PHYSICAL REVIEW C

VOLUME 46, NUMBER 3

Exact symmetries and the role of the pion cloud in deep-inelastic electron-nucleon scattering
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A careful analysis of exact symmetries, such as the charge conjugation symmetry and the electromag-
netic and baryon current conservation, shows that exactly two nontrivial Feynman diagrams contribute
to deep-inelastic inclusive pion electroproduction from the nucleon to O(g2yy). The same analysis re-
veals certain relationships between the two graphs. The two graphs are expressed as convolutions of the
pion [g.(y)] and the nucleon [gy(y)] smearing functions and their respective deep-inelastic structure
functions. The nucleon smearing functions are evaluated in three models of the nucleon off-shell depen-
dence of the mNN vertex function and they turn out to have remarkably similar shapes. It is shown that
this universality of gy(y) persists in a wide class of models. Such universal gy(y) peaks at
yo=1—m_ /My=0.85 and allows a simple parton model interpretation. Furthermore, the normalized
smearing functions approximately satisfy the Berger-Coester-Wiringa-Thomas ansatz g,.(y)=gy(1—y)
for two of the three models examined. Strong constraints on the nucleon off-shell dependence of the
7NN vertex function [g,yv(p%)] are obtained using the observed Gottfried sum rule violation as empiri-
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cal input.

PACS number(s): 13.60.Hb, 13.75.Gx, 11.30.—j

In recent years we have seen repeated attempts [1-5]
at establishing a relation between the pion cloud of the
nucleon and its ocean quark content. At first [1,2] they
were based on the SU(3),-breaking data in the nucleon
ocean, whereas more recent work [3,5] relies on the
Gottfried sum rule violation data [6]. These studies seem
to vary in technical details and sometimes [4] even in the
underlying philosophy: Some studies [1-3] use only one
[“pion cloud”, Fig. 1(a)] Feynman diagram; others [4,5]
use two [“pion cloud” + “nucleon recoil”, Figs. 1(a) and
(b)]. This discrepancy seems to deserve attention espe-
cially in light of the fact that all these analyses are found-
ed on the method developed by Sullivan [7] and Thomas
[1]. Furthermore, there are various tacit and explicit as-
sumptions in these analyses which remain completely
unexplored (see below). It is the purpose of this paper to
examine the theoretical foundations of the Sullivan-
Thomas approach. This is accomplished by investigating
the consequences of the exact symmetries such as C-
conjugation, electromagnetic (EM), and baryon current
conservation and approximate symmetries such as isospin
SU(2);. We find on the basis of EM current conservation
that there are exactly two graphs contributing to in-
clusive deep-inelastic scattering (DIS) pion electropro-
duction to O(g2yy). They can be expressed in terms of
convolutions of the ‘“‘smearing” and bare (valence) struc-
ture functions of the pion and the nucleon respectively.
C-conjugation symmetry, together with the assumption
of isospin symmetry, imposes a constraint on the two
convolutions [see Egs. (3) and (4)]. The baryon current of
the valence quarks is found to be automatically conserved
if the EM current conservation and the joint C-
conjugation and SU(2), symmetry constraints are
satisfied. Furthermore, we find that the shape of the nu-
cleon smearing function gy(y) is to a large extent model
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independent and that the Berger-Coester-Wiringa-
Thomas (BCWT) [5,8] conjecture g_(1—y)=gy(y) is ap-
proximately satisfied if all exact symmetry constraints are
imposed. Gottfried sum rule violation data [6] are used
to obtain a band of allowed values for the parameters
describing the off-shell behavior of the mNN vertex func-
tion normalized to g,y =13.6.

We start by examining the EM current conservation of
inclusive (e,e’) pion electroproduction to O(g2,yy) at ar-
bitrary Q% and v. We use two exact results: (i) The opti-
cal theorem relating the inclusive (total) electron scatter-
ing cross section and the imaginary part of the forward
virtual photon Compton amplitude. (ii) The Ward-
Takahashi (WT) identities for composite hadrons (m,N)
EM vertices with one (first kind) [9] and two external
photons (second kind) [10].

