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Test of photon strength functions by a method of two-step cascades
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The applicability of sum-coincidence measurements of two-step cascade p-ray spectra for the
determination of photon strength functions is discussed. The method is sensitive, not only to primary
transitions, but also to secondary transitions proceeding from states of intermediate excitation. An
experiment based on thermal neutron capture in a Nd target was undertaken at the Brookhaven
National Laboratory High Flux Beam Reactor to test various hypotheses of E1 and Ml photon
strength function in the ' Nd nucleus. The results were compared to a series of model calculations,
in which the back-shifted Fermi gas model is used to represent the level density. Models derived
from the Fermi theory of liquids are strongly preferred.

PACS numbers: 25.40.Lw, 27.60.+j, 21.10.Pc

I. INTRODUCTION

Giant dipole resonances, observed since 1947 in the
cross section of photonuclear reactions [1], have been ex-
plained as dipole vibrations of proton and neutron liquids
in the nucleus [2]. The intuitive concept of the indepen-
dence of this collective motion from intrinsic nuclear ex-
citations results in the important consequence that giant
resonances built on the ground state as well as those built
on any excited state have the same size and shape. This
assumption, first stated by Brink [3] in 1955, is called
Brink's hypothesis.

Using Brink's hypothesis and assuming the principle of
detailed balance, one can find a relationship between the
smoothed El part of the photoexcitation cross section
and the average value of partial radiation widths for the
inverse process of the El photodeexcitation [4]. Let us
designate the smoothed El part of the photoabsorption
cross section at the p-ray energy E~ as o @i(E~), and the
average partial radiation width of El transitions from
states with spin and parity J and energy E to a state
J' at energy E' = E —E~ as I'~(J E —+ J' E'). The
relationship can then be written in the following form:

1 1 I'~(J"E ~ J' E') p(J, E)
(h) E ( ) E

Sgi(E )

Here p(J,E) is the density of levels with spin and parity
J at energy E. The right-hand side of Eq. (1) is identi-
cal with what is usually called the El strength function
S@i(E~). In Eq. (1) it is assumed that SFi(E~) is inde-
pendent of spin.

The other components of the photoabsorption cross
section, corresponding to other types and multipolarities

of the electromagnetic radiation, can be subjected to a
quite similar procedure and, as a consequence, we can
define the photon strength function Sxr, (E~) for the ra-
diation of type X and multipolarity 1. Conventionally,
in the general case, the factor E + occurs in the de-

nominator of the definition of Sxr, (E~) instead of E~s.
A consequence of Brink's hypothesis is that the photon

strength function defined above for photodeexcitation is
independent of the properties of the final state, and is a
function only of the variable E~. It is in this sense that we
refer to models which depend on properties of both final
and initial states in a deexcitation as those inconsistent
with Brink's hypothesis.

Most data on photoabsorption cross sections support
a Lorentzian shape for the El strength function. Such
a shape follows from simple semiclassical models. How-

ever, radiation widths of neutron resonances for transi-
tions to low-lying states are overestimated typically by a
factor of three in this model [3]. Therefore, the simple
Lorentzian shape of the giant dipole resonance (GDR)
may be inadequate at energies close to the neutron bind-

ing energy and, consequently, more complex models have
been proposed. Dover, Lemmer, and Hahn [5] pointed
out that the damping width of the Lorentzian must be
dependent on excitation energy. McCullagh, Stelts, and
Chrien [6] achieved better agreement with experimen-
tal data for electric dipole transitions using an energy-
dependent damping width.

Up to now, a great deal of information on the E1
strength function at energies close to the neutron bind-

ing energy has been accumulated from thermal and res-
onance neutron experiments [4]. Most of the strength
function data obtained by an application of Brink's hy-
pothesis have been for "hard" p rays. Relatively little
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information has been available for "soft" p rays follow-
ing capture. However, information on n-particle spectra
from thermal [7] and resonant capture [8] of neutrons has
been interpreted to indicate a sizable soft primary pho-
ton strength from the (n, ap) reaction. This result is not
consistent with a literal application of Brink s hypoth-
esis, since in any of the above formulations with fixed
or energy-dependent damping widths, the electric dipole
strength function approaches zero as the photon energy
approaches zero.

Kadmenskij, Markushev, and Furman [9] recognized
that the El strength function has a nonzero limit for
E~ ~ 0, based on the analytic properties of the dipole
polarization operator. They developed a suitable approx-
imation for the low-energy limit. Starting from the Fermi
theory of liquids, they predicted that the damping width
should also depend on the temperature of the state on
which the GDR is built. S@q(E~) is modified, so that

~a~(Eg) ~~~(E~ &(E'))
Independently, Zaretski and Sirotkin [10, 11] have devel-
oped a similar formulation.

These properties imply that the strength function can-
not be written as a function of the transition energy
alone, and constitutes a major modificatio of the Brink
hypothesis.

