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Possible existence of a bound state in zLi
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The possible existence of a bound zLi state is investigated within the frame of the microscopic
a+ "2Ã'+X cluster model by employing an effective X-N interaction which reproduces the experimen-

tal binding energy and width of +He. %e found one bound state of zLi with about a 1.2 MeV binding en-

ergy and about a 5.4 MeU width, which is composed mainly of [6Li(g.s. }CsIXO] and [ He(g. s. )gX+]
configurations. It is emphasized that the (tz tz)(sN. sq) term of X-N interaction plays an important role
to produce the bound state. If the bound state is observed in a strangeness exchange reaction such as a
Li(K, ~ )zLi experiment, we can get direct information on the (tN tz) (s& sz) term of X-N interac-

tion.

PACS number(s): 21.80.+a, 14.20.Jn, 21.60.Gx

I. INTRODUCTION

One of the open problems in X hypernuclear physics is
why the conversion and escaping widths of X hypernuclei
are so small in spite of the fact that (1) the X particle in
nuclear matter is immediately converted to a A particle
because of the strong interaction and (2) the X hypernu-
clear states observed at CERN [1] and BNL [2] are em-
bedded in the continuum region [3-5]. This problem has
attracted much theoretical interest [6—11]. However, it
still remains unsolved. The presence of the X escaping
process makes the width problem more complicated. If
X hypernuclear bound states, in particular, the ground
state, are observed, we can know directly the conversion
width from the experimental data because of no escaping
width. Therefore, it is extremely important to search for
bound X-hypernuclear states.

Recently, Hayano et al. [12] succeeded in observing
the bound X-hypernuclear state of @He for the first time
through the (stopped K, m ) experiment on a target of
He at KEK. The experimental binding energy

(Bx+ =3.2 MeV) and width (I =4.6+0.5+i 3 MeV) of
&He have provided us with important information on the
sigma (X)-nucleon (N) interaction. The four-body
IiINXX model [13]and the [ H+X+]+ [ He+2 ] model
[14,15] were applied to the study of the structure of @He
on the basis of the Nijmegen model D potential [16].
They showed that the bound @He state is an almost pure
isospin I=—,

' state refIecting the strong repulsive so-called
Lane potential between the X particle and nuclear core.
We pointed out [15] that (1) the Lane potential comes
from the constructive contribution from the (tz.tx) and
(tN tx)(sz sx) terms of X Iil interaction, and -that (2) the
contribution from the (tz tx)(sz sx) term to the Lane
potential is about twice as large as that from the (t& tx)
term.

It is an interesting problem to see whether bound states
and /or quasibound states could exist in other light X hy-
pernuclei by using the effective X-N interaction which
reproduces the experimental data of xHe [15]. In this pa-
per, we investigate the possible existence of bound states
in the &Li hypernucleus and clarify their binding mecha-
nism. The low-lying states of the A =6 body nuclear
core ( He- Li- Be) of xLi have two spin-isospin groups,
(s, t)=(1,0) and (0,1), whose states are known approxi-
mately to form a supermultiplet. The different charge
states which are composed of X particles (X+, X, X )

and the corresponding supermultiplet of the A =6 body
nuclear system are coupled by the isospin-dependent
(t~ tx) and isospin-spin-dependent (tN tx)(sz sx) terms
of X-N interaction. It is interesting to see what kinds of
coupling mechanisms are actually realized in the &Li hy-
pernucleus. Since the low-lying structure of the A =6
body nuclear system is known to be described nicely by
the microscopic a+ "2N" cluster model, the structure of
zLi is studied with use of the microscopic a+ "2N"+2
cluster model. As the effective X-N interaction, we em-
ploy the YNG-D interaction [17] constructed on the
basis of the G-matrix calculation for the Nijmegen model
D potential [16]. This effective interaction is adjusted to
reproduce the experimental binding energy and width of
&He by performing the structure analysis using the
[ H+X+]+[ He+2 ] model [15].

In Sec. II, the microscopic a+ "2N"+2 cluster model
is formulated. The results and discussion are given in Sec.
III. Finally, we present conclusions in Sec. IV.