First, we construct an EM current conserving (gauge
invariant) virtual photon Compton scattering amplitude
to O(g2yy) with pions and nucleons with structure, i.e.,
with EM form factors. Here we use the methods
developed by Gross and Riska [11]. The result is a set of
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FIG. 1. The two Feynman diagrams appearing in the deep-
inelastic inclusive pion electroproduction: (a) the “Sullivan pro-
cess” diagram; (b) the “nucleon recoil” graph. The wavy line is
the incoming virtual photon, the solid line the nucleon, and the
dashed line the meson (pion). X denotes arbitrary final states
with baryon number O (a), or 1 (b).
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24 Feynman diagrams where the two external photons
couple to the charged and neutral (due to nonzero form
factors) lines in the 7N self-energy diagram in all topo-
logically distinct ways in addition to the pionic sea gull
graphs. One thing worth noticing is the appearance of a
new two-photon nucleon (“seagull”) vertex, due to the
WT identity of the second kind:

qlltG,lyv:F[vv( —4pP2tq) (1)

_qz’Pl_qz,Pl)“Fc[(

relating the new structure-induced nucleon ‘“‘seagull” ver-
tex G}, and the off-shell one-photon nucleon vertex T'}.
It is the imaginary part of this graph in the forward
direction which describes the DIS from the nucleon.
Note that its existence is not precluded even if the left-
hand side of Eq. (1) is zero; this only implies that this ver-
tex is separately gauge invariant. Returning to the
Compton scattering graphs, we choose the forward
scattering kinematics and take the Bjorken limit
(Q%Lv—0;0<x=Q0?/2Mv<1). All but four graphs
containing seagull vertices vanish due to the rapid decay
of elastic form factors in the Q?— o« limit. Two of these
[Figs. 2(a) and 2(b)] serve to renormalize the bare nucleon
[0 (g%yn] term, while the other two [Figs. 2(c) and 2(d)]
are nontrivial contributions. To obtain their imaginary
parts, we use Cutkosky rules [12] which immediately
yield the two graphs in Fig. 1 previously discussed in the
literature. This derivation is not just an academic exer-
cise: it establishes that the four graphs in Fig. 2 are the
complete gauge invariant set to O (g2yy) in models with
7 and N degrees of freedom only [13]. The four graphs in
Fig. 2 are separately gauge invariant in DIS, but that is a
consequence of the forward scattering condition and the
Bjorken limit and their contributions are expressed in
terms of convolutions:
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of the “smearing functions” g (y) and gy(y) and the bare
(valence quark) pion and nucleon DIS structure functions
F) y(x). Here
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FIG. 2. The four Feynman diagrams describing the forward
virtual Compton scattering from the nucleon in the deep-
inelastic limit, to O(g2yy). The first two graphs (a), (b) ensure
(finite) renormalization of the Born, i.e., O(g%yy), graph. The
second two graphs (c), (d) are nontrivial contributions whose
imaginary parts correspond to graphs in Figs. 1(b) and 1(a), re-
spectively.

where m . =140 MeV, M, =940 MeV, and

gann(t=—p2)=g xn(p2,M}),

gn’NN(t=—p1%)=gerN(m127’P1%/)

are the 7 and N off-shell dependences of the 7NN vertex
function, respectively. Here we assumed that the off-shell
structure functions F, ;. y(x, p,, ~) equal the on-shell
ones. The dressed nucleon structure functions F), equal

FY\=ZF{ +8F] +8FY

where Z is the (finite) bare nucleon probability which is
less than 1 due to the finite renormalization induced by
the wN self-energy insertions in Feynman diagrams in
Figs. 2(a) and 2(b). Note immediately that 8F7 does not
contribute entirely to the ocean quark distribution be-
cause the charged pion carries one valence dressed nu-
cleon quark. Consequently, 8FY is not entirely valence
quark distribution either: one of the quarks belongs into
the ocean.

The charge conjugation symmetry requires that the
zeroth moment of the ocean quark distribution equal the
zeroth moment of the ocean antiquark distribution [14].
This requirement places a constraint on the zeroth mo-
ments of the # and N convolutions. To see this,
remember that the d quark in 7 is accompanied by a d
quark in the neutron. Integrated values of these two con-
tributions have to be equal,

Jlax[! dyg,,( aw, %]

=f01dxfld’vg P | =

and similarly for the # quark in 7~ and a u quark in the
proton,

(3)
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Now, if we assume the isospin invariance of the 7 and
N structure functions and make the further simplifying
assumption that the pion and the bare nucleon consist of
valence quarks only, we can rewrite this constraint in
terms of 7 and N convolutions:

1dx _ 35 rtdx N
el R A S O
(5)
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Equations (5) lead to a constraint on the integral of the
smearing functions,

