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Chaos in nuclei with broken pairs
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A recent study of the onset of chaos in the low-lying collective states of nuclei, which uses the in-
teracting boson model, is extended to higher spins and/or higher energies by including broken pairs.
Spectral fluctuations are studied as a function of the quadrupole-quadrupole interaction between the fer-
mion pair and the core and the pair-breaking interaction that mixes states with different number of fer-

mions. The effects of the Coriolis force are discussed.
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I. INTRODUCTION

Random matrix theory (RMT) [1] was successful in ex-
plaining the fluctuation properties of the neutron reso-
nances in the compound nucleus [2]. These resonances
lie in the region of high level density, and the use of ran-
dom ensembles of Hamiltonians was justified by the com-
plexity of the compound nucleus. In recent years, howev-
er, it was conjectured that RMT describes quantal fluc-
tuations of systems which are classically chaotic [3]. This
conjecture was confirmed by numerous studies of systems
in two degrees of freedom [4]. In particular, chaotic sys-
tems with time-reversal symmetry are associated with the
Gaussian orthogonal ensemble (GOE) of random ma-
trices. The interest in this phenomenon, known as quan-
tum chaos, led to the investigation of the fluctuation
properties of experimental low-lying levels in nuclei along
and above the yrast line [5—8]. To obtain good statistics,
it is necessary to include levels from various nuclei and
different spins. The implicit assumption of such studies is
that these levels have a similar statistical behavior.

However, the degree of chaoticity can depend on the
Hamiltonian’s parameters as well as on the spin, and so a
careful study of the onset of chaos in nuclei requires the
study of one Hamiltonian and one spin/parity class at a
time. Since complete experimental data on one nucleus
are unavailable, or that the number of known levels with
a given spin is not large enough for a statistical analysis,
it is useful to study in parallel realistic and tractable mod-
els of nuclei.

We have initiated [9-11] such an investigation for the
low-lying collective states of nuclei by using the interact-
ing boson model (IBM) [12]. By studying both quantal
fluctuations of levels and B(E2)’s and the classical
mean-field dynamics (in five degrees of freedom), we have
determined the degree of chaoticity in the parameter
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space of the Hamiltonian and as a function of spin. Level
fluctuations in the IBM were also studied near the SU(3)
and O(6) limits in Ref. [13] and in the Casten triangle in
Ref. [14]. However, the IBM, as a truncation of the shell
model, is especially useful for the description of low-spin
states (J/ $10%4). To investigate high-spin and/or higher-
energy states (above the yrast line), it is necessary to take
explicitly into account noncollective fermion excitations.

The IBM can be extended to high-spin physics by in-
cluding noncollective fermion states through the break-
ing of the correlated S and D pairs. High-spin states are
described in terms of broken pairs. The model has been
extended to one broken pair [15-17] (two-quasiparticle
states) and two broken pairs [18-20] (four-quasiparticle
states). Such models contain (in addition to the IBM pa-
rameters) two important new ingredients: the interaction
of the unpaired fermions with the boson core and the
pair-breaking interaction that mixes states with different
number of fermions. In order to investigate how these
two interactions affect the chaotic properties of the nu-
cleus, we shall study a case where the core is regular [de-
scribed by the SU(3) limit].

Another important question is the dependence of chaos
on spin. The new physics here is that the Coriolis force,
which increases with spin, will eventually cause the
breaking of pairs and the alignment of the quasiparticles
along the rotation axis. The interplay between the
Coriolis and centrifugal forces and the pairing interaction
may lead to an interesting dynamical behavior.

The outline of this paper is as follows. In Sec. IT we re-
view the model which includes broken pairs. In Sec. III
we study the onset of chaos (for a regular bosonic core) as
a function of the strengths of the dynamical and mixing
interactions, while in Sec. IV we study the spin depen-
dence of the degree of chaoticity. In both Secs. III and
IV the model space includes only up to one broken pair.

II. MODEL

The model space [18] for an even-even nucleus with 2N
valence nucleons is
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|N bosons)® (N —1) bosons® 1 broken pair) . (1)

The model is based on the IBM-1; the boson space con-
sists of s and d bosons, and no distinction between pro-
tons and neutrons is made. A boson can break to form a
noncollective fermion pair that is represented by a two-
quasiparticle state. The model Hamiltonian is

H=Hp+Hp+VgptV iing - (2)

The first term is the IBM-1 boson Hamiltonian; the
second term is the fermion Hamiltonian. Vpp is the
boson-fermion interaction of the interacting boson-
fermion model [21]. V¥, is the pair-breaking interac-
tion that mixes states with a different number of quasi-
particles. In the present paper, we consider the example
of an SU(3) boson core which corresponds to the case of a
well-deformed nucleus. In order to simplify the presenta-
tion and to consider only the most important effects, we
restrict the various terms in our model Hamiltonian (2) to
the following: The fermionic part is

