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Effective boson charges, e, and e,, are extracted for isotopic chains of most elements from Z =42 to
the actinides from analytic expressions derived in the interacting boson approximation. It is shown that,
in valence space models, such effective charges carry an additional, physically intuitive interpretation,
beyond the normal one of ensuring agreement of calculated electromagnetic transition rates with experi-
ment. In valence models e, and e, are approximately proportional to the derivatives of M(E2:0{ —2")
with N, and N, respectively; that is, they are measures of the rate of change of collectivity. This feature
allows one to disentangle the separate roles of protons and neutrons in the development of collectivity
and exposes subtle effects originating in the valence p-n interaction. The results are striking. While for
most elements, e, >e, as expected, certain regions display anomalously large e,, and, sometimes
e,/e,>1. These effects are interpreted in terms of the p-n interaction and, in particular, in terms of its
monopole component which acts to shift single particle energies and, thereby, can alter shell gaps and
the effective size of the valence space of one kind of particle as a function of the number of the other.
Very small values of e, near midshell are also interpreted in terms of the saturation of collectivity in
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such regions.

PACS number(s): 21.60.Ev, 21.60.Cs, 21.60.—n

1. INTRODUCTION

It is well known that the addition of valence nucleons
to the closed shells of a nucleus is accompanied by the ap-
pearance of a nonspherical field and thus the presence of
an additional quadrupole moment of the protons inside
the closed shell. This quadrupole core polarization effect
can be renormalized as an effective charge of the nucleons
added to the core. An estimate of this effect can be ob-
tained following Bohr and Mottelson [1] and noting that
the induced quadrupole moment due to the disturbed
field is of the order ZQ,,/ A4, where Qg is the single-
particle quadrupole moment. Thus the effective charges
of the proton and neutron are expected to be

V4
fF_
e, = |1+ 3 e, (1)
Z
esT= e )
respectively. According to this schematic model [1],
e /eN=Z/(A+2Z) . 3)

Of course, in practical nuclear structure calculations,
effective charges are introduced to mock up other
simplifications such as the use of schematic interactions,
special truncations of the space (even within the valence
shell), and so on. In most nuclear models, effective
charges are therefore a normalization factor on transition
rates designed to achieve agreement with experiment.

Of course, this is true of valence space models as well,
but here effective charges also play an additional, funda-
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mentally different, role. As recently discussed [2] in a
short summary of this work, to a good approximation,
proton and neutron effective charges in valence space
models (such as, but not limited to, the interacting boson
approximation) are proportional to the derivative of the
E?2 transition matrix element with respect to the number
of valence protons and neutrons, respectively. Therefore
an experimental determination of these parameters can
provide valuable information on the underlying nuclear
structure and, in particular, on the separate and in-
tertwined roles of protons and neutrons in the develop-
ment of collectivity.

A straightforward way to determine e;™e™ is by
measuring E2 transition probabilities [B(E2)] values.
These quantities can be related directly to the effective
charges of the nucleons. (Another method to determine
effective charges is from 7= scattering amplitudes [3].
However, the lack of experimental data does not allow a
systematic analysis using this method.)

Here we will focus on the use of B(E2:2; —0;") values
since an extensive compilation [4] of about 280 of these
B(E2) values in even-even nuclei has recently become
available. This compilation now makes possible the un-
dertaking of a systematic analysis of effective charges
across the periodic table.

In a recent work [5], Raman et al. have extracted
e, /e, ratios by fitting B(E2) experimental values by
different simple models. However, since their interest
was mainly to understand the gross features of the sys-
tematics, they included a rather large number of nuclei in
one fit. While this procedure can give interesting results
which are important for our understanding of the mass
dependence of the quantities involved, it can obscure lo-

1323 ©1992 The American Physical Society



1324

cal variations of the effective charges. These variations
may contain very valuable information, especially con-
cerning transitional regions, where nuclear shapes change
rather rapidly as a function of mass.

It is the purpose of this paper to present the results of a
detailed and systematic analysis of about 120 B(E?2) tran-
sition probabilities for even-even nuclei with 4 > 90.

Effective charges were extracted for isotopic chains of
even-even nuclei of most elements with Z > 40 using vari-
ous analytic formulas derived within the framework of
the interacting boson approximation (IBA). The results
show that the effective charges of the protons increase
slowly and monotonically with 4. However, the effective
charges of the neutrons are found to increase consider-
ably in the vicinity of closed shells and to decrease to
very small values toward the middle of the major shells.
These effects will be interpreted in terms of the respective
roles of protons and neutrons in the onset of collectivity
and of the residual p-n interaction.