1 1
n,= [ e.dy=ny=[ gxy)dy=n . (6)

This constraint turns out to play an important role in the
test of baryon current conservation. Note that the
BCWT conjecture g.(y)=gy(1—y) also fulfills Eq. (6).
The baryon current conservation in deep-inelastic
lepton-nucleon scattering is reflected in the valence
baryon number sum rule [15], which, put simply, says
that the zeroth moment (i.e., the integral over dx) of the
valence quark distribution function equals the sum of the
squared charges of the valence quarks. To check the
valence baryon number sum rule we first note that the
Sullivan-Thomas procedure creates ocean quarks in mod-

an(y)
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els which started without them. Hence we must identify
and subtract out this ocean term in evaluating the
valence baryon number sum rule. When we do so the
valence baryon number sum rule is automatically con-
served, provided we assume isospin invariance of the
valence quark distributions in the pion and nucleon and
the validity of Eq. (6). Then integration of (1/x)F,(x)
leads to the normalization conditions for the 7, N smear-
ing functions:

1 1 1-Z
n=f0gﬂ(y)dy=fog~(y)d === - ™

At this point we are ready to discuss the Gottfried sum
rule [16], which is just the difference between the total
(not only valence) baryon number sum rules of the proton
and neutron. Our procedure has ensured that the valence
quarks reproduce the expected value of 1/3. But we also
see that the pion cloud contributes in an SU(2)-violating
way, thus providing a source of deviation from the
canonical (valence) value 1/3. Ignoring the A degrees of
freedom, we readily obtain n=0.07+0.03 from the
Gottfried sum rule violation data [6].

Now that we have established the consequences of the
exact symmetries we proceed to evaluate the smearing
functions g.(y) and gy(y). The pion smearing function
g.(y) is well studied [1] and believed to be known (at least
up to overall normalization). The nucleon smearing func-
tion gy(y), on the other hand, is completely unknown.
This is due to our ignorance of the basic ingredient enter-
ing it: the dependence of the wNN coupling constant
g.xv on the “off-shell mass” pZ#M} of the nucleon:
Z.vn(1)=g._vn(p%). We use three choices for g, yy(1).

(i) The suggestion by Hwang et al. [4] of a monopole
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FIG. 3. The “nucleon smearing function” gy(y) as calculated with a monopole nucleon off-shell dependence of the 7NN vertex
function (see text). Solid (A;y =815 MeV), dash-dotted (A,y =820 MeV), dash-double dotted (A;y =825 MeV), dash-triple dotted
(A5 =830 MeV), dot-dash-double dotted (A,y =835 MeV), dot-dash-triple dotted (A, =840 MeV).
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FIG. 4. The integral over the nucleon smearing function gy(y) from y =0 to y =1, ny as a function of the nucleon monopole cutoff
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dependence with an as yet unknown cutoff parameter
AIN:
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The monopole gy(y) is shown in Fig. 3 for six values of
the cutoff A;y. All the curves are peaked at

gn@y)

y=y,=0.85, but the height of their maxima rapidly in-
creases as A;y—My—m_=0.8 GeV at which point
gn(y) develops a nonintegrable singularity at y =y,. This
apparent disaster is readily understood if we note that the
pole from g, yy(2) enters the integration region of the in-
tegral in the definition of gy(y) [see below Eq. (2)] for
Ay <My —m_, and the integral diverges at y =y,. Thus
we have obtained a lower limit on A y>My—m_
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FIG. 5. Same as Fig. 3, but with exponential nucleon off-shell dependence. Solid (ay =0.00), dash-dotted (ay =0.02), dash-double
dotted (ay =0.04), dash-triple dotted (ay =0.06), dot-dash-double dotted (ay =0.08), dot-dash-triple dotted (ay =0.10).
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FIG. 6. Same as Figs. 3 and 5, but with Gaussian nucleon off-shell dependence Eq. (10). Solid (3=0.00), dash-dotted (3=0.02),
dash-double dotted (8=0.04), dash-triple dotted (8=0.06), dot-dash-double dotted (8=0.08), dot-dash-triple dotted (8=0.10),
double-dot-dash-triple dotted (8=0.12).

without any empirical input. We further restrict the al-  off-shell dependence:

lowed values of Ay by using the experimental values of

the “pion number” n =0.07+0.03 (see Fig. 4). We find g.wn(t)=13.6exp[ —alt /M +1)] . 9)
that A,y lies in a very narrow range of values:

