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Nonlocal field theory model for nuclear matter
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Nuclear matter is investigated in the relativistic Hartree approximation to a nonlocal u-~ model
containing short distance vertex form factors to simulate an underlying /CD substructure. At
the Hartree level only the nucleon momentum dependence of the distributed vertex enters and the
resulting finite nonlocal field theory model is solved in Euclidean metric with simple Gaussian forms
for the so-called sideways form-factors. To reproduce saturated nuclear matter the nonlocal model
selects form-factor ranges at the nucleon mass scale.
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The Walecka model or quantum hadro dynamics
(QHD) [1] provides an efFective and practical relativis-
tic model for nuclear matter and nuclei in terms of point
nucleon and meson fields. At the mean field level, a sim-
ple relativistic mechanism is provided for nuclear matter
saturation and a successful and efficient phenomenology
for ground and excited states of finite nuclei has been
developed. QHD is renormalizable, and quantum loop
effects can be addressed explicitly. However, point cou-
pling causes quantum loops at momentum scales as high
as 5 GeV [2] to strongly inHuence the final results at
the Fermi momentum scale. The same mechanism can
produce a tachyon pole in the scalar meson propagator
and appears to be a general problem of models lacking
asymptotic freedom in the coupling of fermions to scalars
[3]. Quantum effects at the two-loop level [4) tend to
destroy reasonable phenomenological interplay between
short range repulsion and long range attraction in nuclear
matter that occurs naturally at the mean field level.

It is not physically satisfying to have hadronic quan-
tum loop effects strongly dependent upon short distance
scales where the physically relevant degrees of freedom
are not exclusively hadronic. Some progress has been
made towards identification of efFective models of inter-
acting composite hadrons by integration over the fields
of simplified models of QCD [5]. The resulting structure
is complex. One feature is clear however: the three-point
vertex is distributed due to the underlying substructure.
When quark fields are integrated out of QCD models
to produce composite qq mesons [5, 6], the three-point
quark-meson vertex at the on-mass-shell point for the
meson is the qq meson internal form factor. This is a side-
ways form factor for quark-meson coupling as it falls off
with increasing quark momentum. %ith a quark model
of a nucleon, this effect necessarily produces a fallofF with
the nucleon momentum [7]. The need for a sideways form
factor in QHD has recently been argued from the basis
of consistency with large-N, QCD [8]. Rather than at-

tempt to base our considerations on a particular quark
model, we explore how QHD operates for nuclear mat-
ter when modified by simple phenomenological sideways
form factors. This investigation is complementary to a
recent work [9] which explores the effect of a conventional
form-factor suppression of large meson momentum; and
also complementary to work in progress [10] to generate
that mechanism from meson dressing within QHD [11].

A distributed three-point coupling of an io meson field

to nucleon fields can be written in momentum space as

s,„,= d4k'sky(k')r„~; k'- k
~

x~o„(k' —k)@(k) .

We use a Euclidean metric throughout such that a b =
a„b„and (p„,p„) = 26„„. For the special case of the
Hartree approximation in a uniform system, the self-

consistent meson fields contain only a zero-momentum
component io„(q) = 64(q)ui~ and we have S~„t
j'd'k @(k)r„(k)~„y(k).

We define a nonlocal QHD model (NL-QHD) for a uni-

form system by the action

8= k k k —g~ k

l+— d x(m, gp+mzid ), (2)

where the inverse nucleon propagator is

0 '(k) =ip kF„(k )+M —g, (P —v)F, (kz), (3)

and v =( P ) is the vacuum expectation of the scalar
field. This ensures that the parameter M is the physical
mass of the free nucleon. The functions F(k ) are the
phenomenological form factors chosen with the normal-
ization F„(k2 = —M2) = Fs(k~ = —Mz) = 1. For sim-
plicity, we choose the form F(k~) = exp [

