2)

2b
exp ——(Cf+4+ C3)

X (4m. ) 'i'(12)y(34), (2.3)

where g'& =(1/v'2)(r& —r2), gz= {1/V 2){r3 —rz), and
g'3= —,'(r, +r2 —r3 —r4) and y is the spin wave function

where g indicates internal coordinates, 8 (A) labels the
mother (daughter) nucleus, and r, is the coordinate of the
nucleon i measured from the center of the nucleus B.
The rest of the notation is standard. From the intrinsic
wave function of the u particle we use the standard
Gaussian form [3], i.e.,

3/2

~(BCS),) ~(BCS) )

for the parent and the daughter nucleus, the neutron-
proton interaction is taken partially into account by
fitting the pairing strength to reproduce the experimental
pairing gaps. This is, anyway, a minimum requirement to
get sn acceptable description of the ground state of our
nucleus, as good as the BCS approximation can get.
Some attempts [7] have been done to include the n @in--
teraction explicitly in the calculation of the u-decay
width. The correction was found to be very small. One
may argue that this may be the case because of the ap-
proximations entering in Ref. [7]. We are presently in-
vestigating how to include within our formalism the
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effects of the n-p interaction.
The potential that defines our single-particle represen-

tation [pm] has a Woods-Saxon plus spin-orbit form
[20,21]. The Woods-Saxon potential is

V0
Vws(r, P) =

1+ exp[distX(r, p)/a ]
(2.6)

where p denotes the set of deformation parameters and
c(p) is calculated to preserve the constant volume en-
closed by the surface X. The other parameters in Eq.
(2.6) are as in Ref. [21], i.e., Vo = —49.6[1
+0.86(N Z}/(N—+Z)] MeV, where the + ( —) sign
holds for protons (neutrons), a =0.7 fm, and ro=1.275
(1.347) fm for protons (neutrons).

The spin-orbit potential has the form
2

where distX(r, p) is the distance from the point r to the
nuclear surface X, which is calculated numerically. The
shape parametrization is given by

R (6,P) =c(P)ro A '/ 1+ g P& Yzo(8)

yn(r)= g c(nlj, Q)Q„I (r),
nlj m

(2.8)

where P is the h.o. wave function, i.e.,

(r)=R„,, (r)[1;(P)y,/z] (2.9)

Only the singlet part of the two-quasiparticle wave func-
tions in Eq. (2.3) contributes to the a-formation ampli-
tude. Expanding in relative coordinates one then gets

cedure can be found in Ref. [22].
We expand the deformed single-particle wave function

in a spherical harmonic oscillator (h.o.) basis with size
parameter as the one in the intrinsic wave function of the
a particle, Eq. (2.3}. This allows us to perform all in-

tegrals analytically. Such an expansion requires a large
number of h.o. shells because of the large size difference
between the alpha particle and the deformed heavy nu-
cleus. But the calculation is feasible, as discussed in the
next section.

The single-particle deformed wave function is then ex-
panded as

V, , (r,P)=A, , [EVws(r, P)]XP o,
2mc

(2.7) p„+2(g)= g 6 (nlNL; J,2)
nlNLJ

~2

where m is the nucleon mass and A, , the coupling con-
stant. The values of r0 and a in Vws are replaced with

r, , and a, , In the applications below we use
r, , =1.32 fm, a, , =0.7 fm, and A, , =36.0 for both
neutrons and protons.