II. FORMULATION

A. Microscopic a+ "2N*'+X cluster model for XLi

The low-lying states of the A =6 body nuclear system
(6He- Li- Be) could be classified into two groups,
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(s, t ) =(1,0) and (0,1), where s and t denote the total spin
and isospin of the A =6 body nuclear system, respective-
ly. Since the X particle has three charge states (tz =1),
we consider the following four basic charge states with
the same charge for a xLi hypernuclear state: (1)
[ He(s=O, t= 1)X+], (2) [ Li(s=0, t= 1)@X ], (3)

I

[68e(s=0, t=1)SX ], and (4) [ Li(s=1, t=O)X ].
Within the frame of the microscopic a+ "2N"+2

cluster model, the total wave function of a zLi state with
the total angular momentum J and the total isospin z-
component T, =0 is expressed as

+J(zLi)= g w, (d, D){i%i, , (d))lyz(R;D)[Y~(R )sx] tz —m ) jz,
c,d, D

c =((I,s), (i., sx =
—,');J(t, t~ =1),m ),

(2.1)

(2.2)

where w, (d, D) is an expansion coefficient and c denotes
a channel of the basic charge state and the angular
momentum coupling. The (a+ "2N")—X relative wave
function is expanded into the Gaussian wave packet

I

tor basis with principal quantum number N&2 due to
the antisymmetrization.

The total Hamiltonian of the a+ "2N"+2 system is
given by

yz(R;D)=4m(nba )
i exp[ (R2+—D )/2b„]

X 4q(RD /bR ), (2.3)

H H„2~—+ TR + Vx~+ Vc,„i+(bM )..
6 6

Vq~= g ux~(X, n), Vc,„,= g Uc,„,(X,n),

(2.5)

(2.6)
n=1 n=1

where k is the relative orbital angular momentum refer-
ring to the relative coordinate R between the X particle
and the center-of-mass of the a+ "2N" part, and sz and
tx ( —m) represent the spin and isospin (isospin z com-
ponent) of the X particle. The generator coordinate D in
Eq. (2.3) denotes the distance between the a+ "2N" and
X parts, and 8z(z) is the spherical Bessel function with an
imaginary argument. The size parameter b„ is chosen to
give the same harmonic oscillator frequency 0 as for nu-
cleons. For the a+ "2N" part, we employ the generator
coordinate basic wave function 4|,J., (d) which is given
by

@t»,~ (d) =&4!2!/6!A'[P $2&(s; tm )qrI(r;d ) YI(r ) Ii,
(2.4)

where j and I denote, respectively, the total angular
momentum and the relative orbital angular momentum
referring to the relative coordinate r between the a and
"2N" clusters. P and Pz~(s;tm ) represent the intrinsic
wave functions of a and "2N" clusters with the harmon-
ic oscillator (Os ) and (Os ) configurations, respectively.
The operator A' in Eq. (2.4) antisymmetrizes the nu-
cleons belonging to different clusters. The generator
coordinate d in the Gaussian wave packet &pI(r;d ) in Eq.
(2.4) denotes the a —"2N" distance. Here, we note that
the wave function yi(r;d ) has only the harmonic oscilla-

I

where H 2z, Ttt, and Vxz ( Vc,„l) represent the Hamil-
tonian of the a+ "2N" part, the relative kinetic energy
between the X particle and the center of mass of the
a+ "2N" part of the X Nstrong -(Coulomb) interactions,
respectively. The mass difference matrix (hM), , in Eq.
(2.5) is diagonal and is given as follows:

b M =M(X+ )
—M(X )+M( He) —M( Li) =0.96 MeV

for the He(s =0, t =1)+X+ channel,

AM=M( Li(0+))—M( Li)=3.56 MeV

for the Li(s =0, t =1)+X channel,

6M=M(X )
—M(X )+M( Be)—M( Li)=8.66 MeV

for the 6Be(s =0, t =1)+X channel, and

AM=0. O MeV

for the Li(s = 1, t =0)+X channel. Here M(X* )
denote the masses of X particles, and M( He), M( Li),
M( Be), and M( Li(0+)) express the masses of the
ground states of He, Li, and Be and of the Li(0+;3.56
MeV) state, respectively.