The method of two-step cascades, proposed by
Hoogenboom [12] more than 30 years ago, has been used
to study neutron radiative capture in the past. This
method has been exploited in a series of experiments
by Popov and his collaborators [13]. In the present pa-
per we demonstrate that this method can provide indi-
rect evidence for electric and magnetic dipole transition
strengths in an intermediate excitation region, approxi-
mately midway between the capture state and the low-

lying states of a nucleus. We also show how this evidence
requires a modificatio of Brink's hypothesis. Results ob-
tained with the nuclide 4Nd are shown.

the adjusted energy sum can produce a spurious event
if the surplus energy escapes after the Compton interac-
tion. In a similar way, two p rays, this time with the
right value of the energy sum but originating from two
diferent neutron captures, can be accidentally detected
at the same time and also produce a spurious event.

In order to eliminate this background we extract coin-
cidence spectra by a special scanning procedure. Eight
rectangular regions that surround the peak correspond-
ing to a preselected final state, at which two-step cascades
terminate, are defined in the (energy-sum) x (detection-
time-difference) plane. These regions are used to provide
the background correction for the coincidence spectrum,
corresponding to a given final state. The background
correction is derived from a superposition of eight coin-
cidence spectra surrounding the region of interest. The
coincidence spectrum corrected for the background de-
termined by this procedure is called the two-step cascade
(TSC) spectrum.

The TSC spectrum consists of a great number of lines.
Among them only those corresponding to cascades pro-
ceeding via low-energy intermediate states are well sep-
arated. The others, corresponding to cascades via inter-
mediate states with higher energy (above = 3 MeV), give
rise to an unresolved quasicontinuum. This quasicon-
tinuum forms a gross structure with a maximum in the
middle of the TSC spectrum. The shape and size of this
component of the TSC spectrum carry information on
the photon strength function that governs the emission
of p rays in the deexcitation process. The TSC spectrum
for each low-energy level can be examined and a com-
parison of these spectra with those obtained in modeling
with various hypotheses of photon strength functions and
level densities makes it possible to study the behavior of
photon strength functions at intermediate energies.

B. "Parasitic" phenomena

II. THE METHOD

A. Idea

The method is based on a two-detector coincidence
measurement of p transitions following thermal neutron
capture. Each individual event in this measurement can
be characterized by amplitudes of both detector signals
and by their time di6erence. Those events for which coin-
cident detector signals correspond to a fixed energy sum
are of special interest. By selecting an energy sum equal
to the energy difFerence between the capturing state and
a low-lying state, we can study two-step cascades con-
necting the capturing state and a fixed low-lying state.
The spectrum of energies deposited in one detector for
those events in which the condition of the coincidence is
fulfilled as well as the condition on the energy sum con-
tains all transition energies involved in a two-step cascade
deexcitation process.

The coincidence spectrum inherently contains a back-
ground caused by the Compton eKect and by accidental
coincidences. Two p rays with the energy sum exceeding

Because the detectors do not distinguish between the
primary and the secondary p rays, the TSC spectra be-
have as if they came from a spectrometer whose energy
response function is characterized by two peaks placed
symmetrically with respect to the midpoint of the spec-
trum. After correction for energy-dependent detector
efficiencies the TSC spectrum displays this symmetry,
modified by the energy variation of the detector reso-
lution.

Under close scrutiny the TSC spectra are, in fact, even
more complicated than is implied by the above analysis.
Besides the two main peaks each two-step cascade gives
rise to additional small structures in the TSC spectrum.
These can be understood as follows. Consider two p rays
emitted in a cascade. The first p ray, for example, can
be detected in one of the detectors, scattered back to
the other detector and detected there together with the
second p ray. In this process the full energy of these p
rays is distributed between the two detectors so that the
condition of the energy sum is clearly fulfilled as in the
case of separate detection of two p rays in each detector.
A similar situation may occur when the energy exchange
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between detectors is not provided via backscattering but
via bremsstrahlung or annihilation p quanta.

Following the reasoning outlined above, the following

distortions, which may be termed "crosstalk, " can be cat-
egorized: (i) Compton backscattering leads to a pair of
satellite structures which accompany each main peak in

the spectrometer response function on its left- and right-
hand sides. Multiple Compton scattering results in a
broad background in a vicinity of both peaks. (ii) An

interchange of annihilation photons leads to two pairs
of satellite peaks both differing by + 511 keV from the
main peak. (iii) An annihilation photon originating in

one of detectors can undergo a Compton scattering in

this detector. This process contributes to a continuous
background between the main peak and its annihilation
satellites. (iv) A bremsstrahlung photon radiated by an
electron or positron from an interaction of a p ray in one

of the detectors can be absorbed in the second detector.
As a result, two wide satellite peaks arise near the main

peaks. These satellites are believed to be small, however,

compared to those originating from Compton scattering.