II. ANALYTIC RELATIONS
FOR B(E2) TRANSITION PROBABILITIES
IN EVEN-EVEN NUCLEI

In order to extract values of the effective charges from
B(E?2) experimental data, we need a model that relates
the B(E2)’s to e,,e,. A convenient model to use for this
purpose is the IBA. In its dynamical symmetry limits,
this model uses group algebra to derive analytic formulas
for important nuclear observables. Since we are interest-
ed in effective charges of protons and neutrons, we will
use IBA-2. A convenient Hamiltonian for IBA-2 is

H=e(Ry +0; )+KkQ,-Q, , @)
with
Q,,=(sld+d"s)+x, (d'd), (5)

and 7; the d-boson number operator. The E2 transition
operator has the form

T(E2)=e, Q.+e, 0, , (6)

where e (e,) are the proton (neutron) boson effective
charges. The transition probability B(E2) is determined
from the expectation value of T(E2). For the three limit-
ing symmetries of the IBA [SU(3), O(6), and U(5)], simple
analytic formulas can be obtained by group-theoretical
algebra and written in the general form [6]

B(E2:2{ -0 )=f(N) e ,N,+e,N,)*, (7
where

f(N)2=71V— for U(5) ,

21?;3 for SU(3) , (8)

N5;4 for O(6) ,

and N=N_+N,. Ginocchio and Van Isacker [6] have
pointed out that, even though a nucleus may be close to
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the vibrational [U(5)] limit, the appropriate f(N) func-
tion can be quite different from 1/N. They proposed [6]
a different relation, derived by expanding f(N) in
leading-order perturbation theory near the U(5) limit:

2
_k(N—1)
€

1

N 1

f(N)*= 9)

The O(6) and SU(3) equations are more stable with
respect to deviations from the exact symmetry.

Most “‘real” nuclei do not follow any one of the above
limiting symmetries. However, many nuclei can be con-
sidered as transitional between two of the three sym-
metries. One can therefore look upon these nuclei as be-
ing “located” at some point along one of the three sides
of the “IBA triangle” [7] (see Fig. 1). Many nuclei (e.g.,
most of the rare-earth nuclei) are intermediate between
0O(6) and SU(3): That is, they can be well described by
the Hamiltonian of Eq. (4) with e=0. For these nuclei
the following approximate analytic formula was obtained
in Ref. [8]:

B(E2:2{ —0]")
2

~0.25(1—0.1y) (e,N, +e,N,)?, (10

N +1
N
where Y is related to x, and x,, of Eq. (5) and is defined by

x=x.N,+x,N,) /N . (11)

Equation (10) was found [8] to reproduce numerical IBA
calculations within about 15% for deformed nuclei.

Of course, many nuclei require a still more general
Hamiltonian. To deal with such cases, we need an ana-
lytic formula for B(E2:2]" —0;") values which is valid for
all three sides of the triangle and its interior. Such an ex-
pression has recently been developed and discussed in de-
tail in Ref. [9]. Two parameters are needed in order to
scan the triangle. These are ) defined above and &,
defined by [9]

g=—"1—, (12)
n+1
with
_4N—1)k
= -
0®) x=0
X 7
UG 0 ek x  SUO x=—7/2
e

FIG. 1. Symmetry triangle of the IBA. The parameters giv-
ing each symmetry and determining position along the transi-
tion legs are given.
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The values of y and £ for the specific symmetries are
x=0, 0(6); —V7/2, SU@3); (13)
E=0, U(5); 1, SU(3) and O(6) . (14)

In terms of these parameters, it was shown in Ref. [9]
that a good analytic approximation to detailed numerical
diagonalizations is

B(E2:2{ —0;)~0.25[1+0.2(1+4x?)g ()N —1)]

x%<e”N”+eva)2 : (15)

with
:—1__
1+2(1/6—1)?%

The free parameters in this equation can be estimated us-
ing expressions based on a microscopic shell-model
description. These expressions are described in some de-
tail in Ref. [9].

To summarize, we have now six different analytic rela-
tions for B(E2:2) —0;) transition probabilities: the
three equations for the limiting symmetries [Egs. (8)], the
“perturbed U(5)” formula [Eq. (9)], Eq. (10) for deformed
nuclei, and Eq. (15), which spans the “IBA triangle.”
For convenience, we will refer from now on to Eq. (10) as
to the “analytic” formula and to Eq. (15) as the “triangu-
lar” formula. All the equations have the form

B(E2:2{ —0;")=f(N)(e,N,+e,N,)*, (17)

g(&) (16)

where f(N) is a generalization of the functions with the
same name in Egs. (8) and may also depend on the pa-
rameters €,k,Y. For the “perturbed U(5)” formula [Eq.
(9)], f(N) depends on the ratio x/¢. This ratio can be
determined by using a phenomenological approach as de-
scribed in Ref. [10]. For the “analytic” formula [Eq.
(10)], f(N) depends on y. However, it is a rather weak
functional dependence, and so the results are hardly sen-
sitive at all to the particular y value chosen for the bulk
of deformed nuclei. For most deformed nuclei, a reason-
able choice for y is —0.4, and this is the value we used in
this work. Finally, for the “triangular” formula [Eq.
(15)], f(N) depends on y,£. These parameters can be cal-
culated using a microscopic shell-model approach as de-
scribed in Ref. [9]. We take the parameters of Ref. [9],
and hence, in this case, in fact there are no free parame-
ters.
Equation (17) can be rewritten as