The equation of motion for the a+ "2N"+X system is
derived from the variational principle and given as the
coupled-channel secular equation for the expansion
coefficient w, (d, D):

[6, , [Np, J i (d„d2)T~ (D„D~)+Ht, &, (d, , d2)Ng (D, ,D2)+(EJ —(bM), , )Np, J, (d, , d2)Ng (D, ,D~)]
c2d2D2

+UJ (c&d, D»c2d2D2)Iw, (d»D2) —0, (2.7)

Ht jt ("& "2)=(+t»t(di)IH~ —2NI~'tp(dp)),

Npp (di, d2)=(@t„,(di)l@i„,(d2)),

T~ (D, ,D2 ) = (y~(R;D, ) l T„ly~(R;D~ ) ),
Nq (D, ,D2) = (g&q(R;D, )ling(R;D2) ),

(2.g)

(2.9)

(2.10)

(2.11)
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UJ (C 1d, D„'c2d2D2 )

=([4&,1, (d&)q& (R;DI )[Y& (P)sz]J. tx —m&]&~V»~[@t, J, (dz)p& (R;D2)[Y~ (P)sz]J tz —m2]z) .

(2.12}

The X-nucleus potential given in Eq. (2.12) is complex quantity since the X Nin-teraction has the imaginary part which
simulates the XN~AN conversion process as shown in Sec. II B. It is noted that the presence of the isospin-dependent
terms in X-N interaction causes the coupling among the difFerent basic charge states.

The basic wave function 4&, , (d) given in Eq. (2.4) can be expanded in terms of the normalized-antisymmetrized har-
monic oscillator basis 4&,z', (n);

C'ajar(d) = g "{/pttant(d&br )I'tsgi ("} (2.13)

a„I(d,b„)=,
&z

(V'v/2d) "+'exp ——d
&Z~'"( —1)" 2~+1 V

[1 (n + I +3/2)1 (n + 1)]
'

4g~(n)= 4!2!/6!A'[P P,tv(st)u„, (r)Y,(t)]J,1

Ptt

(2.14)

(2.15)

where u„,(r) is the harmonic oscillator wave function with size b„and quanta N=2n+ I, and p~ denotes the normaliza-
tion factor. Then, the Hamiltonian and norm kernels of the a+ "2N" nuclear system defined in Eqs. (2.8) and (2.9) are,
respectively, expressed as

~(„,'"(d(,d2)= g QI tv, t tt, a. , g(d(, b, )a.,t(d2, b, )(@g,,'((n) }l~. 2ttlc (,J', «2)),
n&, n2

(2.16)

NI,J., (d „dz ) = Q IJ tea 1(d i, b„)a I (d 2 b ) ~ (2.17)

The Hamiltonian kernel in Eq. (2.16) is calculated with use of the OCM (orthogonality condition model) [18,19] approx-
imation:

&O'I)i(&i)IH 2nrIC'Ig~«2—}&~&&.
, lsjtl~~ 2tvl&. ,Isjt)-. (2.18)

Here, the OCM effective Hamiltonian H z& consists of the relative kinetic energy and the central, spin-orbit, and
Coulomb potentials between the a and "2N" clusters,

H zz= T„+Vc(r)+ VLs(r)+ Vc,„t(r) .

Vc(r) = Vcexp[ (r/Pc) ]-,
VLs(r) VLsexp[ (r /13Ls }'](~.s}

and, for Vc,„&(r), the direct Coulomb potential is employed as

Z(Z2e
erf( r /b, ), b, =Q ,' btt, —Vc.g(&) =

For Vc(r) and VLs(r), range-1 Gaussian effective potentials are used,

(2.19)

(2.20)

(2.21)

(2.22)

where Z, =2 for a and Z2 is the number of protons in the "2S"cluster and bz denotes the nucleon size parameter.
For later discussions, it is useful to define the X-particle reduced-width amplitude for the Vz(zLi) state as

P(~, '")~= J'(R)=R ([41~; (A =6)[Yq(R )sx]J tz —m]J~VJ(zLi}), (2.23)

where @&,., ( A =6) denotes the A =6 body nuclear wave
function obtained by the a+ "2N" OCM calculation
with the Hamiltonian given in Eq. (2.19).