(v) Effects of higher order, in which more exchanges are
realized, are also present in the TSC spectrum. However,

the probability of a multiple exchange strongly decreases
with multiplicity because of low photon detection efB-

ciency.
Satellite structures accompany each peak in the dis-

crete part of the TSC spectrum as well as in the qua-
sicontinuum. Their contribution can be partly reduced

by an absorber placed between the detectors. We used
another method, based not on a prevention of exchange
effects, but on the determination of the size of their con-
tribution in the TSC spectra observed. The relative size
of the satellites varies smoothly with the primary pho-
ton energy and we are able to use satellites of strong and

well-separated lines for an estimate of the contribution
of exchange effects to the quasicontinuum component of
the TSC spectrum.

Because of exchange effects, the process of direct deex-
citation of the capturing state to the final state selected
also contributes to the TSC spectrum. In that case the
energy of the exchanged quantum is deposited in one de-

tector while all the remaining energy of the cascade is

deposited in the other detector. Additional backscatter,
annihilation, and bremsstrahlung structures at the begin-

ning and end of the TSC spectrum arise as a consequence.
Processes of n-step deexcitation of the capturing state

(n & 2) occur in the TSC spectrum if several photons
are detected by one detector in time coincidence. On the
one hand, the probability of the simultaneous detection
of more photons decreases with the number of photons;
on the other hand, the probability of the deexcitation by
three-step (or more) cascades may be higher than that for

two-step cascades. Therefore, the contribution of three-
step cascades in the TSC spectrum may be considerable
and must be accounted for.

The effects of "vetoing" must also be considered. Ve-

toing occurs due to a p decay of the final state selected.
When photons from a two-step (or three-step) cascade to
the final state are fully absorbed, photons from following

transitions can be simultaneously detected and eliminate

the event from the TSC spectrum by the perturbation of
the energy sum. Consequently, TSC intensities, except
those to the ground state, are reduced. This effect can
be strong even for low-lying final states. An estimate of
vetoing corrections is possible if the energy dependence
of the absolute detection eEciency is known for both de-
tectors. From the low-lying states with known branching
ratios we can calculate corrections using detection prob-
abilities for transitions between these states. In these
corrections we neglect angular correlations.

III. EXPERIMENT

A sample of natural Nd was irradiated in a beam of
thermal neutrons at the Brookhaven National Labora-
tory High Flux Beam Reactor for about 300 h. For ele-

mental neodymium, most of the thermal neutron capture
(about 80Fo ) occurs on ~4sNd to form 3 and 4 cap-
turing states in Nd.

Two face-to-face HPGe detectors with overall photo-
peak efficiency of 1.95Fo and 2.30% at 696 keV (including
the effect of solid angle) were used (Fig. 1). Digital infor-

mation on p-ray energies and detection time differences
for each individual event were accumulated on magnetic
tape. The spectrum of the energy sums reconstructed
from all accumulated events is represented in Fig. 2. As

the channel number scale of each detector is not a strictly
linear function of p-ray energy, both channel scales had
to be linearized using a simple rebinning procedure. As
a result, the spectrum of energy sums has a linear scale.
The resulting number of count in each channel of this
spectrum was additionally randomized to avoid correla-
tions between neighboring channels.

The data accumulated were later scanned off-line by
the procedure described in Sec. IIA to yield the TSC
spectra for five lowest final states in Nd: the 0+ ground
state, the 2+ state at 696 keV, the 4+ state at 1314 keV,
the 3 state at 1510 keV, and the 2+ state at 1561 keV.
The scanning procedure also incorporated linearization

FIG, 1. The geometry of the sum-coincidence measure-

ment.
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FIG. 2. The spectrum of p-ray energy sums in the two-
detector coincidence measurement with the Nd target. Peaks
corresponding to cascades feeding the five low-energy final
states are indicated with their spin, parity, and excitation
energy.

and randomization, as stated above. The linearization
turned out to be important as it ensured good energy
resolution in the formation of the energy sums in the
scanning procedure. The energy resolution in the spec-
trum of energy sums shown in Fig. 2 is 6.9 keV, full width
at half maximum (FWHM), at 7100 keV. For the TSC
spectrum a resolution of 2.8 and 4.9 keV at energies of
600 and 7100 keV, repectively, was achieved. These res-
olutions include the efFects of long-term instabilities.

The TSC spectra obtained were corrected for variation
of detector efBciencies, determined from single-spectrum
measurements with a NaC1 target using the same geom-
etry as that in coincidence measurements with the Nd
target. The p-ray intensities in the ssC1(n, p)MC1 reac-
tion were taken from Ref. [14].