1 1 1/2 N,
N f(N)zB(E2:21+—+01+) e,,-i—eﬂN—v}. (18)
We now define

r=-1 |1 _pg2t o - (19)
N, | f(N) L

From Egs. (18) and (19), it is clear that T is a linear
function in N /N,. T can be calculated using the experi-
mental B(E2) and one of the six expressions for f(N). If

this is done for several neighboring nuclei and if we as-
sume that the effective boson charges are approximately
the same for these nuclei, then e_,e, can be extracted
directly by making a linear fit of T against N, /N,. This
general method for determining e,e, was used before by
several authors [11-16] for a few isotopic and isotonic
chains. In general, our values are in agreement with their
results. However, there is an important difference be-
tween our work and all the previous publications. In ad-
dition to the relations applicable to the limiting sym-
metries which were used in the other works, we also use
approximate analytic formulas which were shown [8,9] to
provide a better description of transition probabilities in
real nuclei, which, nearly always, deviate from the exact
dynamical symmetries. In this way we obtained a con-
sistent set of e_,e, values for chains of isotopes with
42 <Z =96, which reproduce reasonably well B(E2) ex-
perimental data when introduced in the appropriate ana-
lytic relation. Other approaches to this problem are pos-
sible. For example, Hamilton [15] has deduced e, values
by making fits to isotopic chains and e, values from iso-
tonic chains. Although this procedure is valid in princi-
ple, the deduced effective charges for a specific isotope do
not always reproduce correctly the experimental B(E2)
value, because they were extracted from different fits to
different sets of nuclei. In an entirely different approach,
Barfield and Lieb [17] and Giannatiempo et al. [18] have
extracted charges for individual isotopes from several ex-
perimental E2 transition probabilities in each nucleus
and by calculating matrix elements of the quadrupole
operators with an IBA-2 code. This procedure differs
from ours in that it provides effective charges for each
isotope. However, it leads to some ambiguity because it
gives two sets of solutions and thus requires more experi-
mental data in order to distinguish between them. More-
over, by using some less collective transitions in their fits,
their results are more likely to be affected by inaccuracies
in details of the treatments of various intrinsic excita-
tions. A more important point is that the values and
even the physical meaning of e and e, are intrinsically
connected to their method of extraction, and detailed
comparisons of different extracted effective charges
should be made with this in mind. We return to this
point in Sec. III D.

The main issue in using the method we described above
for the extraction of e, e, by fits of T vs N, /N, is to de-
cide which relation to use for each set of nuclei. This de-
cision is sometimes a little ambiguous because, as we
mentioned before, “real” nuclei do not follow well-
defined rules and simple models. In order to circumvent
this difficulty, we used at least two or three relations for
each fit. For example, we used the SU(3), the “analytic”
and the “triangular” formulas to fit deformed nuclei. For
vibrational nuclei we usually used the ‘“pure” U(5) and
“perturbed” U(5) equations. In all cases the “adopted”
effective charges were arithmetic averages of the values
from the various fits. We attached “error bars” to them,
which reflect the differences in the values obtained with
the different formulas used.

Another problem arises when one of the isotopes in-
volved in the fit has a magic number of neutrons. In that
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case N,=0and N_/N, as well as T are not determined.
For these fits we rewrite Egs. (18) and (19) in terms of
N,/N . instead of N_/N, and proceed as before. Final-
ly, it may happen that a chain of isotopes spans a transi-
tion region such that different subsets of isotopes have
significantly different structure. In such cases the chain
must be split into parts and the appropriate analytic for-
mulas used for each part.

III. RESULTS

A. Examples of individual fits

We used about 120 B(E2:2;' —0, ) values for nuclei
with 4 >90. We divided them into 25 groups, with
about 3-8 isotopes in each group. Special care was taken
to include in one group only nuclei having similar struc-
ture. Generally, an entire isotopic chain can be used in
this way, but as noted above, there are isolated cases
where a vibrational-rotational transition occurs within
one isotopic chain (e.g., Mo and Ba). In these cases we
formed two groups for the same element and made fits
with different formulas.

We now present a few examples of the fits and the ex-
tracted e, and e, values. In Fig. 2 we present the fits for
the '%4-119pd and '%*-1%0Gd isotopes, using three different
algebraic relations in each case to calculate the value of
T. We see that the resulting e, e, are not very different,
thereby lending confidence to the extraction of an aver-
age set with reasonably small uncertainties. The “adopt-
ed” values in this case are e, =0.15(2) eb, e, =0.08(1)
eb for Pd and e,=0.18(3) eb, ¢,=0.09(1) e b for Gd.
The error bars include the variations due to the different
relations used.

It is interesting to compare our results for the Pd iso-
topes with those of Saha et al. [3], who used 7 scatter-
ing amplitudes to extract effective charges e,=1.13e,
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FIG. 3. Fits of B(E2) experimental data for the '%~'7Yb iso-
topes (see caption to Fig. 2).

e, =0.49¢, for the same Pd isotopes, 104-110pq  These
quantities are related to e e, by
(20)

=a,e, ,

where a,,a, are expectation values of the quadrupole
operators, which were calculated in a generalized seniori-
ty scheme, yielding a,=15.2 fm?, a, =16.4 fm2. Using
Eq. (20), we obtain e, =0.17 e b, e, =0.08 e b, in excel-
lent agreement with our results. Moreover, Saha et al.
[3] obtained essentially the same e,,e, for all isotopes

considered, thus supporting our assumption of constant

018 o4 1opy 040 o
- d : Gl
E 0.17 e, 0154(28) e, OU‘J!\IU) . 035 I .
016 pe 3 [e.=0.145(3) e,=0 07814 .
015 re Z 030 5
014 3 ‘ - —
025 S0 formu
013 Triangular’ formula Lo SU(3: formula i
— S ,. P Y S S Y S
015+ e,=0147(23) €,=0.069(8) _ | o o071l e.s00966) B
C = ‘ Bl !
)13 - I’ 2 0325 - Pre
012 - 3 | 2 . yd
B H =027 - P -~ Analytic formula x=-0.4
ou b & 0(6) formula | . ’
I SR S — L 1 +
5t e=01 FI(ZQ) €,=0.072(9), ¢ _ e,=0.210(4) e,=0.080(5 |
N ~ 045 = o
L . -, :
¥ =} 40 -
| e 5 040 - =
i Lz | £ o3~ -
¥ = . o, I
! " Mriangular’ formul
Pert U(S) formula «/e=—007 030 — o langular’” for a
it — O J‘ | S S S IS E S———
02 03 04 a5 06 100 115 1.30 145 1.60 175
=N, NN,
FIG. 2. Left: fits of B(E2) experimental data for the