YNG-D X-N interaction with the three-range Gaussian
form is a complex quantity and the imaginary part simu-
lates the conversion process XN ~AN:

B. X-N interaction

As the effective X-N interaction, we use the YNG-D
interaction [17] derived from the G-matrix calculation
based on the Nijmegen model D potential [16]. The

"»("}='»("~"+)+v»("~"+)( &' &)

+vz~(r;k~)(sz. sz)+vzz(r;k~)(t~. tz)(s~ sz) .

(2.24)
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TABLE I. Parameters of the central and spin-orbit potentials
between the alpha and "2N" clusters.

(1,0)
(0,1)

~c
(MeV)

—74.2
—66.7

Pc
(fm)

2.236
2.236

~zs0

(MeV)

—7.0

Pis
(fm)

1.826

In the present study, we assume that the nuclear Fermi
momentum kF is an adjustable parameter since it may
not make sense to use the local density approximation
seriously in light systems such as a &Li hypernucleus.
The value of kF is determined so as to reproduce the ex-

perimental binding energy and width of @He [12] by per-
forming the structure analysis within the frame of the

[ H+X+]+[ He+X ] model [15]. According to Ref.
[15], we set kF=0. 86 fm ' which gives the calculated
binding energy (Bz"=3.2 MeV vs Bz"I' =3.2 MeV) and
width (I'"'=7.8 MeV vs I'"~=4.6+0.5+I&, MeV) of
4~He.

For later discussions, it is useful to give the sum of X-N
interaction defined in Eq. (2.6) as

study of the p-shell A hypernuclei within the frame of the
microscopic cluster model [20]. For the potential param-
eters defined in Eqs. (2.20) and (2.21), we use the parame-

ter values so as to reproduce the experimental energy
spectra of the A =6 body nuclear system [21]. (See Table
1.)

Figure 1 shows the calculated energy spectra of the
A =6 body nuclear system in comparison with the exper-
imental 3 =6 isobar diagram [22]: j =1+ (1=0, s= 1,
t =0), ' =3+—2+ —1+ (1=2, s =1, t =0), j =0+
(1=0, s=O, t=1), and j"=2+ (1=2, s=O, t=l) for

Li; j =0+ (1=0, s =0, t =1) and j =2+ (1=2,
s =0, t = 1) for He and Be. The calculated results are
in good agreement with the experimental data for the

(s, t) =(1,0) and (s, t) =(0, 1) states.
The following model space is used to obtain the

eigenenergy and eigen-wave-function of zLi.

(1) The charge bases:

[ Heg X+] with (t, s) t =(0,0)01 and (2,0)zl,

[ LiX ] with (t, s) t =(0,0)01 and (2,0)21,

[ BetgIX ] with (I,s) t=(0,0)01 and (2,0)21,

n=1
e

Sz= g uzi(X, n)s„,
n=1

6

Y~= g u~~(X, n }t„s„,
n=1

where yz is defined as t&sz.

n=1

Vztt
——1+( T~'z)+ (S~ sz)+ ( Y~ yz),

6 6
1= g uzN(X, n), T~= g uz~(X, n)t„,

(2.25)

(2.26)

[ LiX ] with (t,s)jt =(0, 1)&0 and (2, 1)& 2 &0 .

(2) The GCM mesh points for the a+ "2N" part:

d=1.2, 2.4, 3.6, 4. 8, 6.0 fm .

(3) The GCM mesh points for the (a+ "2N")—X part:

D=0.5, 1.3, 2. 1, 2.9, 3.7, 4.5, 5.2, 6.0, 6.8, 7.6 .