The Coulomb potential has the form of an uniformly
charged system with (Z —1) protons enclosed by the sur-
face X of Eq. (2.6). Details of the diagonalization pro-

X [p„,(r)pNL(R)]J 0(Xl/%1/2)00

(2.10)

where r=(1/&2)(r, —r~) [i.e., g, or gz in (2.3)], and
R= —,'(r, +rz) with corresponding quantum numbers nl
and NL. The G-expansion coefficients are, with standard
notation,

6(nlNL; J,2) = g g B(n(l, j),n212j2; J,2)
n

1 1)J) n212 J2

X ((1,—')j,(l, —,
'

)j, 'J&pl(l, 12)Jiz( —) Joi )(2nlNL; J~~ ln, l, n, l, ;J» ), (2.11)

where

B(n&l&j &, nial j 2'J2& )=2g vnunc(n&l~j ~,'Q)c(n 12j2z;0) j(~mjq mlJ~qO)
mQ)0

(2.12)

In Eq. (2.12) we assumed It „=IC =0, i.e., 0& = —02= Q and the c amplitudes from Eq. (2.8). The penetration of the a
particle through the centrifugal barrier is strongly hindered as the orbital angular momentum L increases. The a
widths for L =0, as well as for LAO transitions, have been calculated. The results will be reported in the next section.

Within the BCS approximation the sum in (2.4) contains only one term, namely, ~ (v) labels the proton (neutron)
two-quasiparticle state and X(mv; B ) = 1. The formation amplitude then becomes

Fo(R)= g g 6 (OON L L )6 (OON„L iL )(L OL Oll ))(N L„N L„iL lOON L;L )Q~ L o(R),
N„LNLNL

(2.13)

where a labels the quantum numbers of the a particle, G
is as in Eq. (2.11) and P as in Eq. (2.9). All the quantum
numbers in Eq. (2.13) are determined by the set of single-
particle states. In the next section we will analyze the
dependence of F0 on the number of states includes in the
single-particle basis.

B. Barrier penetration and alpha-decay width

We will use the WKB formulation of Ref. [17] (see also
Ref. [23]) to describe the penetration of the alpha particle
through the Coulomb barrier. In this formulation one
calculates the relative wave function of the a particle and
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the daughter nucleus A at large distances with outgoing
boundary conditions. This wave function is uniquely
determined, except for an arbitrary constant factor. To
adjust this factor it is assumed that the solution inside
and outside the nuclear region overlap on a sphere of ra-
dius R, . The value of R, is chosen such that the spheri-
cal surface lies approximately in the middle of the de-
formed potential barrier. At this point one matches the
wave function in the outside region with the one in the
interior, which is assumed to be known. In Ref. [24] this
procedure was critized because it requires that the a par-
ticle has to go through the whole barrier, while in fact it
has a probability of starting the penetration from any
point within the barrier. From a point Po outside R I the
penetration is much easier than for a point P; inside R

&

due to the shorter distance from P, to the end of the bar-
rier and also to the lower value of the potential at P, . Al-
though this criticism may be valid, a true check of the va-
lidity of the WKB approximation would require a full
calculation of the whole a-decay process, a task which is
far beyond the scope of this paper. A more sensitive
probe would probably be the case of a decay from odd-
deformed nuclei. Such a case is not discussed in the
present paper. Here we are mainly interested in explor-
ing the relation between the a-decay process and the for-

I

mation of the a particle in terms of microscopic degrees
of freedom. This may eventually even allow one to apply
the expressions for the formation amplitudes developed
above to the formulation of Ref. [24]. Actually, the for-
mation amplitude FL in Eq. (2.2} is the shell-model wave
function corresponding to the relative motion of the a
particle with respect to the daughter nucleus A. There-
fore, in principle, FL should describe the motion of nu-
cleons that constitutes the a particle in the interior as
well as in the exterior nuclear region. But to describe the
motion of the four nucleons in the exterior region one
would need a proper inclusion of the continuum. This is
a complex problem which is common to other fields as
well, e.g., the particle decay of giant resonances [11]. In
the present paper we will use a large enough number of
high-lying single-particle shells to describe the a-particle
wave function FL around the surface of the daughter nu-
cleus. This already requires a large basis, as discussed in
the next section. With FL thus calculated we matched
the outgoing (iz particle+ A) solution of the Schrodinger
equation given by the WKB approximations with FL at a
point R=(R, H, y&). Applying the formalism of Refs.
[17,23] one finds the absolute value of the decay width to
be given by

R
Tii2(R} Go(E R)