A separate thermal (n, p) single-spectrum measure-
ment with a mixed Nd+Cl target made it possible to de-
termine an absolute intensity for the primary transition
to the 4+ state at 1314 keV in ~~~Nd nucleus as 7.36%.
Using this value and the fact that the decay branching
ratio of the 4+ state at 1314 keV for the transition to
the 2+ state at 696 keV is close to 100%, we establish an
absolute intensity scale for the TSC spectra.

An example of a TSC spectrum is given in Fig. 3. A
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global view of the spectrum represented in the upper part
of the figure and the lower part details a large number
of well-separated lines. In this figure, the TSC intensity
of the strongest line, corresponding to the cascade via
the 4+ intermediate state at 1314 keV, is stronger than
the mean of the other well-separated lines by a factor of
about 100, illustrating the violent Porter-Thomas fluctu-
ations of transition intensities. I'he quasicontinuum com-
ponent of the TSC spectrum, shown in the lower part of
the figure, is statistically significant and its overall inte-
grated TSC intensity is comparable to the intensities of
the strongest lines in the TSC spectrum. Undershoots
accompanying strong peaks, evident in the figure, are
well understood as an attribute of the scanning proce-
dure used (see the explanation in Ref. [15]). Figure 4
illustrates the parasitic structures described in the pre-
vious section. Although such structures are not evident
in the quasicontinuum portion of the spectrum, it is im-
portant to understand such structures to establish the
validity of the method.

The quasicontinuum part of the TSC spectra displays
large intensity fluctuations due to Porter-Thomas statis-
tics and experimental uncertainties. Because of intensity
fluctuations, a comparison of the observed TSC spectra
with those obtained in modeling must be carried out over
a reasonably wide range of integration over energy. Such
a range should include a sufficient number of transitions,
but at the same time it should not include those transi-
tions that strongly dominate the TSC spectrum. In this
case, the fluctuations cannot perturb the model compar-
isons. We integrated the TSC spectrum over an energy
interval of 2.4 MeV situated symmetrically in the middle
of the TSC spectrum. The integrated TSC intensities
could be determined with a statistical accuracy of 9.7,
2.6, 6.8, 7.2, and 12.4% for our five final states at 0, 696,
1314, 1510, and 1561 keV, respectively. Besides these
uncertainties a systematic error of about 16%, following
from the normalizing procedure, is present.

All these integrated TSC intensities were corrected for
exchange effects described in Sec. II B, using the extraor-
dinarily strong cascade to the 2+ state at 696 keV via
the 4+ state at 1314 keV, for which backscattering and
annihilation satellites in the TSC spectrum can be read-
ily recognized (Fig. 4). These corrections are relatively
small: their overall size is about 6%. Corrections for the
efFect of vetoing are represented by factors ranging from
0.73 to 1.39 (the fact that the correction can be less than
one follows from the normalization procedure). No cor-
rections were done for bremsstrahlung (Fig. 4) because
its contribution to the useful part of a TSC spectrum is
expected to be small, not higher than 2%.

Pigure 5 demonstrates the presence of three-step cas-
cades in the experimental TSC spectra. A comparison of
the intensity of the line corresponding to the thr""-step
cascade (capture state -+ 1314 keV~ 696 keV ~g.s.) in

the ground state TSC spectrum with the line correspond-
ing to the two-step cascade (capture state ~ 1314 keV
~ 696 keV) in the TSC spectrum for the 696 keV state
made it possible to determine the absolute detector effi-
ciencies. As explained above, it is important to account
for the three-step cascade components in TSC spectra.

IV. MODELING PROCEDURE

As described above the integrated TSC intensities in
the defined range of the quasicontinuum part of the spec-
trum were evaluated for five lowest final states in the
i44Nd nucleus. These intensities are expressed as number
of events, per captured neutron, in the selected interval .
In order to test various hypotheses about photon strength
functions we modeled the TSC process and compared the
resulting integrated TSC intensities with those observed
experimentally.

There are two ways to calculate expected TSC intensi-
ties. The more straightforward one is based on the Monte
Carlo method. A randomly created set of nuclear levels
and a set of all partial radiation widths for p transitions
from each level are constructed under the constraints of
the model and Porter-Thomas statistics. The branching
ratio for decay of a level 1 to a level 2 is

(2)

where r~(1 -+ 2) is the partial radiation width and r~(1)
is the total radiation width of the level 1 given by

By the generation of random two- and three-step cas-
cades with probabilities equal to the appropriate prod-
ucts of probabilities from Eq. (2), multiplied by detection
probabilities, we get a realization of the TSC spectrum
corresponding to the model selected. Varying the sets of
levels and their partial radiation widths under a given
model, we can obtain average values and the correlation
matrix of all integrated TSC intensities. This method
would make it possible to take into account all correla-
tions between integrated TSC intensities exactly. How-
ever, in the case of three-step cascades it would be rather
awkward computationally. We have chosen a simpler
method, which is in our opinion adequate, considering
the approximate character of models of photon strength
functions elaborated so far.