154-10Gd isotopes, using three different relations for T: the
SU(3) formula {Eq. (8)], the analytic formula [Eq. (10)], and the
“triangular” formula [Eq. (15)]. See Eq. (19) for the definition of
T. Error bars on the experimental points are given: They are
often smaller than the point size. Right: similar for '%-!1'Pd.

k 126*134Xe I
~ 043
) e,,:O.l’iB(lS) €,=0.115(7)
5 033 +
|
-_AJ -
o023 +
L “Triangular” formula
1 L 1 l
le,=0.171(11) e,=0.065(5)
o 035 le e )
= L
>N
© 025
§ f
8
= 015 + Analytic formula
L x=—05
1 1 | l
le,=0.170(12) €,=0.07
035 B (12) e, 4(6)
= r
3 025 |
=1
0.15 9}/ 0(6) formula
L !
Lo ]
04 08 16 20

12
N,./N,

FIG. 4. Fits of B(E2) experimental data for the '2*~**Xe iso-
topes (see caption to Fig. 2).
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effective charges for isotopes of a given element.

In Fig. 3 we present the results for the '*4-176Yb iso-
topes, where a small value of e, was obtained, and in Fig.
4 the fits for the 126-134Xe isotopes are given.

B. Effective charges in the 4 =150 region

The neutron-rich nuclei in the 4 =150 region are
known to exhibit a pronounced transition from vibration-
al to deformed/rotational shape. This onset of deforma-
tion has been interpreted [19] as being due to the 1A ;-
1h,,,, p-n interaction, which becomes increasingly
significant as neutrons are added beyond N =88. This in-
teraction also causes the Z =64 subshell, which is a
“good” subshell for nuclei with N <88, to practically
disappear for N = 90.

For some vibrational Ba, Ce, and Nd isotopes, Hamil-
ton, Irback, and Elliott [11] have reported anomalous
effective charges e, =0.24 eb, e, =0.12 e b, with e, >e.
They obtained the results from fitting B(E2) transition
probabilities and using the U(5) relation [Eq. (8)]. The
validity of this surprising result was questioned by Ginoc-
chio and Van Isacker [6], who claimed that the “pure”
U(5) relation cannot be used reliably because it is unsta-
ble to small deviations from the U(5) symmetry.

In this work, despite attempts to avoid this seemingly
anomalous result, we find clear evidence supporting
enhanced e,/e. values in the vibrational 33142144y
140,142,146Ce’ 142—146Nd’ and 144,148,150sm iSOtOpeS. In Flg.
5 we present the fits for the three Ba isotopes. We see
that, although the absolute values of e, and e, are not
the same for the three fits, the ratio of e, /e is consider-
ably larger than 1 even when the perturbed U(5) [Eq. (9)]
or the “triangular” [Eq. (15)] formulas are used. The ra-
tio is in the range 1.5-2.0, in approximate agreement

! | | | L 1

[ 138,142 144 35

:30 03 .reﬂ -0.123(2) e,=0.204( i);/‘ﬂ

g i

g L

5 2

= T /
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‘ I | | 1 L
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= 02 ~

£ ot —
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|

04 Le-=0123() e,~0244(10)

0.3
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T(UE)
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/
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L L It L

FIG. 5. Fits of B(E2) experimental data for the !3%14%144B,
isotopes using the “pure” U(5) formula [Eq. (8)], the U(5) per-
turbed formula [Eq. (9)], and the “triangular” formula [Eq.
(15)].
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FIG. 6. Fits of B(E2) experimental data for the !4%148150gm
isotopes (see caption to Fig. 2). Fit (c) is explained in the text.

with the value of 2.0 reported in Ref. [11]. For the Ce,
Nd, and Sm isotopes, the analysis is somewhat more com-
plicated because of the Z =64 subshell, which is presum-
ably still active in the isotopes considered. Under this as-
sumption the valence numbers of proton bosons (N, ) are
3, 2, and 1 for the Ce, Nd, and Sm isotopes, respectively.
In Fig. 6 we present the results for the Sm isotopes. The
fits in Figs. 6(a) and 6(b) were obtained assuming N, =1
for all three isotopes. We see that the ratio e, /e, in

T T T (’) T
30 1 z-50-82
£ | ®Z=50-64 ©
o 20
\ | o
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(0 10 e e @ oo
1 | Il I
1 1 I
—~~ 03
3 ;
L oozt §
S '
01
P ST P B
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2 .
~—~ 02 -
) s *
01 F o o
| L | E—
56 60 64

7

FIG. 7. Effective charges e,,e, and the ratios e, /e, for the
140,142, 136Ce  142-196Nd and the '*+!4%159Sm jsotopes. The dots
indicate the results obtained using the Z =50-64 shell. The cir-
cles are the results from fits assuming the full Z =50-82 shell.
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these two fits is 0.9 and 1.1, respectively [i.e., still consid-
erably enhanced with respect to the expected (and typi-
cally found) values in the range 0.3-0.5]. The fit of Fig.
6(c) will be discussed later.

