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Exact symmetries and the role of the pion cloud in deep-inelastic electron-nucleon scattering
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A careful analysis of exact symmetries, such as the charge conjugation symmetry and the electromag-
netic and baryon current conservation, shows that exactly two nontrivial Feynman diagrams contribute
to deep-inelastic inclusive pion electroproduction from the nucleon to O(g„»). The same analysis re-
veals certain relationships between the two graphs. The two graphs are expressed as convolutions of the
pion [g (y ) ] and the nucleon [gz(y )] smearing functions and their respective deep-inelastic structure
functions. The nucleon smearing functions are evaluated in three models of the nucleon off-shell depen-
dence of the mNN vertex function and they turn out to have remarkably similar shapes. It is shown that
this universality of g&(y) persists in a wide class of models. Such universal gz(y) peaks at
yo=1 —m /M& =0.85 and allows a simple parton model interpretation. Furthermore, the normalized
smearing functions approximately satisfy the Berger-Coester-Wiringa-Thomas ansatz g„(y)=g&(1—y)
for two of the three models examined. Strong constraints on the nucleon ofF-shell dependence of the
7rNN vertex function [g ~~(p~) ] are obtained using the observed Gottfried sum rule violation as empiri-
cal input.

PACS number(s): 13.60.Hb, 13.75.Gx, 11.30.—j

In recent years we have seen repeated attempts [1—5]
at establishing a relation between the pion cloud of the
nucleon and its ocean quark content. At first [1,2] they
were based on the SU(3)f-breaking data in the nucleon
ocean, whereas more recent work [3,5] relies on the
Gottfried sum rule violation data [6]. These studies seem
to vary in technical details and sometimes [4] even in the
underlying philosophy: Some studies [1—3] use only one
["pion cloud", Fig. 1(a)] Feynman diagram; others [4,5]
use two ["pion cloud" + "nucleon recoil", Figs. 1(a} and
(b)]. This discrepancy seems to deserve attention espe-
cially in light of the fact that all these analyses are found-
ed on the method developed by Sullivan [7] and Thomas
[1]. Furthermore, there are various tacit and explicit as-
sumptions in these analyses which remain completely
unexplored (see below). It is the purpose of this paper to
examine the theoretical foundations of the Sullivan-
Thomas approach. This is accomplished by investigating
the consequences of the exact symmetries such as C-

conjugation, electromagnetic (EM), and baryon current
conservation and approximate symmetries such as isospin

SU(2)f. We find on the basis of EM current conservation

that there are exactly two graphs contributing to in-

clusive deep-inelastic scattering (DIS) pion electropro-
duction to O(g z&). They can be expressed in terms of
convolutions of the "smearing" and bare (valence) struc-
ture functions of the pion and the nucleon respectively.
C-conjugation symmetry, together with the assumption
of isospin symmetry, imposes a constraint on the two
convolutions [see Eqs. (3) and (4)]. The baryon current of
the valence quarks is found to be automatically conserved
if the EM current conservation and the joint C-

conjugation and SU(2)f symmetry constraints are
satisfied. Furthermore, we find that the shape of the nu-

cleon smearing function g&(y) is to a large extent model

independent and that the Berger-Coester-Wiringa-
Thomas (BCWT) [5,8] conjecture g„(1—y}=giv(y} is aP-

proximately satisfied if all exact symmetry constraints are
imposed. Gottfried sum rule violation data [6] are used
to obtain a band of allowed values for the parameters
describing the off-shell behavior of the zNN vertex func-
tion normalized to g zz = 13.6.

We start by examining the EM current conservation of
inclusive (e, e') pion electroproduction to O(g hatt} at ar-
bitrary Q and v. We use two exact results: (i) The opti-
cal theorem relating the inclusive (total) electron scatter-
ing cross section and the imaginary part of the forward
virtual photon Compton amplitude. (ii) The Ward-
Takahashi (WT) identities for composite hadrons (m, N)

EM vertices with one (first kind) [9] and two external
photons (second kind) [10].

First, we construct an EM current conserving (gauge
invariant) virtual photon Compton scattering amplitude
to 0 (g ~iv) with pions and nucleons with structure, i.e.,
with EM form factors. Here we use the methods
developed by Gross and Riska [11]. The result is a set of
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FIG. 1. The two Feynman diagrams appearing in the deep-

inelastic inclusive pion electroproduction: (a) the "Sullivan pro-
cess" diagram; (b) the "nucleon recoil" graph. The wavy line is

the incoming virtual photon, the solid line the nucleon, and the

dashed line the meson (pion). X denotes arbitrary final states

with baryon number 0 (a), or 1 (b).
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5Fz =f dyg (y) 2Fz ' —+Fz~ X

5Fz~„=f dyg (y) 2F' ' —+Fz~
x

4

(2)