(4) The relative orbital angular momentum referring to
the (a+ "2N" )

—X part: A, =0,2.

C. Model space

For the a+ "2N" part, we use the following model
space: (1) the a —"2N" orbital angular momentum
1=0,2, (2) the GCM mesh points d =1.2, 2.4, 3.6, 4.8,
6.0 fm, and (3) the number of node for the harmonic os-

cillator basis when making the OCM approximation
n=0, 1, . . . , 9. This model space is enough to describe
the low-lying structure of the A =6 body nuclear system.
The nucleon size parameter b~ is chosen to be 1.358 fm.
This value has been employed in the systematic structure

It should be noted that the model space for the a+ "2N"

part is the same as that employed in the case of the A =6
body nuclear system as mentioned above. The present
model space is considered to be enough to describe low-

lying states of zLi.

III. RESULTS AND DISCUSSION

Adding X particles (X+, X, and X ) to the isobar-

diagram of the A =6 body nuclear system (Fig. 2(a}

[22]) and taking into account the mass differences among

6- 2

MeV
i4

He 6L 6Be 'He
(2')

Li 'Be
-6

4

2

p+ 2'

0+
3+

p+

p+

2'2'

0+
3+

(2')

0+
"4 FIG. 1. Calculated energy spectra of the

A =6 body nuclear system together with the

experimental data [22].

0-
Exp.

-0
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FIG. 2. (a) Isobar-diagram of the A =6
body nuclear system [22], and (b) various X
particle decay thresholds for zLi.

0- p

X particles, the mass difference between proton and neu-
tron, and the Coulomb energy differences among nuclear
cores, we get the X-particle decay thresholds of the zLi
hypernucleus as shown in Fig. 2(b). It should be noted
that the drastic change from Fig. 2(a) to Fig. 2(b) is main-
ly due to the mass differences among X+ (1189.4 MeV),
X (1192.5 MeV) and X (1197.3 MeV). The threshold
energy difference between the He(0,+ ) +X+ and
Li(1,+)+X channels is only about 0.96 MeV, while the

energy difference between the He(0,+) and Li(1,+) states
is about 4.1 MeV.

If eigenstates of zLi appear below the Li(1,+)+X
threshold, they become bound states. After diagonaliza-
tion of the many coupled-channel equations given in Eq.
(2.7), we found only one bound state with J =

—,
'+ which

corresponds to the ground state of &Li. Other higher J
states have not been obtained as bound states in the
present calculation. The calculated binding energy of the
bound J =

—,
'+ state is 8 0 =1.2 MeV, which is measured

from the Li(1&+)+X threshold, and the calculated con-
version width is I =5.4 MeV. Note that both the calcu-
lated binding energy and conversion width of zLi are
smaller than those of @He (8 z'~ =3.2 MeV and
I""'=7.8 MeV). The obtained wave function is ex-
pressed as

the coupling among the four configurations which are
caused by the isospin-dependent operator (T)v tz) and
spin-isospin-dependent operator (Y)v yz) of the X-N in-
teractions defined in Eq. (2.26). Note that the Wigner
and spin-spin terms of X-N interactions contribute only
to the X-nucleus folding potential for each configuration.
The operator (Y)v yz) makes the [ Li(1&+)X ]
configuration (s=l, t=O) couple with the s=O, t=l
configurations [ He(0&+)SX+] and [ Be(0&+)gX ], since
the (Y)v yz) has the role of fiipping simultaneously the
nuclear-core isospin and spin by 1. On the other hand,
the operator (T)v tz) constructs the Lane potential which
couples the [ He(0&+)X+], [ Li(0,+)g X ], and
[ Be(0&+)X ] configurations with the nuclear-core iso-
spin t =1, since the (T)v tz) has the role of fiipping only
the nuclear-core isospin by 1 with no change of the
nuclear-core spin. It should be noted that there is no
coupling between the [ Li( 1 &+ ) X+ ] and [ Li(0,+ )g X ]
configurations because of the characteristic of the
(Y)v yz) and (T)v tz) operators. If the coupling strength
is enough larger than the energy differences among the
four channels, we expect to get supermultiplet states
(spin-isospin good quantum number states) of zLi which
consist of the four charge states.