The main feature of this simpler method is the use of
quantities averaged over many levels. From the right-
hand side of Eq. (1), modified for transition type and
multipolarity, the average value of the total radiation
width of a state with spin and parity J at excitation
energy E can be expressed as
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where XI. are the multipolarites of transitions that can connect the state (E,J ) with the state (E', J' ). We have

taken into account XL = El, Ml, and E2 contributions only. An estimate of an average decay branching ratio of
the state J E for the transition to a state J' E' is given by the expression

P(JmE yw'EI) 7'L )
I'~(J, E)

(5)

where the average partial radiation width in the numerator is evaluated from the general XI modification of the

right-hand side of Eq. (1). Equation (5) holds as long as there is only a small dispersion in the total radiation width.

For the total probability of decays of the capturing state J, 'E, by two-step cascades via intermediate states JP'
in the infinitesimal energy interval dEq at Eq to the final state J& Ey we get

= P(J, E, ~ J~'Ey)p(JP', E&)P(JP'Eg ~ J~ Ey)dEi

and analogous decays by three-step cascades have the total probability

—P(J, 'E, ~ J('Eg)p(J) ') Eg)P(Jq'Eg ~ J2'E2)p(Js', Eg)P(Jq'Eg ~ J~ Ey)dEgdE2

(6)

In order to evaluate a TSC intensity we sum these proba-
bilities over all intermediate spins and parities accessible
by El or Ml or E2 transitions with respect to the re-
striction already described, multiply them by appropriate
detection probabilities, and integrate them over the re-
gion of excitation energies to give the contribution to the
desired part of the TSC spectrum. This integration is
simple for two-step cascades component of TSC spectra,
because only two ways of detecting two-step cascade are
possible (the primary photon to the first detector, the
secondary photon to the second detector, and the oppo-
site). Expressing for example the two-step component
of a TSC spectrum between energies zq and eq, we have
to integrate over both intervals (E, —e2, E, —eq) and

(Ey + eq, Ey + e2) of the intermediate level energy. For
three-step components of the TSC spectrum there are six
regions in the Eq x E2 plane over which integration has to
be carried out; each corresponds to one way of detection
of three photons by two detectors.

For the dispersion A~I'~(J E —+ J' E') of partial

radiation widths of the transition J E ~ J' E' the
Porter-Thomas distribution gives the relative dispersion

V. HYPOTHESES TESTED

A. Level density

exp [2a~ (E —3,) & —I(I + 1)/20.2]

(E —6+ T) 4
(10)

Here a is the single-particle level density parameter, 6 is
the backshift, T is the nuclear temperature, satisfying

E —6 = aT —T

and e is the spin cutoff parameter, given by the expres-
sion

The back-shiRed Fermi gas model in the form taken
from Dilg et al. [16] was employed in our model calcula-
tions. According to this model the density of levels with
spin I at the excitation energy E is

1 2I+ 1

24~2 osa~

A~I'~(J~E ~ J' E') =2
(JmE ~ Jlvr'EI) .2

20 =
2 )

h,

(12)

and hence the absolute dispersion of the total radiation
widths is

421'~(J,E)

where P is the nuclear moment of inertia. From Eq. (10)
the total state density of Lang and LeCoteur [17] can be
derived.

Two empirical limits of the nuclear moment of inertia

: I'~(J E ~ J' E'): p(J', E')dE'
and

g = J,';s = 0.0150A~ h MeV

J' =
2 g,;s = 0.0075A3 h MeV (14)

An estimate of dispersions of quantities given by Eqs.
(6) and (7) enables us to determine the dispersion of the
integrated TSC intensity. However, various correlations
are neglected in this method and resulting dispersions
can be regarded only as first approximations.

have been employed in our calculations. For these
two cases the parameters a and 6 were adjusted sepa-
rately using data on low-energy levels and on neutron
8-resonance spacing. We get the following results, which

are in good agreement with systematics [16]:
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(LD-a) forJ' = J,;s, a = 15.82 MeU

b, = 0.998 MeV

(LD-b) for+ =
2 g;s a = 14.58 MeV

b, = 0.968 MeV.

In a previous analysis [20] we employed another model
of the level density, represented for low energies by the
simple exponential function (constant temperature for-
mula). However, in Refs. [18] and [19], generally bet-
ter agreement of the model calculations with experimen-
tal results was obtained for the back-shifted Fermi gas
model. It should be noted that parameters a and b, dif-
fer from those used earlier [18, 19] because of a different
value used for the neutron s-resonance spacing; here it is
assumed to be 32 eV [21].

B. Photon strength functions

2. E1 rudiation

1 E„I'~
'( ~) = 3.2(nc)2" (E2 E2)2+E2I2 (15)

We have tested the following forms for El strength
functions. The comparison of these models is shown
graphically in Fig. 6, for the case of ~44Nd.