2

g exp
I

' 1/2
21( 1 +1)

kR

X g( —I)"(I;K,l Q(I&K&) Q—KP&(B)a&„(R) (2.14}

where k is the wave number and fiv =fic&2Elp, E is the a-particle kinetic energy in MeV, and p is the reduced mass.
The dimensionless quantity y is g=e 4(Z —2)/iriv. In this formalism [17,23] the quadrupole deformation is separated
from the rest. The quadrupole contribution is given by the matrix E, i.e.,

Kii (B)= J' e,„(8)exp[BPz( cos8)]Si.„(8)sin8d8,
0

(2.15a)

where Sin(8) is the normalized 8-dependent function in the spherical harmonic Y&n and P2 is the quadrupole I.egendre
polynomial, while

5 kR kR
4ir X X

1/2
1 2 kR

9'0 Qo (2.15b)

Here qo is a dimensionless quantity which depends on the charge distribution of the nucleus. By assuming the nucleus
to have ellipsoidal shape and uniform charge density qo is equal to 1. The contribution of the other values of P (P» with
A%2) is given by the matrix ain in Eq. (2.14). It is

a&o(R)= I dp I sini1d8 Yi*n(8y)%&(Rgy) (2.16a)

with

V, (R 8p) =F0(R 8y) exp y g P»
A, )0
A,X2

rp

R R
Pp

1/2

f» Y»0(»— (2.16b)
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where Fo(R) is the formation amplitude (2.13), ro =y/k,
and

1.5 R
2k+ 1 rp

A.
—1

m=p m!(A, —1 —m }!

m +1/2
I"p——1
R

(m+ —,') (2.16c)

The expression for the decay width f'(R) thus obtained
may be strongly dependent upon the distance R. This ac-
tually provides a test of the reliability of the formalism.
If I is indeed strongly dependent upon R on the nuclear
surface (where we assumed the validity of the shell model
as well as of the semiclassical description) then the theory
is incorrect. This will be an important theme in the ap-
plications below.

The angular distribution of alpha emission is also given
by (2.14) but without integrating on the angle t) in Eq.
(2.16a).

function would be very poor. Using N =18 shells in this
expansion, this happens to be indeed the case for r ) 12
fm, which corresponds to a value behind the matching
point with the Coulomb wave function. Therefore, our
truncation should not dramatically affect the calculated
widths. A preliminary Brief Report about our micro-
scopic approach has already been published [26].

A. Some features of the formation amplitude

The clustering of four nucleons that eventually consti-
tute the alpha particle is reAected in the formation ampli-
tude Fo(R ). The more the clustering features are pro-
nounced in the mother nucleus wave function the larger
the value of Fo, as can be seen from Eq. (2.2), and the
better the assumptions of our formulation will be fulfilled.
In what follows most of the calculations refer for simpli-
city to the Ra case. In the other considered nuclei the
results are very similar. The formation amplitude in Eq.
(2.13) can be written as

III. APPLICATIONS TO Ra, Rn,
AND Th ISOTOPES

Fo(R) = g Wx. r.,gw. i, (R)
N L

(3.1}

TABLE I. Deformation parameters Pq used in the alpha
width calculation.

Rn
Rn
Rn
Ra
Ra
Ra
Th

222
220
218
226
224
222
232

0.116
0.102
0.085
0.139
0.128
0.119
0.250

0.094
0.096
0.092
0.101
0.105
0.095
0.0

In this section we will apply the formalism described
above to analyze a decay of deformed nuclei and,
specifically, to Ra, Rn, and Th isotopes. The single-
particle states for these nuclei have been calculated using
the deformation parameters [25] of Table I and the de-
formed WS potential [22] of Eqs. (2.6) and (2.7). We ex-
panded the corresponding single-particle wave functions
in terms of a h.o. basis with size parameter b as the one
corresponding to the a particle in Eq. (2.3). The b value
used corresponds to the size parameter for a particle ac-
cording to the experimentally measured rms radius.
Therefore this number comes from independent nuclear
structure calculations and cannot be considered as a pa-
rameter in our calculation. This choice, in the expansion
in terms of h.o. single-particle wave functions, is only a
matter of convenience from the mathematical point of
view. A small variation, in Eq. (2.3), around this value
does not change the calculated width in an appreciable
way. A drastic reduction (i.e., a factor of 2) of the b value
used would increase the width: this would be a totally
unphysical effect. With such a value of b one may think
that the convergence of the expansion of the radial wave