In Fig. 7 we present the values of e .,e,, and e, /e ob-
tained for the Ce, Nd, and Sm isotopes. The dots indi-
cate the results obtained assuming that the Z =64 sub-
shell is active, while the circles are from fits using the full
50-82 shell (i.e., using N,.=4, 5, and 6 for Ce, Nd, and
Sm, respectively). The ratio e, /e, is larger than 1.0 in all
cases. It should be noted that the strong increase of e,
from about 0.11 in Ce to about 0.23 in Sm, where the
Z =50-64 shell is used, is due to the fact that N_ de-
creases from 3 (for Ce) to 1 (for Sm), and since the transi-
tion probability contains the product e, N [see, e.g., Eq.
(18)], a smaller N, in effect requires a larger e to pro-
duce the same B(E2) value.

The enhanced e, /e, ratio in the 4 =150 region can be
qualitatively seen also by directly inspecting the experi-
mental B(E2) data. In Fig. 8 we present the B(E2)
values for isotopes in this region (from Ref. [9]; data are
from Ref. [4]). We see that for the Ba, Ce, Nd, and Sm
isotopes, the N dependence of the B(E2) values for
N =82-88 is much stronger than the Z dependence.
This larger sensitivity to changes in N, than N implies
the need for a larger multiplier of N, than of N in the
expression for B(E2) values.

To summarize, the above arguments show that the
large e, /e, values in the 4 =150 region are not an ar-
tifact of the way the data is analyzed and are not due to
the “instability” of the U(5) formula, but rather are a real
effect exhibited by the nuclei in this region.

C. Systematics of e, e, across the periodic table

In Fig. 9 we present the e, e,, and e, /e, obtained
from the analysis of the 120 B(E2) experimental values
considered in this work. Several features arise from ex-
amining this figure.
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FIG. 8. Experimental B(E2:2;" —0;") values for Te, Xe, Ba,
Ce, Nd, and Sm isotopes (from Ref. [9]; data are from Ref. [4]).
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FIG. 9. Systematics of e,,e, as a function of Z. The open
circle indicates the results for the deformed '%2-'®Mo isotopes,
and the open triangle gives the fitted value for the deformed,
N <82, '22-134Bg jsotopes. The error bars show the range of
variation due to the various formulas used.

(a) The values of e, increase almost monotonically
with Z from about 0.12 at Z =42 to almost 0.4 at Z =96.

(b) The values of e, show pronounced and systematic
variations with respect to Z. Very large (0.15-0.2 e b)
e,’s are observed at Z=56-62; then they decrease to
values as low as about 0.03 eb at Z=70 and then in-
crease again toward Z=82. Then we see again a de-
crease in e, in the actinides.

(c) The ratios e, /e, are close to and sometimes above
1.0 in three regions: Z=42-44, Z=56-62, and Z ~82.
For most deformed nuclei, the ratio e, /e, is between 0.3
and 0.5, as expected from the prediction of Bohr and
Mottelson [1] [Eq. (3)]. A significant drop in this ratio
nearly to zero is observed around Z =70 and then again
at Z =96.

The appearance of several regions, where e, X e, and
of others, near midshell, where e, is very small, leads to a
recurring undulating pattern in e, and e, /e_. The regu-
larity suggests a simple underlying explanation related to
general features of shell structure and residual interac-
tions.

D. Fits to isotonic and isobosonic chains of nuclei

In the present work, we are mainly concerned with
effective charges pertaining to isotopic chains. It is im-
portant to recognize that the boson effective charges e,
and e,, as extracted with the approach discussed here,
are not defined with respect to a specific nucleus. Their
extraction explicitly entails a sequence of nuclei, and they
reflect the changes in B(E2) values across such a se-
quence. There is, indeed, the explicit assumption that e,
and e, are constant across such sequences. Both the ab-
solute values and the physical interpretation of the
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FIG. 10. Fits of B(E2) experimental data for the N =76 iso-
tones (see caption to Fig. 2).

present e_,e, values may differ from those extracted, for
example, from several E2 transitions in a single nucleus.
In view of this, it is interesting to extract e, and e,
values for other sequences of nuclei such as isotonic, “iso-
bosonic” (which can either be isobaric or A4 =4 se-
quences), or even iso-N,N, series. This is an extensive
program which will be the subject of a further investiga-
tion. Here we illustrate the idea with two examples. In
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® os | .
g 03
i )
*
= 02 - "Triangular” formula
I | 1 1 I
04 F
s I e,=0.164(4) e,=0.095(3)
)
;; 03
] o
=}
L 02 +
= Analytic formula
x=—04
1 L 1
04 F—
F e,=0.183(4) e,=0.106(3)
P~ 03 + ©
o
e
= 02 | 0(6) formula
| ] L 1 ]

03 06 09 12 15
N./N,

FIG. 11. Fits of B(E2) experimental data for the isobosonic
nuclei with N,=N_+N,=15 in the rare-earth nuclei near
A =160 (see caption to Fig. 2).