Ay =823%l MeV. The nucleon smearing function gy(y) peaks again at

(i) The exponential parametrization of the nucleon  y =y, (Fig. 5) independently of the value of the parame-
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FIG. 7. Check of the BCWT ansatz for the monopole forms of g,yx(t) and g ,yy(?): gy(») and g,(1—y). The curves are normal-
ized to the Gottfried sum rule violation values n =0.07+0.03. For g,(1—y): Solid (A;,=445 MeV), short dashes (A,,=575 MeV),
long dashes (A;,=688 MeV). For gy(y): dashes-triple dots (A;y =834 MeV), dashes-double dots (A;y =823 MeV), dashes-dots
(A;y=2817 MeV). g_nyn(t)is given by Eq. (8), but with A,, instead of Ay.
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FIG. 8. Check of the BCWT ansatz for the exponential forms of g, yy(?) and g,yy(?): gn(y) and g,(1—y). The curves are normal-
ized to the following values of n: 0.062, 0.054, 0.047. For g,(1—y): long dashes (a,=0.054), short dashes (a,=0.047), solid
(a,=0.043). For gn(y): dashes-triple dots (ay =0.10), dashes-double dots (ay =0.04), dashes-dots (ay =0.00). g,yn(?) is given by

Eq. (9), but with «,, instead of ay.

ter ay. Contrary to the monopole case, the “pion num-
ber” n can never exceed the value of 0.062, which lies
within the experimental bounds n=0.07%0.03, and is
achieved for ay =0. This feature is readily understood if
one remembers the definition of gy (y): the integral over
dt is finite even with g_yn(2)=13.6, i.e., ay =0, and thus
provides the maximal possible value of n. It is interest-
ing, though, that simple improvement on the experimen-
tal error bars could eliminate this model.
(iii) The Gaussian nucleon off-shell dependence:

g.un(D=13.6exp[ —B(t/M}+1)°], (10)

which is motivated by Speth and Tegen’s [18] quark mod-
el predictions. Unfortunately, this calculation is nonrela-
tivistic and hence does not allow a unique expression as a
function of ¢. Once again (Fig. 6), gy(y) peaks at y =y,
and, again, there is a limiting value for n(f3) at =0, for
the same reasons as in point (ii) above.

We have witnessed a curious model independence of
the position of the peak of gy(y), and to a lesser extent
model independence of the shape of gy(y). The former
has a straightforward explaination when one remembers
the definition of gy(y) and the fact that all three g,y (t)
considered are monotonically  decreasing  for
t>—(My—m,)*. Now note that the maximum of the
integral appearing in gy (y) is completely determined by
the minimum, as a function of y, of tY, (y). The extremal
condition dt)(y)/dy =0 readily leads to y,. =y,=
l—m_/My: Thus, we have established the invariance of

the position of the peak of gy(y), for all monotonically
decreasing g,y (), for t > —(My—m )%

This result is particularly appealing because it allows a
simple parton model interpretation: g.(y) and gx(y)
would be the probabilities of finding a “m parton” or an
“N parton” (bare nucleon), respectively, with momentum
fraction y in the “dressed nucleon,” if the intrinsic DIS
structure functions of these ‘“partons” F, y(x) were
pointlike, i.e., Dirac 8 functions. Then it is intuitively
clear that a “m parton” with mass m_ is most likely to
carry the (m,/My) fraction of the total momentum, i.e.,
that g (y) ought to peak at y=m /My =0.15, and that
the bare nucleon is most likely to carry the complement
to unity of the pion’s momentum fraction. This argu-
ment is the motivation for the BCWT ansatz
gy(y)=g.(1—y), but unfortunately all studies conducted
so far [1-5] have shown that the position of the max-
imum of g_(y) is a sensitive function of the #NN form
factor g, yn(t). We check the validity of this ansatz for
our models [cases (ii) and (iii) are treated as one due to
their great similarity] and find that in case (i) only the
gross features coincide (Fig. 7), while in case (ii) (Fig. 8)
the agreement is much better, although not perfect. We
find it very surprising that this basically kinematic con-
straint is so restrictive on the form of the mNN vertex
function and intend to investigate this relation further.

We would like to thank Professor J. Speth for a useful
conversation on the topic of this paper and P. Henning
for help with the numerics.
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