where a labels the quantum numbers of the a particle
and the 8' coefficients can be obtained comparing with
Eq. (2.13). They are thus expressed in terms of the trans-
formation coefficients from the individual nucleon coordi-
nates to center-of-mass and relative coordinates (includ-
ing the BCS occupation amplitudes and the correspond-
ing coefficients of the expansion in the spherical basis).

One finds the following results.
(i) The component L =0 in Eq. (3.1) is much larger

than the other components, as can be seen in Fig. 1,
where the formation amplitudes, corresponding to
L =0, 1,2 and summed over N, are plotted as a func-
tion of the distance. In alpha-decay calculations one usu-
ally assumes the component L =0 to be dominant be-
cause the penetration of the alpha particle through the
centrifugal barrier is hindered by the decay angular
momentum. What we show here is that even the forma-
tion amplitude of the alpha particle is the nuclear surface
proceeds mainly through s channels, even if the remain-
ing L %0 cannot be neglected. The calculated value for
the L =0 component is about 4.2X10 fm . In
comparing this value with the phenomenological model,
one should keep in mind that this is a result of a micro-
scopically calculated formation amplitude. We do not at-
tempt to extract spectroscopic factors, because its mean-
ing within a microscopic model would not be so clear as
in a cluster model.

(ii) All the terms in the sum (3.1) contribute coherently
to the formation amplitude in the region outside the nu-
clear surface, as shown in Fig. 2. This eft'ect is responsi-
ble for the strong enhancement of the calculated absolute
decay width as the number of configurations in the nu-
clear wave function is increased. The physical meaning
of this enhancement is that the alpha particle is formed
outside the nuclear surface. As seen from Eq. (2.2), an in-
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FIG. 1. Alpha formation amplitude (in fm ' '), summed over N, for L =0 (solid line), L =1 (dashed line), and L =2 (dotted

line).

crease in the formation amplitude implies a better over-
lap between the mother nucleus wave function and the
fragments produced in the decay. Since this occurs at
large distances, the continuum part of the single-particle
representation should become important and, therefore, a
large configuration space is required to describe cluster-
ing processes.

(iii) The coefficients 8'~ L are also strongly dependent
a a

upon 1V with the maximum centered around N =10, as
seen in Fig. 3 for the cases L =0,2, 4. This means that
the largest 8' coefficient correspond to the N values for
which, in a pure cluster approximation, all the relative
motions, for the four nucleons constituting the a particle,
would be taken as Os. But it should be noticed that the

F,(R)(~~~ )

0.0020

Npt=lo ))

0.000010
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.Ol%000
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9
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20 12

FgQ. 2. Some of the contributions to the total formation amplitude (in fm '
) for large N values and L =0. The coherence in

the tail region can be clearly seen. The contributions with N ranging from 28 to 36.
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FIG. 3. Wz L coemcients for L =0 (solid line), L =2 (dashed line), and L =4 (dotted line). The largest contribution comes

from N = 10, which would correspond to a pure cluster approximation with all the relative motions in a Os state.
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FIG. 4. Square of the alpha-formation amplitude (in frn ') vs

R. The solid line corresponds to the inclusion of quadrupole de-
formation; the dashed line to the quadrupole+ octupole case.

contribution of N is the range 28 —36 (see Fig. 2) plays a
crucial role. As mentioned above, they determine the be-
havior of the formation amphtude at large distances,
where the four nucleons that eventually constitute the al-
pha particle will cluster. In this region the Pauli princi-
ple acting upon the nucleons in the alpha particle and
those in the daughter nucleus should not play a crucial
role.