—pz (1+k2/Mz)],
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thereby introducing parameters P, and P„. In (3) we have
chosen to couple the vector field via minimal substitu-
tion. This choice leads to the correct Einstein relation be-
tween the energy and momentum for a nucleon in uniform
scalar and vector fields. The implied irreducible three-
point vertices at tree level are identified from I"(k) =
bG '/6P and I'"„(k) = bG '/6~„, both evaluated at
the vacuum configuration P = v and u„= 0. Thus
I"(k) = —g,F, (kz) and I'„(k) = —g„ee~ ip kF„(k2).
Since the latter obeys the Ward identity, our choice for
vector field coupling would yield the correct limit in the
massless field case. Our chosen action reduces to the
QHD action in the point coupling limit F, = F„=1 for
a uniform system if a fourth-order polynomial V(P) is
added for renormalization purposes. We treat the finite
nonlocal model without such a term.

A nucleon Fermi sea can be treated through a chem-
ical potential constraint which here corresponds to the
shift k4 ~ k4+ i p, , and the chemical potential p, will be-
come the Fermi energy. A systematic procedure for de-
veloping approximate solutions can be defined through
a loop expansion of the generating functional Z(]Li)
N jDQ DQ DPDu exp( —S). The functional path inte-
gral is a sensible approach to quantization of the nonlocal
action 8 because it coincides with the general structure of
effective hadronic field models produced by (path) inte-
gration over point QCD fields [5]. After integration over

I

the nucleon fields, we have Z(p) = N jDP Der exp( —8)
where the meson action that includes all nucleon loop
effects is

S[p, g, ~] = —[TrlnG '(p)G(0)] —TrlnG '(0)
1

d z(m, P +m ~ ). (4)

The trace Tr includes a discrete trace over isospin anR
relativistic spin indices as well as a 4-space integral.

The energy density E' for a static uniform system can
be obtained directly by forming the efFective action I' de-
fined from ln Z by the Legendre transformation in stan-
dard fashion and using I' = jd4z Z. The loop expansion
[12] for I' when truncated at the lowest or classical term
defines the Hartree approximation which is I'[pg, P, ~] =
8[p„g,~] —p(BS/Bp), where M/By, = —jd x pp and
pg is the baryon density. The equations of motion are
bi'/bg = bl'/6u„= 0 and physical nuclear matter resides
at the value of pg which minimizes the energy density.
It is convenient to write 8 = UF + U„, where UF is the
Fermi-sea component due to the first term of (4) and U„
is the vacuum component due to the (p, = 0) remainder.

We first identify the field configurations that minimize

U„[P,u]. It is easily verified that u„=0 is the vacuum
value because ur can be removed from the vacuum Tr In

term by a shift of the integration momentum. Only U„=
U„[P,cu] —U„[v, 0] is relevant and the result is

1 d4k kzFz(k~) + (M —g, (P —v)F, (k2))z 1-
(2z.)4 k'F'(k') + M' 2- (5)

The vacuum expectation value of P at the Hartree level
is defined by BU„/Bg = 0 at P = v, and this yields

Mg, d4k F (kz)
m& (2~)4 k&F&(k&) + M&

' (6)

The vacuum quantities in (5) and (6) are finite due to the
suppression of high momenta by the form factors. The
vacuum effective potential U„ is a nonlinear function of
the shifted field P = P —v. The first term in (5) is the
baryon loop term, which we denote by L(P). With the
form-factor range parameters P, =0.8 and ]9„=0.2 that
we shall use for nuclear matter, the calculated vacuum
effective potential for ~& ——0 is shown in Fig. 1 by the
solid line. This is the combined result of L(P) and the
scalar mass term which are also displayed. An absolute
minimum will always exist in this Gnite model, because in
the asymptotic regions where ~P~: oo the logarithmic
decrease of L(P) cannot overcome the quadratic growth
of the scalar mass term. The loop term here contains
contributions that are quadratic and higher in P. The
quadratic term must be used to renormalize the scalar
mass. The result can be expressed as

v ]p, ~] = —(mv] + m„~ ) + I ~ ~(p), ]7)

where the physical scalar mass is m2 = m2+ L (P = 0),
and L~s~(P) is the loop function without linear and
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FIG. 1. The total vacuum effective potential U„and its
two separate contributions plotted as a function of the scalar
field with dimensionless units for both axes.