5Fz = f dyg~(y) 2Fz „' + (b) X
2~p

5Fz „=f dy g~(y) 2Fz ' X F(.b)
2, 1l

of the "smearing functions" g (y) and gz(y) and the bare
(valence quark} pion and nucleon DIS structure functions
Fz"' ~(x ). Here

y „ tlg~NN(t)l ~ (yMN)'
g (y)= dt, t

(4~)z t,„(t+m')' 1 —y

24 Feynman diagrams where the two external photons
couple to the charged and neutral (due to nonzero form
factors} lines in the AN self-energy diagram in all topo-
logically distinct ways in addition to the pionic sea gull
graphs. One thing worth noticing is the appearance of a
new two-photon nucleon ("seagull") vertex, due to the
WT identity of the second kind:

e G„".=f'."( ez
—P 1 'Vz P 1 ) —I ."(—~2 Pz Pz+'Vz)

relating the new structure-induced nucleon "seagull" ver-
tex G„and the off-shell one-photon nucleon vertex I „.
It is the imaginary part of this graph in the forward
direction which describes the DIS from the nucleon.
Note that its existence is not precluded even if the left-
hand side of Eq. (1) is zero; this only implies that this ver-
tex is separately gauge invariant. Returning to the
Compton scattering graphs, we choose the forward
scattering kinematics and take the Bjorken limit
(Qz, v~ oo;0 x =Qz/2Mv+ 1). All but four graphs
containing seagull vertices vanish due to the rapid decay
of elastic form factors in the Q ~ oo limit. Two of these
[Figs. 2(a) and 2(b)] serve to renormalize the bare nucleon
[O(g ~z] term, while the other two [Figs. 2(c) and 2(d)]
are nontrivial contributions. To obtain their imaginary
parts, we use Cutkosky rules [12] which immediately
yield the two graphs in Fig. 1 previously discussed in the
literature. This derivation is not just an academic exer-
cise: it establishes that the four graphs in Fig. 2 are the
complete gauge invariant set to 0 (g zz ) in models with
m and N degrees of freedom only [13]. The four graphs in
Fig. 2 are separately gauge invariant in DIS, but that is a
consequence of the forward scattering condition and the
Bjorken limit and their contributions are expressed in
terms of convolutions:

(a)

(c)

/

P

FIG. 2. The four Feynman diagrams describing the forward
virtual Compton scattering from the nucleon in the deep-
inelastic limit, to O(g»). The first two graphs (a), (b) ensure
(finite) renormalization of the Born, i.e., O(g»), graph. The
second two graphs (c), (d) are nontrivial contributions whose
imaginary parts correspond to graphs in Figs. 1(b) and 1(a), re-
spectively.

where m = 140 MeV, MN =940 MeV, and

g n NN ( t p ~ ) g m NN (p n, MN ), .

~ NN( PN} g NN( PN}

where Z is the (finite) bare nucleon probability which is
less than 1 due to the finite renormalization induced by
the n.N se1f-energy insertions in Feynman diagrams in
Figs. 2(a) and 2(b). Note immediately that 5Fz does not
contribute entirely to the ocean quark distribution be-
cause the charged pion carries one valence dressed nu-
cleon quark. Consequently, 5Fz is not entirely valence
quark distribution either: one of the quarks belongs into
the ocean.

The charge conjugation symmetry requires that the
zeroth moment of the ocean quark distribution equal the
zeroth moment of the ocean antiquark distribution [14].
This requirement places a constraint on the zeroth mo-
ments of the ~ and N convolutions. To see this,
remember that the d quark in m. + is accompanied by a d
quark in the neutron. Integrated values of these two con-
tributions have to be equal,

f dx f g„(y}d'"'

are the m and N off-shell dependences of the mNN vertex
function, respectively. Here we assumed that the off-shell
structure functions Fz bj (x,P ~ ) equal the on-shell
ones. The dressed nucleon structure functions F~z z equal

F'" =ZF''b'+5F;+5F"

2m y lg ~~(t}l
(4 ) t" (t+M ) =f 'dx f '"yg„(y)d„"—

0 x
(3)

2
N ~ 2
min =y MN

1 —y
and similarly for the u quark in m and a u quark in the
proton,
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FIG. 8. Check of the BC' ansatz for the exponential forms ofg»(t) and g»(t): gN(y) and g (1—y). The curves are normal-
ized to the following values of n: 0.062, 0.054, 0.047. For g (1—y): long dashes (a =0.054), short dashes (a„=0.047), solid
(a =0.043). For gz(y): dashes-triple dots (a&=0.10), dashes-double dots (a&=0.04), dashes-dots (a&=0.00). g &N(t) is given by
Eq. (9), but with a instead of a&.

ter a~. Contrary to the monopole case, the "pion num-
ber" n can never exceed the value of 0.062, which lies
within the experimental bounds n =0.07+0.03, and is
achieved for az =0. This feature is readily understood if
one remembers the definition of gz(y): the integral over
dt is finite even with g tttt(t) = 13.6, i.e., az =0, and thus
provides the maximal possible value of n. It is interest-
ing, though, that simple improvement on the experimen-
tal error bars could eliminate this model.