(iv) The formation amplitude shows an intrinsic depen-
dence on the deformation parameter which could be used
as evidence of anisotropy in a decay. As discussed in the
Introduction, some experimental evidence has recently
been published [12,13]. It has been found [12,13] in the
case of well-deformed odd At isotopes that when the neu-
tron number decreases the alpha particles are more pref-
erentially emitted perpendicularly to the nuclear spin
direction. This fact has been interpreted in terms of the
high sensitivity of the a emission probability to changes

in the nuclear shapes. Our calculation has been limited
to E =0 transitions in even-even nuclei. Therefore, we
can only make a very general type of prediction about the

P& dependence in the formation amplitude. Just assum-

ing only quadrupole deformation we found, at the match-
ing point, that the square of the ratio of the formation
amplitude at 0' and 90' ranges from 1.05, at the realistic
P2=0. 119 value for Ra, to 1.15 for the rather large

P, =0.4 value.
(v) As far as the radial dependence of the formation

amplitude is concerned, one should stress the large
enhancement around the surface of the system. The
square of the formation amplitude versus R is reported in
Fig. 4, comparing the results obtained using only
quadrupole deformation (solid line) with the
quadrupole+octupole case (dashed line). This difference
will produce an increase of about 30% in the total width.

B. The cz widths

A systematic analysis has been performed in the Rn,
Ra, and Th isotopes. For all those nuclei known defor-
mation parameters have been used [22,24]. The pairing
strengths have been adjusted to reproduce the experimen-
tal pairing gaps. In all considered cases %=18 major
shells have been used. The calculated total widths are re-
ported in Table II. The agreement with the experimental
data is quite remarkable. The dramatic reduction of the
width is well reproduced and the absolute values agree
with data within a factor ranging from 1.7 (in Th) to
5.2 (in ' Rn).

Transitions to If&0 states have also been calculated.
Our relative widths are compared with the relative proba-
bilities (from the branching ratios) for If =2 in Table III.
The agreement with the experimental data is as good as it
was for the ground to ground transitions. The experi-
mental data are taken from the compilation in Ref. [24]
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X ~exp

TABLE II. Calculated a-decay widths I (R) at the matching
point. Comparison with experimental data is shown.

TABLE III. Experimental and calculated relative probabili-
ties (R,„p and R,z, respectively) for transitions to If/0. The
comparison with available data shows the same type of agree-
ment as for the ground to ground transitions (in Table II).

Rn
Rn
Rn
Ra
Ra
Ra
Th

222
220
218
226
224
222
232

1.38 X 10
8.2X 10

1.30X 10
0.90X 10-"
1.44X 10-"
1.20 X 10
1.0X 10-"

0.70X 10
2.7X 10

0.25 X 10
0.66X 10-"
0.83 X 10-"
0.52X 10-"
0.60 X 10

X

Rn
Rn
Rn
Ra
Ra
Ra
Th

222
220
218
226
224
222
232

Rth

4.0X 10
4.8X 10-4
0.8X10-'
2.3X 10-'
1.9X10-'
1.2X10-'

0.25

R exp

7.9X 10-'
7. 1X10-'
2.0X 10
5.7X 10-'
5.5 X 10
4. 1X 10-'

0.29

and from the Table of Isotopes [27].
An important comment has to be made: the question

of whether the value of I (R } is strongly dependent upon
R, in which case one could choose R conveniently to fit
the experimental data (thus making the calculation ir-
relevant). We found that the calculated value of the ab-
solute decay width, I'", is practically constant within the
large interval of 1 fm behind the touching points of the a
particle and the daughter nucleus (note that
R +R „=9.6 fm). This value could seem too large with
respect to the nuclear surface, but one should, indeed, re-
call two points: (a) the location of the Coulomb barrier
for our Rn, Ra, and Th isotopes is around 11 fm; and (b)
according to the Froman method, which has been used to
solve the penetration problem through the barrier, the
matching point should be just in the middle of the
Coulomb barrier.