(El-a) The standard Lorentzian

and the photoabsorption cross section at E~ = E~

o'o = 0.317 b

I'(E„T)=, (E,'+4~2T2) .
G

(17)

Because the right-hand side of Eq. (16) contains explic-
itly the nuclear temperature T, the El strength function
depends not only on the transition energy E~, but also
on the final state energy Ey (or on the initial state energy
E, = Ey+E~) As a .consequence, the El strength func-
tion following Eq. (16) has a more complicated form than
that usually associated with Brink's hypothesis. The
temperature has been determined from Eq. (11).

The first term of Eq. (17) follows from a spreading of
particle-hole states into more complex states, while the
second term, derived from the Fermi theory of liquids,
takes into account collisions between quasiparticles. The
factor I'G jEG in Eq. (17) ensures the smooth transition
of Eq. (16) to Eq. (15) for T ~ 0 and E~ ~ EG.

(El-c) The model by Kadmenskij et aL [9]

(El-b) The Lorentzian with an energy- and
temperature-dependent damping width [23]

1 E F~F(E,T)
3 '(h )' (E' —E')'+ E'1(E„T)

(i6)

where the damping width

where the energy and the damping width of the giant
resonance [22]

EG = 15.05 MeV

(1+ 2f
1+2f

EG I'G F(E,T)
(E2 E2 )2

(i8)

I'G = 5.30 MeV
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Gamma-Ray Energy (MeV)

FIG. 6. A comparison of the various El strength function
models for Nd, with the initial state corresponding to ther-
mal neutron capture. The models are identi6ed in the text.
The experimental data are taken from Ref. [6], which includes
unpublished data of Ramau [27].

where fq and f~ are parameters of a quasiparticle inter-
action. In accordance with the original paper we take

1

[f1+ sf) &~'

(1+2')
This model is based on an approximation from the

Fermi theory of liquids for E~ && E~. It should be noted
that this model incorporates the correct low-energy limit-
ing behavior of the electric dipole operator, and Eq. (18)
leads to a nonzero limit for E~ ~ 0:

1
lim S@g(E~,T) =

E~-+0

1
+ sf,'~ 4~

1+2' ) E~
Figure 7 illustrates the important property of this model
that the strength function depends on the temperature,
T (and therefore on the capture or final state energy), as
well as the transition energy.

As E~ ~ E~, the denominator diverges, and Eq. (18)
fails badly. On the other hand, if the limiting value of Eq.
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FIG. 7. An illustration of the modifi-
cation of Brink's hypothesis in the model
of Kadmenskij (El-c). The strength
function is seen to depend not only on
the transition energy, but also on the
initial state energy. The apparent cusp
in the lowest curve shown is the conse-
quence of an abrupt change of the nu-

clear temperature at an excitation corre-
sponding to the backshift parameter E.

1O

0

Gamma-Ray Energy {MeV)

(El-d) The modified formula by Kadmenskij et at.
fulfilling Brink's hypothesis.

As is evident from previous analyses, involving a num-

ber of (n, p) reactions at isolated neutron resonances, the
experimental data on primary El transitions are in good
agreement with a description of the photon strength func-
tion based on modified Lorentzian forms described above.
Although such strength functions depend on tempera-
ture T in the final state Ef, the observed agreement can-
not be regarded as decisive evidence for a modification
of Brink's hypothesis. Indeed, considering experimental
data on primary transitions, it can be easily shown that
the same agreement would be observed in the case of an
El strength function, say, SEi(E~), defined by

SEi(E ) = SEi(E,T = f (E~)) (2o)

where SEi(E~, T) is the photon strength function fol-

lowing from the modified Lorentzian and f i(E~) is the
function inverse to

(19) is added to the expression of Eq. (16), the modified
formula gives results similar to Eq. (18) for low-energy

transitions from highly excited initial states, but in con-
trast to Eq. (18), is valid for E~ —+ E~. This modified
Lorentzian proposed by Chrien [24] has been therefore
used in analyses of primary transitions proceeding from
states near neutron binding energy. However, it can be
easily shown that for low-energy transitions between low-

lying states this modification of Eq. (16) is not justified.
For this reason we use the original expression given by
Eq. (18), in spite of the fact that it is not accurate for
energies E~ close to the giant resonance energy.

this form for each initial state energy.
Direct evidence of a modification of Brink's hypothe-

sis can only be based on a comparison to intensities of
transitions with a fixed energy E~ and a variable final
state energy. In an explicit form no information on such
intensities is so far available. However, in view of the fact
that in cascade decay of a capturing state the second step
may connect various initial and final states, the needed
information is implicitly contained in the TSC spectra.

It seems therefore that these spectra can be employed
to test the validity of Brink's hypothesis. For this rea-
son the strength function following Eq. (18) with T =
f i(E~) according to Eq. (21) has also been used in our
analysis.