Hy=3E,la,, 3)
a

where E, are the quasiparticle energies. The boson core
is described by the interacting-boson-model Hamiltonian
(in the self-consistent Q model [22])

Hy=E,+cofiy+c,QX-QX+c, L2 . @)

Here A, =d t.d is the d-boson number operator, L is an-
gular momentum operator, and QX is the quadrupole
operator,

0¥=(d"x5+s"xd) P+ yd xd)? , (5)

which depends on the parameter . In the following we
shall restrict the fermion space to a unique-parity high-j
orbital. The basic structure of the spectrum is then deter-
mined by the dynamical boson-fermion interaction

Vpr=H gy,

=T (u?—v) (|| Y, | Ma]xa)»-0x, (6
J

and the pair-breaking interaction

Vmixing = —u222ufvj <]H YZ H] >(a; X aj?r )(2)'3 +H.c. (7)
J

In the present investigation, we have neglected the effects
of the exchange and monopole boson-fermion interaction
[18] and the monopole mixing interaction [19]. The in-
teraction between the unpaired fermions is dominated by
the long-range dynamical force (6). Therefore we have
not included the residual two-body fermion interaction
(for example, a delta force) in our model Hamiltonian.
Our purpose is to study the chaoticity of the nuclear
spectrum as a function of the dynamical coupling I, the
mixing coupling u,, and the total spin J. We thus choose
a bosonic core which displays regular behavior:
X=—V'7/2: ¢,=0 in the SU(3) limit (describing a rota-
tional nucleus). The other parameters are c,= —0.04
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FIG. 1. Excitation energy versus spin diagram obtained by
diagonalizing the Hamiltonian in (2)—(7) with up to two quasi-
particles in the A, ,, orbit. The boson core is an SU(3) prolate
with N =9 bosons, ¢, =—0.04 MeV, and ¢;=—0.005 MeV.
The quasiparticle in the 4, ,, orbit has an energy of 0.85 MeV
and an occupation probability of v>=0.2. The dynamical in-
teraction has I';=0.6 MeV, and the mixing strength is
u,=0.275 MeV. (a,a,) describes bands with a dominant
configuration of two quasiparticles with spin projections a, and
a, along the rotation axis. Solid dots denote energy levels.

MeV and ¢, = —0.005 MeV, and the number of bosons in
N =9.

For the fermion orbit, we take the 4, ,, orbital with
occupation v?=0.2 and E;;,, =0.85 MeV. The energy
spectrum shown in Fig. 1 is calculated for I'y=0.6 MeV
and u,=0.275 MeV. Note that we have particle-type
fermions coupled to a prolate core for which the dynami-
cal boson-fermion interaction is repulsive for the lowest
two-quasiparticle (2qp) states, and the resulting 2qp spec-
trum is of decoupled type. GSB is the ground-state band
which is predominantly composed from N-boson states,
with small admixtures of 2qp states. The lowest 2qp
states are grouped into rotational bands characterized by
the signature: r=+1 (—1) for states with even (odd)
spins. To the lowest 2qp bands we assign the ‘‘algebraic
projection” quantum numbers (a;,a,) [18]. The strong
Coriolis force aligns the unpaired fermions along the axis
of rotation, and the projections (a;,a,) of their angular
momenta (j;,j,) on the rotation axis are approximately
good quantum numbers. In particular, the most aligned
2qp band (4,3) crosses the ground-state band and be-
comes yrast around J =12#. At this crossing the Coriolis
force becomes strong enough to break a pair, and there is
a gain in energy by maximally aligning the two fermions
along the rotation axis. For nonyrast states the Coriolis
mixing is much stronger and the classification of 2qp
states into rotational bands becomes more difficult.

At energies of several MeV, the density of states be-
came quite large and we have a sufficient number of levels
(at each spin) for a statistical analysis.

III. LEVEL FLUCTUATIONS

We have diagonalized the Hamiltonian in Egs. (2)—(7)
and analyzed the fluctuations of its spectrum {E;}. For
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that purpose we first separate the smooth (nonuniversal)
part of the spectrum. This is accomplished by construct-
ing a staircase function N (E) and calculating an average
part N,, by fitting a smooth function [11] to N(E). We
then obtain the fluctuating part from N(E)
=N, (E)+ Nq,(E), and the unfolded levels are defined
by E,=N,,(E;). The analysis is done separately for each
spin-parity (J7) class of levels.