Figure 4 shows the X-nucleus folding and coupling po-

%(~Li)=v'0. 66[ Li(1,+)II X (s, q2 )]

+&0.27[ He(0(+)X+(s, ~~)]+ (3.1a) (a)
=v 0. 11~I=0)+&0.83~I=1)+v 0.06II=2) .

(3.1b)

The bound state shows the mixed charge state with about
83% of the total isospin I=1 component (I=t+tz).
This is in contrast with the fact that the bound @He state
is an almost pure isospin- —,

' state (about 99%).
The reason why such a bound &Li state appears is

given as follows: In the relevant state, it is instructive ta
illustrate the four charge states, [ He(0,+ )g X+ ],
[ Li(1&+)X ], [ Li(0+, )X ], and [ Be(0& )SX ], since
they play an important role in producing the bound state
as shown below. Figure 3(a) demonstrates the aspect of

Oe(O, ).Z

6L.

r
6 + +

He (0, ) + E,&(~

(Y~ F~)

(T t~) st

lt
Ig0lg

(0, )+E,' &

I
~ (Y~ X~)I

~ t )

II

3 0
He+ E

(T~. t~), '
(Y&.y& j

6, +Li(1, )+E H+Z

FIG. 3. (a) Couplings among [ He(0, )@X+],[ Li(1,+)X ],
[ Li(0,+)X ], and [ Be(0,+)X ] channels in zLi. (b) Cou-
pling between [ H X ] and [ HecsI X ] channels in @He.
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tions as shown in Fig. 3(b). Such a situation does not hold
in the &Li case. It holds only in the special case that the
spin and isospin of the nuclear core are —,

' and —,
' [15].

The calculated conversion width (-5.4 MeV) of the
&Li bound state is much smaller than the conversion
width (20—30 MeV) in free space [3] and is smaller than
the calculated width of @He (-7.8 MeV). Yamamoto
and Bando [17] pointed out that the conversion width in
nuclear matter becomes as small as about 10 MeV due to
the effect of the Pauli principle. The reason why the con-
version width of &Li and &He is smaller than that in nu-
clear matter is attributed to the fact that the zLi and &He
hypernuclei are finite nuclear systems. As is well known,
the width in the first-order perturbation theory is given as
the integration of the overlap between the X-nucleus
imaginary potential and the squared X-nucleus relative
wave function. When the binding energy of X particle is
smaller (larger), the X-nucleus relative wave function has
a longer (shorter) tail. Therefore, the smaller (larger)
binding energy of the X particle gives the smaller (larger)
conversion width. This is a general characteristic in X
hypernuclei. In Fig. 5, we show the squared reduced
width amplitudes for the Li(1,+ )+X (s, zz ) and
He(0,+)+X+(s,zz) channels, and the respective X-

nucleus imaginary potentials. Both the reduced width
amplitudes have long tails. This is due to the fact that
the binding energy is as small as about 1.2 MeV and the
X-nucleus real potentials have the repulsive part in the
inner region (R (1.0 fm) and the long attractive part in
the outer region (R ) 1.0 fm) (see Fig. 4). As a result, the
conversion width of &Li becomes as small as about 5.4
MeV. On the other hand, the calculated binding energy
of zLi (B 0=1.2 MeV) is smaller than that of @He

(B + = 3.2 MeV). This means that the X-nucleus relative
X

wave function of the zLi bound state has a longer tail
than that for @He. Therefore, the calculated width of zLi
is smaller than that of @He.