(El-e) The model by Sirotkin [11]

z I'GI'(E, T)
~(E~ + E0),E,

P G c G.j

1

1 —exp( —E~/T)
(22)

where S0 is the limit of the strength function at E~ —+ 0
for the initial state at the neutron threshold, Ep is a typi-
cal energy of particle-hole transitions, and T, is the tem-
perature corresponding to the neutron threshold. This
parametrization is not identical with that originally used
but it is more convenient for a comparison with neutron
capture data. Equation (22) results from different ap-
proximations than those of Eq. (18), but it is also based
on the theory of Fermi liquids. It can, however, be used

only for E& && E~.
In accordance with the Fermi liquid model [25] we take

f(T) = aT +T+B„—6— (21)
EG 1.4 E,'

In other words, SEi(E~) is identical with SEi(E', T) for
the initial state at the neutron binding energy, and keeps

Following the recommendation of Sirotkin [ll] we fix

$p =O.5x 1O
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8. Ml rediation VI. RESULTS AND DISCUSSION

Very little information about Ml strengths in the
i44Nd nucleus is as yet available. We have employed only
two simple models.

(Ml-a) The single-particle model. The energy-
independent strength SMi has been used as a free pa-
rameter. The values tested in the fitting procedure
are based on some experimental data for primary Ml
transitions from neutron capturing states [6]. The ex-
perimental value for the target i4sNd corresponds to
SMi ——(0.3 + 0.2) x 10 s MeV, and is considerably
below the global average reported in that survey.

(Ml-b) The standard Lorentzian. We have repre-
sented SMi(E~) by the right-hand side of Eq. (15), where
we have taken the parameters from Ref. [18],

oo ——0.37 mb,

EG = 7.82 MeV,

I'~ = 4.00 MeV.

8. E2 mediation

Transitions of E2 type have a very small influence to
the resulting efFect on two-step cascades. We have used
the simple single-particle model with

S@z = 0.4 x 10 MeV

Using the models described previously, we have calcu-
lated the expected values of integrated TSC intensities
in TSC spectra for the five known low-lying states of the

Nd nucleus. In addition, we have calculated the cor-
responding values for the average total radiative widths
for the capturing states.

The parameter SMi of the single-particle Ml strength
function has been varied to satisfy two conditions, some-
times contradictory: to fit the experimental value of
the average total radiation width for neutron s reso-
nances, and the values of integrated TSC intensities.
The reported experimental value for the Ml strength
(0.3 + 0.2) x 10 s MeV s

[6] places only a loose con-
straint on the choice of models, and we allow a range of
values consistent with that constraint. For model (E1-
a) we have put SMi = 0.3 x 10 s MeV s, for (El-b)
SMi ——0.3 x 10 MeV, for (El-c) and (El-d) SMi ——

0.4 x 10 s MeV s, and for (El-e) SMi = 0.5 x 10
MeV 3.

The integrated TSC intensities calculated for these
models for photon strength functions are compared with
those obtained experimentally in Figs. 8(a)—8(e). For
each figure, the electric dipole model is paired with single-
particle and giant resonance models for the magnetic
dipole component. Three-step cascade contributions re-
sulting from model calculations are shown separately. For
each fit, a goodness of fit parameter, calculated in the
manner of a yz per degree of freedom, has been calculated
to give a quantitative impression of the relative success
in modeling the intensities. These are as follows: (a) 25.9
and 41.7; (b) 1.3 and 5.4; (c) 2.8 and 24.9; (d) 8.2 and

0.12

Models E1-a and M1-a

i I I

Models E1-b and M1-b

0.04-

0.00
Models E1-b and M1-a

0.08-

0.04-

0.00

Models E1-c and M1-a

0.04-

0.00

0 08
Models E1-d and M1 -a

Models E1-e and M1-a

0.04—

(aj

Models E1-b and M1-b

Models E1-c and Ml-b

(cj-

Models E1-d and M1-b

Models E1-e and M1-b

FIG. 8. Calculated TSC intensities
compared to experiment for five Nd
final states: (a) 0+ ground state, (b) 2+

696 keV, (c) 4+ 1314 keV, (d) 3 1510
keV, and (e) 2+ 1561 keV excited states.
Error bars represent Porter- Thomas fluc-
tuations in the model and experimental
uncertainties for the data. An overall
normalization uncertainty is not shown.
The calculated two-step intensities are
shown by shaded bars, the three-step in-
tensities by open bars. The experimen-
tal data are shown as points connected
by line segments. The models (El-a)
through (El-e), as described in the text,
are paired with the models (Ml-a) and
(Ml-b). The level density model (LD-
a) is used with all models except for the
pairs (El-b), (Ml-b) and (El-e), (Ml-a).