Two statistical measures are used for {E;}, the
nearest-neighbor level spacing distribution P(S) and the
A, statistics of Dyson and Metha. P(S) is fitted to a Bro-
dy distribution [23] parametrized by w:

P,(S)= AS“exp(—aS'*?), (8)

where a=T[2+w)/(1+w)]'? and 4 =(1+w)a
are chosen so as to ensure the normalization of P and
(S)=1. The distribution (8) interpolates between the
Poisson distribution (w=0), which characterizes a regular
system, and the Wigner distribution (w=1), which
characterizes a chaotic system.
The A; statistics
. 1 at+L =y =~ 2 g

Ay(a,L)=min— JUUINE) - (4E+B)PAE )
is a measure of the deviation of the unfolded staircase
function from a straight line. To get a smoother A;(L),
we average A;(a,L) over n, intervals (¢,a+L), which
overlap by L /2 successively:

K3(L)=%2A3(a,L) . (10)
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FIG. 2. Nearest-neighbor level spacing histogram P(S) for
the Hamiltonian in (2)—(7) and for several values of the dynami-
cal interaction strength I'; and mixing strength u,. All other
parameters are as in Fig. 1. The solid line is the fit to the distri-
bution P, (S) [Eq. (8)] with the quoted w; the dashed line is the
Wigner distribution (GOE), and the dot-dashed line is the Pois-
son distribution. Note the saturation in w as u, increases for a
given I'y. For a fixed u,, w increases (i.e., more chaos) with I,
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FIG. 3. As in Fig. 2, but for the A, statistics (solid squares).
The dashed line is the GOE A, statistics, and the dot-dashed
line is A; for the Poisson statistics.

The Poisson statistics gives

Ay(L)=L/15, (11)
while, in the GOE (chaotic) limit,
Ay(L) ~ lInL —0.007 . (12)

L>>1

Figures 2 and 3 describe the distribution P(S) and A,
statistics, respectively, for the Hamiltonian (2)-(7) with
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FIG. 4. Level spacing distribution P(S) (right column) and
A, statistics (left column) for the Hamiltonian in (2)-(7) and for
several even spins from Fig. 1. The dashed lines correspond to
the GOE statistics, while the dot-dashed lines correspond to the
Poisson statistics.
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FIG. 5. As in Fig. 4, but for odd spins.

an SU(3) boson core and the 4, , fermion orbital (Fig. 1)
for several values of I (0, 0.05, and 0.45 MeV) and u, (0,
0.2, and 0.5 MeV). The levels analyzed are the J=6"
levels. Only Ogp and 2qp states are considered. The case
of no interaction between the quasiparticles and core
(Cpy=0) is “overintegrable” (w <0) because of large num-
ber of exact degeneracies. A more generic situation is
thus a small I, (such as I';=0.05, u,=0) for which the
statistics is very close to the Poisson limit (0 =0.13).

For a fixed dynamical coupling (I'j70), we see that the
statistics becomes less regular when the strength of the
mixing interaction u, increases until a certain saturation
is reached (w=0.2-0.3 for I';=0.05 and w=0.6 for
I';=0.45). For a fixed value of the mixing coupling u,,
the degree of chaos increases when the quadrupole-
quadrupole coupling I';, increases. The A; statistics (Fig.
3) is consistent with the level spacing distribution (Fig. 2).

IV. CORIOLIS EFFECTS

The Coriolis and centrifugal forces increase with spin.
To see how they affect the fluctuation properties of the
levels, we have analyzed various spins between 0 and 207
for the illustrative spectrum shown in Fig. 1. The level
spacing distribution P(S) and A; statistics are shown in
Fig. 4 (even spins) and Fig. 5 (odd spins). When the spin
increases, there is initially a steady increase in chaoticity
(w increases) and a maximum of the onset of chaos is
reached around J = 10#, not far from the crossing of the

FIG. 6. Parameter o of the level spacing distribution [see Eq.
(8)] versus spin for the Hamiltonian in (2)-(7) with I';=0.6
MeV and u,=0.275 MeV (Fig. 1). Note the sharp decrease in ®
(i.e., the spectrum becomes more regular) for spins J 2 (10-12)#.
J =12# is the spin for which the lowest two-quasiparticle band
crosses the ground-state band.

two-quasiparticle band with the ground-state band
(J =12#). In this region the Coriolis interaction is com-
parable to the pairing interaction, and this produces max-
imal chaoticity. For spins above J = 12, we see a rapid
decrease in chaoticity with increasing spin. This may be
attributed to a regularity induced by the decoupling of
the quasiparticles from the core and their spin alignment
along the rotation axis.

Figure 6 shows the dependence of w on the spin for the
even spins (solid line) and odd spins (dashed line).

V. CONCLUSIONS

The study of the onset of chaos in realistic models of
nuclei is extended to higher spins and energies by includ-
ing broken pairs in the interacting boson model. In this
paper spectral fluctuations were analyzed. It is found
that both the quadrupole-quadrupole interaction (be-
tween the quasiparticles and core) and the mixing in-
teraction can cause a partial onset of chaos in an other-
wise regular core. For a given interaction, the degree of
chaoticity seems to be maximal for spins in the vicinity of
the crossing between the ground-state band and the
lowest two-quasiparticle band. In this region Coriolis in-
teraction is comparable to the pairing interaction.

Work in progress includes the study of the distribution
of electromagnetic transition intensities as an additional
probe of the onset of quantal chaos in nuclei with broken
pairs. We are also studying the effects of including more
than one broken pair in the model space.
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