I

quadratic terms in P. We have chosen the bare mass
m, so that m, = 550 MeV.

In contrast, the usual procedure followed in the point
coupling QHD [1] leads to the replacement of L~s~(P)

in (7) by LP&(P) where the latter is the point coupling
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limit of the loop term of (5) with the (divergent) first four

powers of P renormalized to zero. Then v=0 and m, is
also the bare mass. The resulting U„(P) has no absolute
minimum. This can be seen from the closed form expres-
sion [4] for LI,Tl, (P) which is dominated at large ]P~ by

L&~&l(P) = —4, M'4ln~M'/M], where M' = M —g, P.
There is a local minimum (by definition) at /=0 and the
effect of the nucleon Fermi sea will produce a local min-
imum in the total energy at a physically sensible P ) 0.
Strictly speaking though, it would also be possible to ar-
bitrarily lower the energy by allowing consideration of
very large (and unphysical) values of ~P~. Such phenom-
ena have been pointed out previously [13].

The Fermi-sea contribution to the energy density is
identified from the first term of (4) and is f d4x UF =
—(1 —p&~ )Trln[G i(p)G(0)]. Spectral resolution of
the nucleon propagator together with contour integration
produces a summation of the Fermi-sea energies. Details
for this procedure can be found in Ref. [7] for the related
case of quarks and mesons. The eigenvalue problem to
be solved is

(8)

where p = k —g„u and k is the nucleon momentum. This
is equivalent to a determination of p~ = —M'z, where

M'(P) is a nonlinear function satisfying the transcen-
dental equation

(9)

It is necessary to be able to continue the form factors into
a limited region of the timelike (non-Euclidean) domain
to find these physical solutions. We accept the conse-
quences of the chosen Gaussian form factors. The energy
of a Fermi-sea nucleon in the uniform medium charac-
terized by ur = (iso, u) and P is determined from the
eigenvalue and the identification k4 = iE(k) and thus

E(k) = g„no+ gp + M" . The condition (9) for the ef-
fective mass M' is identical to that of the point-coupling
case when the form factors are unity. The total energy
density is 8 = UF + U„. It is easily verified that the ur

field that minimizes 8 is ea = g„p~/m„and &u = 0 where

p~ is the baryon density 2ksF/3irz.
The total energy density in relativistic Hartree approx-

imation (RHA) is then given by

2

Z(P, kp) = —m, gP + "
p~

mv

F d3k

o (2~)s

The mean-field theory (MFT) result is obtained by omit-
ting the last term which is the vacuum baryon loop.
Equation (10) has the same form as the point-coupling
RHA result except that M'(P) is a difFerent function
(having the same limit in free space) and the baryon
loop L~sl(P) has cubic and quartic terms in P. The nu-

20

10—

I

1 I I

NL-QHD (RHA)
NL-QHD (MFT)

PT-QHD (MFT)

I I I I

J

I I 'I
(
I

'Lu

-10—

-20—

I

1

kF (fm ')

I I I I I I I I I

0.5 1.5

FIG. 2. The binding energy curve for nuclear matter. The
solid line is the 6tted result of the present nonlocal model.
The long dashed line is the nonlocal result obtained by omit-

ting the baryon loop but retaining the RHA parameters. The
short dashed line is the fitted result of point-coupling QHD
in MFT.

clear matter solution is obtained by minimization of 8
with respect to P. With the range parameters P,=0.8
and P„=0.2, the RHA saturation curve is shown in Fig.
2 as the solid line. We label this calculation as NL-
QHD (RHA). We have chosen m„=783 MeV and the
coupling constants g, and g„have been adjusted to ob-
tain the saturation point at kF=1.42 fm i and 15.75
MeV binding energy per nucleon. The obtained values of
the coupling constants expressed as C2 = g2M2/m2 and
Ca~ = gazMz/ms~ are listed in Table I along with the cal-
culated incompressibility K„ i = kzdzf/dkz at k = k~.