Figs. 10 and 11 we show fits for the isotonic chain N =76
and for the “isobosonic” AA4 =4 chain N,=15 (i.e.,
N,.+N,=15). In each case e, and e, are taken as con-
stants across the particular sequence studied. It is ex-
pected that a systematic analysis of all possible fits of this
kind, together with the isotopic fits presented in detail in
this work, will provide further information on the depen-
dence of the effective charges on N and Z and on how e,
and e,, values in a given region depend on the sequence of
nuclei inspected.

IV. DISCUSSION

We have alluded to an interpretation of effective
charges in valence models in terms of derivatives of ma-
trix elements with N and N,. It is easy to see the ra-
tionale for this. All the analytic expressions for B(E2)

values have the form of Eq. (17). Hence, defining
M(E2)=V B(E2), we can write
M(E2:2{ -0 )=f(N)e,N,+e,N,) . 21

The essential point in the discussion to follow is that
f(N) is slowly varying with N. This is particularly true
for the SU(3) and O(6) limiting symmetries where a unit
change in N typically changes (e, N, +e, N,) by about
20% while f(N) changes only by 1-3 %. It is also true
for the other analytic relations, though somewhat less so
for U(5)-like nuclei. We will return to this more quantita-
tively just below. Suffice it to summarize by concluding
that, at least for a semiquantitative analysis, we can treat
f(N) as constant. If we then differentiate M(E2) with
respect to N, and N, we get

oM - _
aN, =~f(N)e,~e,,
(22)
oM =~f(Ne,~e,_ .
oN

T

Hence e, and e, are approximately proportional to the
derivatives of M(E2) with N, and N, respectively, and
therefore serve as measures of the rate of change of the
nuclear collectivity in the ground-state region with
changing proton and neutron numbers across the series
of nuclei used in the linear fits to extract the effective
charges. Such a simple, physically intuitive, role for
effective boson charges is peculiar to valence models,
where N, N, and N, explicitly enter the formalism and
confer on these quantities a high interest since they can
now be exploited to study separately the respective roles
of protons and neutrons in the evolution of collectivity
and, as we shall see, to study some subtle effects in the p-n
interaction.

Given the importance of the concept embodied in Egs.
(22), it is worthwhile being more quantitative. It is easy
to use Egs. (8) to write explicitly
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5 3N, 3N, SUG
NN +3) | Nan 3 < U3
OIM(E2) _, 4N, 4N,
——==L1f(N)X | |2— —
aN_ ~f(N) NN <4 e, NN+ 0(6) (23)
N‘IT v
2—7 e,,—TeV, U(s) .
[Similar equations are, of course, obtained for Isaturation of the p-n interaction strength near midshell

OM(E2)/dN,.] The validity of our assertion in Egs. (22)
is determined by the relative sizes of the coefficients of e,
and e, as well as by the rate of change of the coefficient
of e, with N and N_,. To study this we write
M(E2)=1f(N) Ae,—Be,). Simple manipulation then

gives
LW;%—H, SU(3)
A/B= Nz%fN—H, 0(6) (24)
Niv+1, ues) .

The smallest (worst) ratio 4 /B is obtained for the largest
N, namely, N, =N, which gives

4N*+3N 4
- v —_ +
v T3 N+ suUB)

N2+2N N
A/B> | m—=—=+1="+2 6 25
/ N 2 , 0(6) (25)

N

=+1=2, U(5).

N )

For all three limits, therefore, 4 is the leading-order
term. For SU(3) and O(6), where, usually, N >6,
A/B>>1andevenin U(5) 4 /B >2.

Finally, we note that for the SU(3) and O(6) expressions
[as well, of course, as the intermediate expression Egq.
(10)], the second term in A and the coefficient B go to
zero in the large-N limit so that Eqgs. (22) are recovered
exactly.

Thus, in all cases, e, and e, are, to good approxima-
tion, proportional to the rates of change of M(E2) with
N_. and N,, respectively, and, hence [since M(E2) is a
standard measure of collectivity], e, and e, are propor-
tional to the growth of collectivity as a function of N,
and N, across a series of nuclei.

This simple point confers on the effective charges a
physical significance they lack in many other approaches.
We now exploit this to interpret the e, systematics, espe-
cially in the regions of very large e, /e_ ratios near or
exceeding unity. We will interpret the systematic varia-
tions of e, vs Z qualitatively as being due to two major
factors, both originating in the p-n interaction: (a) polar-
ization of the proton single-particle structure as a func-
tion of neutron number; this applies in both the 4 ~100
and 150 regions (and possibly in the actinides); and (b)

regions.

We first focus on the large e, /e, values in several re-
gions of Fig. 9. From our interpretation in terms of
derivatives, it will be seen that, far from being suspect or
incomprehensible, the large e, values found by Hamilton,
Irback, and Elliot [11] for 4 ~150, and appearing in
three regions in Fig. 9, are in fact easily understandable
and in accord with the microscopic evolution of collec-
tivity in these regions.

The question is, what is the meaning of enhanced e,
and e, /e values? At the most superficial level they sim-
ply mean that the addition of neutrons is more effective
in generating collectivity than protons. This, for exam-
ple, is apparent in our earlier discussion of Fig. 8. The
deeper issue is why this is so. Reflection on the structural
evolution of the 4=100 and 150 regions supplies an
answer. The valence neutrons here play a dual role. The
first is the usual one of contributing to the buildup of (pri-
marily p-n) valence space (primarily quadrupole) interac-
tions (that is, to increasing N pN,, ). The second is that of
polarizing the protons. In particular, in both regions,
neutrons fill critical states with large overlaps with the
proton j shells 1g4,, (A ~100) and 1h;,, (A ~150).
The monopole p-n interaction then acts to lower these
proton single-particle energies [20], eradicating the well-
known subshell gaps at Z =38 (or 40) and 64 and thereby
contributing to an effective increase in the number of
valence protons as each neutron is added. Since N is
constant for a series of isotopes, in the analytic expres-
sions for B(E2:2; —0;), this polarization effect appears
as an enhanced efficiency of the neutrons via a larger e,,.