In order to see the relation between the binding ener-

gies of zLi and @He, we show in Fig. 6 the dependence of
the nuclear Fermi momentum kF of the YNG-D X-N in-

teraction [see Eq. (2.24)] on the binding energies of zLi
and +He. When the value of kF is taken from 0.8 to 1.0

/

'~
\

'I

\

r ~j
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ + ~ ~

I I ~ W» ~eS0
Nl

D R(fm)

-2-

-4

FIG. 4. The solid and dotted lines show the X-nucleus fold-
ing potentials (including Coulomb potential) for Li(1,+)+X
and He(0,+ )+X+ channels, respectively. The dashed [dash-
dotted] line represents the coupling potential between
Li(l&+)+X and He(0&+)+X+ [ He(0,+)+X+ and
Li(0&+)+X ] channels.

E
0.2-

0.0

(bj-80-
'() ))'

FIG. 5. (a) Squared reduced width amplitudes for
Li(1,+)+X (solid line) and He(0,+)+X+ (dotted line) channels

in the bound zLi state, and (b) respective X-nucleus imaginary
potentials.

tentials. The folding potentials for the He(0,+ )+X+ and
Li(1,+)+X channels have a repulsive part in the inner

region (R (1.0 fm) and a shallow attractive part in the
outer region (R ) 1.0 fm). The situation is almost the
same in the case of the Li(0,+)+X and Be(0,+)+X
channels. Therefore, each eigenstate with no channel
coupling appears around each threshold. On the other
hand, as shown in Fig. 4, the coupling potential between
the Li(1,+ )+X and He(0|+ )+X+ channels is very
large. Its value amounts to about 4 MeV at R =2.0 fm.
The 4-MeV coupling strength is much larger than the en-
ergy difference ( —1 MeV) between each eigenstate.
Therefore, the two channels are coupled strongly to pro-
duce the bound state. The Be(0,+ ) +X and
Li(1,+)+X channels are hardly coupled strongly be-

cause of the large energy difference between them (-9
MeV). In Fig. 4, the coupling potential between the
He(0,+)+X+ and Li(0,+)+X channels which corre-

sponds to the Lane potential is also shown. Its strength
is relatively small in comparison with the energy
difference between the two channels. The situation is al-
most the same as that in the case of the Li(0,+ )+X and
Be(0,+)+X channels. Therefore, the He(0,+)+X+,
Li(0&+)+X and Be(0,+)+X channels with the

nuclear-core isospin t =1 are not strongly coupled with
each other. After all, the two channels He(0,+)+X+
and Li(1,+)+X are coupled strongly to produce one
bound state with B o=1.2 MeV which does not corre-

X

spond to a pure X-hypernuclear supermultiplet state.
This is a different characteristic from the case of the +He
bound state with almost pure isospin —, (-99%)which is

produced by the strong coupling between the H+X+
and He+2 channels [13—15]. As emphasized in Ref.
[15), the strong coupling comes from the cooperative role
of the isospin-dependent operator (Tz.tz) and spin-
isospin dependent operator (Yz.yz) of the X Ninterac--
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2
configurations in the present calculation. This is due to
the fact that the relative angular momentum between the
nuclear core and X particle is A, =2.

IV. CONCLUSION
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FIG. 6. Dependence of the nuclear Fermi momentum kF for
the YNG-D X-N interaction on the binding energies of zLi and
4~He.

fm ', the binding energy of zLi (+He) changes from 1.8
(4.0) to 0.4 (1.9) MeV and the conversion width of zLi
(@He) changes from 6.4 (8.7) to 3.6 (5.9) MeV. It should
be noted that the analysis of the light A hypernuclei with
use of the YNG A-N interaction suggests a reasonable
value of kF from 0.8 to 1.0 fm ' [17]. Therefore, even if
we take into account both the uncertainty of the effective
X-N interaction and the experimental error of the &He
binding energy, our result that there appears one bound
state of zLi with no large width does not change serious-
ly.