With the chosen form-factor ranges, the incompress-
ibility is reduced by a factor of 2 compared to the point-
coupling model. It is thus much easier to reconcile these
results with the value derived from the breathing mode
excitation of nuclei, which is typically 200 MeV. The vac-
uum component {one baryon loop) of the energy den-
sity in this model is very small and attractive. This is
illustrated in Fig. 2 by the long dashed curve labeled
NL-QHD (MFT) obtained by removing the last term of
(10) but retaining the same parameters as the RHA case.
When refitted to nuclear matter, the obtained parameters
are shown in Table I. For comparision, we show in Fig. 2
as the short dashed curve, the point-coupling MFT result
fitted to the empirical saturation point. The obtained pa-
rameters are also shown in the table. The characteristic
changes in the incompressibility and M' in the nonlocal
cases are due principally to the nonlinear dependence of
M' upon P.

This NL-QHD model apparently has two additional
parameters (P, and P„) compared to the point-coupling
model. One way to view their role is through the pro-
duction of nonzero strength for the cubic and quartic
terms of the loop function L&3&(P). (For the present so-
lution, the cubic and quartic terms contribute only 0.4
MeV and -0.04 MeV respectively to the binding energy
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TABLE I. Parameters employed and quantities obtained from the nuclear matter calculation
described in the text.

Q2
Q2

PT-QHD (MFT) (fit)

0
0

267.57
196.31

NL-QHD (MFT)

0.8
0.2

182.35
53.44

NL-QHD (RHA) (fit)

0.8
0.2

183.72
54.19

M'/M
K„'(MeV)

0.56
545

0.84
206.5

0.83
206.3

per nucleon. ) These strengths are actually parameters
also in the point-coupling case because there is no need
to renormalize their infinite values to zero. However when
the regulation mechanism is the presence of intrinsic form
factors in the hadronic action, there are additional self-
consistency requirements that limit the parameter space
of possible solutions. It is not possible to obtain solu-
tions unless the range parameters are such that the in-
ternal constraints of the NL-QHD model are satisfied.
A major constraint is that the vacuum effective poten-
tial (5) should have an absolute minimum at P = ii.
The condition (6), together with renormalization of m, ,
to 550 MeV, guarantees only a local minimum and we
must reject range parameters that produce a lower min-
imum elsewhere. This can happen if [v] is too large in

(5), and (6) then requires that the scalar coupling con-
stant be bounded from above. Without a sufficiently soft
scalar form factor (large P, ) the upper limit on g, will
not provide enough attraction to properly bind nuclear
matter. If the scalar form factor is too soft, the nucleon
loop term becomes negligible, but (9) produces M' ~ M
with the result that the scalar field would decouple from
the Fermi-sea nucleons and no nuclear matter solution
would be possible. The NL-QHD model selects a limited
range of form factors. We find that solutions are only
possible if P, ) P„and 0.72& P, &1.2. A range of solu-
tions has been studied with P„&0.4 and P, & 1.0. Each
one produces a reduced incompressibility, small vacuum
contribution, and increased effective mass of the same or-
der as the displayed solution. The range parameters in
Table I produce high momentum behavior exp(-k2/A2),

where A„= 5 M and A, = 5M/4, i.e. , A„4.72 GeV and
A, =1.18 GeV. Thus the expectation that the sideways
form factors should suppress momenta above about the
nucleon mass scale is fulFilled by the solutions allowed.

In summary, the addition of sideways form factors to
the QHD model at the RHA level produces a nonlocal
field theory model which is still capable of reproducing
nuclear matter saturation despite the additional nonlin-
earities. The internal constraints of the model automati-
cally select momentum suppression above about the nu-
cleon mass scale and the resulting vacuum contribution
is quite small. The residual effects of the nonlocal cou-
pling that show up at both the RHA and MFT levels
are an increase in M* from 0.56M to 0.8M and about a
factor of 2 decrease in the incompressibility compared to
the point-coupling model. A nonlocal field theory model
developed further along these lines to include more gen-
eral form factors may be more easily reconciled with ap-
proaches based on boson-exchange models that ignore the
quantum vacuum.
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