It is actually possible quantitatively to test this
scenario. In the calculation of e_,e, for the Ba, Ce, Nd,
and Sm isotopes, we assumed that the Z =64 subshell is
active [19], since we considered only 82 < N < 88 isotopes.
This assumption is certainly very crude. One expects the
“disappearance” of the subshell to be gradual. In fact, an
analysis of g-factor and B(E2) data for nuclei in this re-
gion has indeed shown that a gradual dissipation of the
subshell takes place [12] for N =84-90. This means that
in a given isotopic chain, e.g., 14+145150Sm_ the “effective”
number of valence protons increases as the number of
neutrons increases. While for *Sm we expect N, =1
(i.e., the subshell is active), in *>1%*Sm the subshell is no
longer active and therefore we have N =6 for these iso-
topes. For 48159Sm we therefore expect values of N, in-
termediate between 1 and 6. If we include this ‘““dissipa-
tion” effect in the B(E?2) fits, we should obtain a lower e,
because the effect of valence neutrons on the effective
valence proton number is now made explicit in the choice
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of N values. Such a test is illustrated in Fig. 6(c), where
we present the linear fit in which we used N,=1,2,4 for
144,148,150gm, respectively. We see that while e, does not
change with respect to the fits in Figs. 6(a) and 6(b),
where N_ =1 was assumed for all the isotopes, e, is con-
siderably smaller. In fact, the ratio e, /e, for the fit in
Fig. 6(c) is 0.65, i.e., much closer to ‘“‘normal” values.

Therefore the large e, /e, values in the Z=56-62 re-
gion are a manifestation of the ‘‘dissipation” of the
Z =64 subshell. The fact that we get a large e, /e also
for the Ba isotopes, which, with Z =56, is not affected by
the Z =64 subshell, implies that other effects may also
contribute to the enhanced values of e, and, therefore, of
e,/e.. This is deserving of further study.

The enhanced e, and e, /e, values in the 4 ~100 re-
gion point to the same interpretation there. In both the
A =100 and 150 regions, the cessation of this dual role
for the neutrons, once deformation has set in, is nicely il-
lustrated in Fig. 9 by the second points (open symbols)
for the rotational Mo and Ba isotopes where more “nor-
mal” e, values are obtained after the phase transition.

It is interesting to note that large e, and e, /e values
also occur in the preactinides. Indeed, e, /e, may again
exceed unity, although the data just above Z =82 are
lacking. This enhancement is also worth studying since
no subshell effects, such as are those for the 4 ~100 and
150 region, are known here. Our results point to the pos-
sible existence of a heretofore undetected subshell effect
in the trans-Pb region. This speculation is interesting in
light of an anomaly previously noted in N,N,, plots. Us-
ing normal shell closures, Cizewski and Dieperink [21]
found that N,N, plots for the actinides are noticeably
steeper than for any other region in medium and heavy
nuclei. If, however, a subshell and its dissipation were in-
voked, the N,N, curves would flatten out, more in line
with those from other regions. The conjunction of these
hints of such an effect both from the neutron effective
charges and, in retrospect, from N,N, plots suggests that
further study (and data) in this region would be
worthwhile.

It should be pointed out that the rise in e, just before
the Pb region, again showing enhanced structural sensi-
tivity to the number of neutrons, has not yet been amen-
able to a similar interpretation. Further study of these
high e, and e, /e, values should prove interesting.

We now turn our attention to very small values of e,
and e, /e, around Z=70 and 96. We recall that e, and
e, are approximately the derivatives of the E2 2; —0;"
matrix element with respect to N, and N, respectively.
The E2 matrix element depends strongly on the nuclear
deformation and is of course related to the quadrupole
moment of the nucleus. We therefore expect this matrix
element to behave approximately as the function S,,,:

Spn = 2 aiQpian ’ (26)
ihj
where the sum is over all relevant Nilsson orbitals and

9y, (Q,,I_) is the quadrupole moment of a proton (neutron)

in orbit i(j). S,, was defined and discussed in Ref. [22]
and gives a good approximation to the quadrupole p-n in-

teraction strength. In particular, a microscopic calcula-
tion shows [22] that S, saturates when the middle of the
82-126 neutron shell is approached. This saturation
effect is due to the smaller overlap of proton and neutron
wave functions when near midshell orbits are filling, since
orbits with many different angular orientations to the
equatorial plane are then occupied, with varying mutual
overlaps, compared with the situation early in a shell
when all filled orbits are highly aligned along the equa-
torial plane. It was shown in Ref. [22] that S, can be re-
lated to B(E2:2{ —0;") values and that the saturation in
Syn (3S,, /0N, ~0) corresponds to a saturation in B(E2)
values. Thus the very small e, values, near midshell in
both the rare earths and actinides, reflect the almost
negligible contribution of midshell neutrons to any in-
crease in collectivity.