In the present calculation, we did not find the bound
J =—', + state which consists of the [ Li(1&+ ) X ]
(s=l, t=0) and [ He(0&+)X+] (s=O, t=1)
configurations. The reason is given as follows: In the case
of no channel coupling, the calculated eigenstate of
[ Li(1&+)X ]J 3 + appears at E 0 (= B,)=1 Me—V.
It should be reminded that the [ Li(1&+)gX0], +

state appears at E 0 =0 MeV. The energy difference is

due to the repulsive character of the spin-spin term of X-
N interaction which works for the channel with the nu-
clear core spin s=1. Concerning the [ He(0&+)X+]
channel, the calculated energy for the J =

—,
' state is

E 0 =5 MeV, while that for the J =
—,
' state is E 0 = 1

MeV. The large energy difference comes from the fact
that the relative orbital angular momentum between
He(0~+ ) and X+ is mainly A, =O and 2 in the J =

—,
'+ and

states, respectively. Owing to the same reason, the
coupling matrix element between the [ Li(1,+)SX ] and

[ He(0,+)X+] channels in the J =
—,
'+ state becomes

smaller than that in the J"=
—,
' + state. When the

[ Li(l,+)eX ) + and [ He(0&+)SX+] + chan-
nels are coupled, the energy gain should not be larger
than that in the case ofJ =

—,
' +. As a result, there do not

appear bound J =
—,
'+ states with the [ Li(1&+)X ] and

[ He(0,+)X+] configurations. On the other hand, we
did not find the bound J =

—,
' + state with the

[ Li(1+)X (d5/p 3/2)] and [ He(0+)SX (d5/2)]

The possible existence of bound zLi states was investi-
gated within the frame of the microscopic a + "2N"+X
cluster model by employing the effective X-N interaction
which reproduces the experimental binding energy and
width of &He. %e found the plausible &Li bound state
with B 0 = 1 .2 MeV and I =5.4 MeV. The width comes

only from the conversion process XN ~AN because of
the bound state. The bound state shows the mixed
charge states with about 83% of total isospin I= 1, which
consists of the [ Li(1&+)SX ] and [ He(0,+)X+]
configurations. This is in contrast with the fact that the
&He bound state is an almost pure isospin I=

—,
' state.

The reason why such a bound state appears in zLi is
summarized as follows: Each eigenstate with no channel
coupling appears around each threshold rejecting the
characteristic of the weak attraction of each X-nucleus
folding potential. The coupling potential between the
[ Li(1,+)SX ] and [ He(0&+)8X+] states comes only
from the (tz t&)(sz sz) term of X Ninteract-ion since the
(t~.tz)(s~ sx) term plays a role of coupling between the
state with nuclear-core spin s = 1 and isospin t =0
[ Li(1,+)] and the state with s=0 and t =1 [ He(0&+)].
The coupling strength is much larger than the energy
difference (about 1 MeV) between the [ Li(1~+)X ] and

[ He(0&+)8 X+) states. Therefore, the two states are cou-
pled strongly to produce the bound state. On the other
hand, the Lane potential which couples only the state
with the nuclear-core isospin t = 1 comes only from the
( tz.tz ) term of X-N interaction. The strength of the
Lane potential is relatively smaller than the energy
differences among the [ He X+ ], [ Li X ], and
[ Be X ] states with the nuclear-core isospin t = l.
Therefore, the three states are not coupled strongly.
After all, the zLi bound state, which is composed of the
[ Li(1,+)X ] and [ He(0,+)X+] configurations, ap-
pears mainly due to the (tz tx)(sz sx) term of the XN-
interaction. It should be reminded that the @He hypernu-
cleus is bound mainly due to the cooperative role of the
(tz tx) and (tz tx)(sz sz) term of the X-N interaction.
The different binding mechanism between the zLi and
&He hypernuclei comes from the different nuclear-core
spin and isospin of the respective X hypernuclei
[(s,t)=(0, 1),(1,0) for He- Li- Be and (s, t)=( —,', —,') for
H- He].

In conclusion, we have shown the possibility of a
bound &Li state which is produced mainly by the
(tz-tz)(sz. s~) term of X Ninteraction. If t-he X hyper-
nucleus is observed, we can get direct information on the
(tz. tx)(s~ sz) term of X Ninteraction from -the binding
energy of &Li. Therefore, it is highly desired that a hy-
pernuclear production experiment such as a
~Li(K, ~ )zLi reaction will be performed to study the
possible existence of the bound zLi hypernucleus.
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