2 3 4
FINAL STATE

Ir
2 3 4 5

FINAL STATE
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TABLE I. Average total radiation widths (in meV) of s-wave resonances at the neutron binding

energy calculated using the same models as in Figs. 10—14. The experimental value is 80 + 9 meV.

Model

(Ml-a)

(Ml-b)

(El-a)

190.2 + 4.4

179.4 + 4.4

(El-b)

31.3 + 0.8

24.8 + 0.7

(El-c),(E1-d)

82.7+

67.6 + 1.3

(El-e)

134.6 + 4.5

135.2 + 5.6

The level density (LD-a).
The level density (LD-b).

39.8; and (e) 3.3 and 19.3 per degree of freedom, respec-
tively. It should be emphasized here that this goodness
of fit is not a precise expression of a statistically valid y2,
because the cascades are partially correlated in a rather
complicated way.

Average total radiation widths I'~ of s-neutron captur-
ing states near the neutron binding energy B„are given
in Table I. They were calculated from the expression

p(3, B„)1' (3,B„)+p(4, B„)I' (4, B„)
p(3 B )+p(4 B )

(23)

for the same models as in the case of integrated TSC in-
tensities. In Eq. (23) both possible spins and parities 3
and 4 of s-neutron capturing states in the Nd nucleus
are taken into account. The experimental total radiation
width has the average value 80+ 9 meV [26]. The results
in Table I agree with those obtained previously (for dif-
ferent level densities) [18]: The classical Lorentzian (El-
a), as expected, strongly overestimates radiation widths
while the Lorentzian with the energy- and temperature-
dependent damping width (El-b) gives values which are
too small. On the other hand, good agreement with the
experimental value is observed in the model by Kadmen-
skij et al. (El-c).

Integrated TSC intensities obtained by modeling
strongly differ from those obtained experimentally for the
standard Lorentzian (El-a) and for model (El-d) for the
El strength function. A relatively good agreement was
reached for models (El-b), (El-c), and (El-e) of the
El strength function combined with the single-particle
model of the Ml strength function. The best results are
obtained in the case of models (El-b) and (El-c), but
all models of the El strength function which incorporate
a temperature-dependent spreading width give a reason-
able agreement with experiment. Therefore, the specific
form of the energy and temperature dependence of the
damping width given by Eq. (17), which is common for
all these strength functions, seems to be crucial for the
explanation of the TSC intensity behavior.

In our opinion, the strongest argument for the need for
a modification of Brink's hypothesis is the fact that the
formula by Kadmenskij et al. (El-c) reproduces experi-
mental integrated TSC intensities, whereas the modified
formula (El-d) does not.

A closer inspection of Fig. 8 reveals that an impor-
tant role in testing various models is played by the in-
tegrated TSC intensity in the spectrum for the 3 state

at 1510 keV. Generally, the TSC intensity should depend
on the excitation energy, the spin, and the parity of the
final state. Plausible assumptions lead to the expectation
that if SEq = SM q at energies E~ = 3 or 4 MeV, the inte-
grated TSC intensity does not depend on the parity nf of
the final state. On the other hand, for S@~ significantly
greater than SMi, the intensity of two-step cascades end-
ing at states with 7rf = m, will be enhanced (whereas the
three-step cascades intensity will be reduced) in compar-
ison with states with vlf ———vr, . This important feature
differentiates the method of two-step cascades from pre-
vious methods, which are sensitive mostly to the sum

S@q + SMq. The effect is seen clearly in Fig. 8(a) be-
cause the standard Lorentzian form, with an invariant
and large width, ensures the dominance of El strength
at all excitations.

The conclusion that the single-particle model Ml
strength function fits the integrated TSC intensities bet-
ter than the standard Lorentzian is in contradiction with
previous results [18,19]. However, we note that both Ml
strength function models employed are rather unrealistic
and we do not regard this contradiction as very mean-
ingful. Indeed, the fact that all models overestimate the
integrated TSC intensity in the case of the 3 state shows
that their ratios S@q/SMq cannot be fully correct. The
behavior observed may indicate a need for a more realis-
tic formula for the Ml strength function.

VII. CONCLUSION

The results of this experiment are in reasonable agree-
ment with earlier information on the El strength func-
tion. The model with an energy- and temperature-
dependent damping width and with a nonzero limit at
E& —+ 0 explains most of the data on spherical and tran-
sitional nuclei, including those from this experiment. In
addition, evidence of a significant modification of Brink's
hypothesis for the El strength function was presented.

In spite of uncertainties associated with Porter-
Thomas fluctuations, experimental errors, and correla-
tions in the TSC intensities, departures of the integrated
TSC intensities from those resulting from modeling are
statistically meaningful. The method of two-step cas-
cades represents a useful tool and experiments similar to
this should be repeated for other nuclei. In particular,
we propose to use this method for deformed nuclei, for
which new data on photon strength functions are in great
demand.
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