We noted earlier that the empirical e, and e, /e,
values exhibit an undulating pattern. This regular behav-
ior can now be understood in terms of the above analysis.
In shape/phase transitional regions, recurring regularly
at the beginning and end of major shells, valence neu-
trons may have an amplified effect on the development of
collectivity, helping to polarize the proton shell structure
and, in particular, to eradicate proton shell closures.
This amplification is reflected in rather large values of e,
and e, /e.. In contrast, near the neutron midshell, where
the saturation of collectivity occurs, e, is very small.
These two effects, repeated for each shell, account for the
recurring undulations in e, and e, /e .

We have offered interpretations of a number of the
features of e, and e, /e, in Fig. 9, in particular of the
mechanisms that can account for some of the maxima in
e, and its midshell minima. There are, however, two
features of the empirical systematics worth further eluci-
dation, namely, the large values of e, just before the
Z =82 shell closure in the Os-Pt and Hg isotopes and the
nearly linear increase in e, across medium and heavy nu-
clei. The lack of pronounced oscillations in e, is prob-
ably reasonable since the respective filling of neutron and
proton shells near the valley of stability does not lead to
situations in which neutron shell or subshell gaps are
eradicated by the filling of particular proton orbitals.
However, the secular increase of e, merits further micro-
scopic interpretation.

Finally, we note that the boson effective charges are
closely related to the concept of F-spin symmetry [23].
In a given nucleus, the maximum value of F is
(N,+N,)/4. Maximum F spin corresponds to total
proton-neutron symmetry and is the limit in which the
IBA-1 coincides with predictions of the IBA-2. It is gen-
erally expected [24] that the F spin is a good quantum
number for the low-lying states, which are nearly pure
F ., states, although some calculations have invoked [25]
substantial F-spin mixing. The best known F <F_,,
states are the isovector M1 “scissors” mode 17 levels
[26] occurring near 3 MeV in many medium mass and
heavy nuclei. It has been discussed [15,27] that the quan-
tity (e,-e,) is important in elucidating the amount of F-
spin mixing. Since the issue of F-spin purity is an active
area of study, it is interesting to show explicitly the
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Fig. 9.

Values of e, -e, extracted from the solid points in

empirical e_-e, values from our study. These are plotted
in Fig. 12. The most notable feature is, again, an undula-
tion, mirroring the undulations in e_ /e, in which (e_-
e, ) maximizes near midshell where the saturation in col-
lectivity leads to very small values of e,.

V. CONCLUSIONS

Effective proton and neutron boson charges e, and e,
were extracted from B(E2:2]"—0; ) values in even-even
isotopic chains from Z =42 to the actinides using analyt-
ic formulas based on the IBA. The effective charge of the
proton was found to behave quite smoothly as a function
of Z. The rather smooth behavior of e, may be amenable
to interpretation with the schematic model of Bohr and
Mottelson [1]. According to this model, e has a con-
stant term [see Eq. (1)], and therefore its Z and A depen-
dence is expected to be weaker than that of e,. In con-
trast, e, exhibits quite dramatic variations, from values
as large as 0.2 eb around Z =56, down to 0.03 eb at
Z =70 and in the actinides. Indeed, e, and e, /e seem
to oscillate rather regularly across each shell, peaking
close to magic numbers and minimizing near midshell.
We have shown that effective charges in valence models
play a fundamentally different role than in traditional ap-
proaches, namely, as (proportional to) the derivatives of
“collectivity” [measured by M(E2:2;" —0,") values] with
changes in the valence proton or neutron number. We

stress here that these effective charges are defined only by
references to the specific isotopic chains for which they
were extracted. Different effective charges will, in gen-
eral, be obtained for isotonic or other sequences, even in-
volving the same nuclei, because the growth of collectivi-
ty may not be isotropic in the N-Z plane, but can depend
on the direction in which a series of nuclei cuts across
this plane. In complex regions of rapid structural
change, e_ and e, may be very dependent on the nuclei
inspected, whereas in regions of stable structure such as
in the Pd region, e, and e,, seem to be less sensitive to the
specific chain of nuclei. The thorough study of various
sequences will allow one to map the proton and neutron
dependence of collectivity in arbitrary directions in the
N-Z plane; this is the subject of an on-going study and is
well beyond the scope of the present work.

An analysis in terms of the “derivative” concept allows
one to disentangle the respective roles of protons and
neutrons in the growth of collectivity. In analyzing the
enhanced e, and e, /e, values in several regions of the
nuclear chart, we have shown that these variations are
due mainly (but not only) to the p-n interaction depen-
dence on nucleon number. In the Z=56 region, the
whg,,-vh,,,, interaction causes the Z =64 shell to
“disappear.” This in turn is reflected in enhanced e,
values and points to a dual role for neutrons in this re-
gion: In addition to contributing to the buildup of
valence nucleons (and N,N,), they also alter the proton
space, contributing to an effective increase in valence pro-
ton number. A similar interpretation applies in the
A =100 region and, perhaps, points to an analogous,
heretofore undetected, modulation of proton shell struc-
ture in the preactinide transitional region as well. As
more nucleons are added, the p-n interaction saturates
and e, becomes very small, reflecting the fact that
M(E2:2}" —0;{) values become almost constant near
midshell, where additional neutrons, in orbits with small
quadrupole moments and poor overlap with many of the
filled proton orbits, contribute little to further enhance-
ment of collectivity.
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