IV. SUMMARY AND CONCLUSIONS

We have presented in this paper a realistic microscopic
approach to the calculation of the formation amplitude
for the alpha-decay problem in axially symmetric de-
formed nuclei, within the well-known approach by Mang
and Rasmussen [19]. It is worthwhile to stress the main
ingredients of the calculations: (i) the use of a realistic
deformed mean field, (ii) the large shell-model space, (iii)
exact diagonalization of the deformed mean field, and (iv)
no cut (within the selected large basis) in the calculation
of the alpha formation amplitude. Within our semiclassi-
cal approach the antisymmetrization between nucleons in
the alpha particle and in the daughter nucleus have been
neglected. We plan to analyze this complicated question
in the future. We also contemplate the possibility of gen-
eralizing the calculations to odd nuclei.

The predicted absolute values of the alpha total widths
are smaller by a factor of about 2 with respect to the ex-

perimental widths. This may indicate that our treatment
of the continuum is still deficient, as it seems to happen in
spherical nuclei [4]. It is also possible that the treatment
of the barrier penetration used here is responsible, at least
partially, for this deficiency [10,16]. An open question is
the role of quarteting of nucleons which should increase
the formation amplitude. We are planning to analyze
some possibilities to take into account these type of
correlations. Finally, one may think that the inclusion of
the other deformations (with multipolarities larger than
3} would improve the agreement between theory and ex-
periment.

We have not attempted in this paper a comparison
with other, more heuristic, spherical models [28—31].
Within those models the agreement with experimental
data is of the same order as we get or even better. Ac-
cording to our view this comparison cannot be done by
just comparing a single piece of the ingredients of a mi-
croscopic calculation, but using the global results and the
understanding of the process: availability of experimen-
tal branching ratios of the 4+ states, description of a an-
isotropy in odd deformed nuclei, consistent microscopic
description of the a scattering from deformed nuclei, and
so on. Such a planned work on the subject is not yet fully
accomplished.

The main question in starting this project was: Do we
need to understand a decay on more microscopic levels
than current heuristic models for nuclear decays? Our
answer is: Yes. The comparison between the two ap-
proaches is useful and important, but it does not seem to
us to be necessary to justify a microscopic approach to
the problem. When the microscopic approach is fully
tested with respect to the available experimental data a
better level of understanding will arise from comparison
with other models [28—31].

[1]T. Fliessback, H. J. Mang, and J. O. Rasmussen, Phys.
Rev. C 13, 1318 (1976).

[2] D. F. Jackson and M. Rhoades-Brown, J. Phys. G 4, 1441
(1978)~

[3] A. Arima and I. Tonozuka, Nucl. Phys. A323, 45 (1979).
[4] G. Dodig-Crnkovic, F. A. Janouch, and R. J. Liotta, Nucl.

Phys. A501, 533 (1989); A. Insolia, R. J. Liotta, and E.
Maglione, Europhys. Lett. 7, 209 (1988).

[5] F. A. Janouch and R. J. Liotta, Phys. Rev. C 27, 896
(1983);F. Catara, A. Insolia, E. Maglione, and A. Vitturi,
ibid. 29, 1091 (1984); W. T. Pinkston, ibid. 29, 1123 (1984);
A. Insolia, R. J. Liotta, and E. Maglione, J. Phys. 0 15,
1249 (1989).

[6] M. W. Herzog, O. Civitarese, L. Ferreira, R. J. Liotta, T.
Vertse, and L. J. Sibanda, Nucl. Phys. A448, 441 (1986).

[7] G. Dodig-Crnkovic, F. A. Janouch, R. J. Liotta, and L. J.



1354 D. S. DELION, A. INSOLIA, AND R. J. LIOTTA 46

Sibanda, Nucl. Phys. A".~~, 419 (1985); G. Dodig-
Crnkovic et al. , Phys. Scr. 37, 523 (1988); G. Dodik-
Crnkovic et al. , Phys. Lett. 139B, 143 (1984).

[8] C. H. Dasso and R. J. Liotta, Phys. Rev. C 36, 448 (1987).
[9] D. R. Bes, O. Dragun, and E. E. Maqueda, Nucl. Phys.

40S, 313 (1983).
[10]T. Berggren, Nucl. Phys. A109, 265 (1968).
[11]P. Curutchet, R. J. Liotta, and T. Vertse, Phys. Rev. C 39,

1020 (1989).
[12]J. Wouters, D. Vandenplassche, E. van Walle, N.

Severijns, and L. Vanneste, Phys. Rev. Lett. 56, 1901
(1986).

[13]J. Wouters, D. Vandenplassche, E. van Walle, N.
Severijns, and L. Vanneste, Nucl. Instrum. Methods B26,
463 (1987).

[14]T. Berggren, Phys. Lett. B 197, 1 (1987).
[15]T. Berggren, Hyperfine Interact. 43, 407 (1988).
[16]F. A. Dilmanian, D. G. Sarantites, M. Jaaskelainen, H.

Puchta, R. Woodward, J. R. Beene, D. C. Hensley, M. L.
Halbert, R. Novotny, L. Adler, R. Chawdhury, M. N.
Namboodiri, R. P. Schmitt, and J. B. Natowitz, Phys.
Rev. Lett. 49, 1909 (1982).

[17]P. O. Froman, Mat. Fys. Skr. Dan. Vidensk. Selsk. I, no. 3

(1957).
[18]R. G. Thomas, Frog. Theor. Phys. 12, 253 (1954).
[19]H. J. Mang, Annu. Rev. Nucl. Sci. 14, 1 (1964); H. J.

Mang and J. O. Rasmussen, Mat. Fys. Skr. Dan Vidensk.
Selsk. 2, no. 3 (1962); J. K. Poggenburg, H. J. Mang, and

J. O. Rasmussen, Phys. Rev. 181, 1697 (1969).
[20] J. Dudek, A. Majhofer, J. Skalski, T. Werner, S. Cwiok,

and W. Nazarewicz, J. Phys. G 5, 1359 (1979).
[21]R. Bengtsson, J. Dudek, W. Nazarewicz, and P. Olanders,

Phys. Scr. 39, 196 (1989).
[22] S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, and T.

Werner, Comput. Phys. Commun. 46, 379 (1987).
[23] A. Bohr and B. Mottelson, Nuclear Structure (Benjamin,

New York, 1975), Vol. 2.
[24] T. Berggren and P. Olanders, Nucl Phys. A473, 189 (1987);

A473, 221 (1987).
[25] W. Nazarewicz, private communication.

[26] A. Insolia, P. Curutchet, R. J. Liotta, and D. S. Delion,
Phys. Rev. C 44, 545 (1991).

[27] Table of Isotopes, 7th ed. , edited by C. M. Lederer and V.
S. Shirley (Wiley-Interscience, New York, 1979).

[28] R. Blendowske, T. Fliessbach, and H. Walliser, Z. Phys. A
339, 121 (1991); R. Blendowske and H. Walliser, Phys.
Rev. Lett. 61, 1930 (1988).

[29] D. N. Poenaru, W. Greiner, K. Depta, M. Ivascu, D. Ma-

zilu, and A. Sandulescu, At. Data Nucl. Data Tables. 34,
423 (1986); D. N. Poenaru, D. Schnabel, W. Greiner, D.
Mazilu, and I. Cata, ibid. 48, 231 (1991).

[30] P. B. Price, J. D. Stefenson, S. W. Barwick, and H. L.
Ravn, Phys. Rev. Lett. 54, 297 (1985); P. B. Price, Annu.
Rev. Part. Sci. 39, 19 (1989).

[31]B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev.
Lett. 65, 2975 (1990);J. Phys. G 17, 1223 (1991).