(iii) The Gaussian nucleon off-shell dependence:

g N~(t)=13. 6exp[ —p(t/M~+1) ], (10)

which is motivated by Speth and Tegen's [18]quark mod-
el predictions. Unfortunately, this calculation is nonrela-
tivistic and hence does not allow a unique expression as a
function of t. Once again (Fig. 6), gz(y) peaks at y =yo
and, again, there is a limiting value for n(p) at p=0, for
the same reasons as in point (ii) above.

We have witnessed a curious model independence of
the position of the peak of g~(y), and to a lesser extent
model independence of the shape of g~(y). The former
has a straightforward explaination when one remembers
the definition of g&(y) and the fact that all three g zz(t)
considered are monotonica11y decreasing for
t ) —(M~ —m„) . Now note that the maximum of the
integral appearing in g~(y) is completely determined by
the minimum, as a function of y, of t;„(y). The extremal
condition dt (y ) /dy =0 readily leads to y,„=yo=
1 —m /M&.. Thus, we have established the invariance of

the position of the peak of gN(y), for all monotonically
decreasing g„AN(t), for t & (MN —m—„) .

This result is particularly appealing because it allows a
simple parton model interpretation: g„(y) and g~(y)
would be the probabilities of finding a "m. parton" or an
"N parton" (bare nucleon), respectively, with momentum
fraction y in the "dressed nucleon, " if the intrinsic DIS
structure functions of these "partons" F tv(x) were
pointlike, i.e., Dirac 5 functions. Then it is intuitively
clear that a "m parton" with mass m is most likely to
carry the (m„/Mz) fraction of the total momentum, i.e.,
that g (y) ought to peak at y =m /M& =0. 15, and that
the bare nucleon is most likely to carry the complement
to unity of the pion's momentum fraction. This argu-
ment is the motivation for the BCWT ansatz
gN(y) =g„(1—y), but unfortunately all studies conducted
so far [1—5] have shown that the position of the max-
imum of g (y) is a sensitive function of the mNN form
factor g &tv(t) We check t.he validity of this ansatz for
our models [cases (ii) and (iii) are treated as one due to
their great similarity] and find that in case (i) only the
gross features coincide (Fig. 7), while in case (ii) (Fig. 8)
the agreement is much better, although not perfect. We
find it very surprising that this basically kinematic con-
straint is so restrictive on the form of the ~XX vertex
function and intend to investigate this relation further.

We would like to thank Professor J. Speth for a useful
conversation on the topic of this paper and P. Henning
for help with the numerics.



1114 V. DMITRASINOVIC AND R. TEGEN 46

[1]A. J. Thomas, Phys. Lett. 126B, 97 (1983).
[2] L. L. Frankfurt, L. Mankiewicz, and M. I. Strikman, Z.

Phys. A 334, 343 (1989).
[3] S. Kumano, Phys. Rev. D 43, 59 (1991);43, 3067 (1991).
[4] W-Y. P. Hwang, J. Speth, and G. E. Brown, Z. Phys. A

339, 383 (1991).
[5] W. Melnitchouk, A. W. Thomas, and A. I. Signal, Z. Phys.

A 340, 85 (1991).
[6] P. Amaudruz et al. , Phys. Rev. Lett. 66, 2712 (1991).
[7] J. D. Sullivan, Phys. Rev. D 5, 1732 (1972).
[8] E. L. Berger, F. Coester, and R. B. Wiringa, Phys. Rev. D

29, 398 (1984).
[9] J. C. Ward, Phys. Rev. 7$, 182 (1950); Y. Takahashi, Nuo-

vo Cimento 6, 371 (1957).
[10]T. D. Lee, Phys. Rev. 128, 899 (1962); D. Kusno and M. J.

Moravcsik, Phys. Rev. D 20, 2734 (1979).
[11]F. Gross and D. O. Riska, Phys. Rev. C 36, 1928 (1987).
[12]R. E. Cutkosky, J. Math. Phys. 1, 429 (1960); C. Itzykson

and J. P. Zuber, Quantum Field Theory (McGraw-Hill,
New York, 1980).

[13]We recognize the need to include 5, but hasten to point
out that there are no WT identities and no experimental
data or theoretical predictions for 5 DIS structure func-
tions in the literature. The former is necessary for the
proof of gauge invariance (which is not obvious in this
case due to possible Xb transition seagulls); the latter is

needed as input into the convolutions.
[14] In this context, the observation by S. J. Brodsky and I.

Schmidt, Phys. Rev. D 43, 179 (1991), does not make a
difference because we are dealing with the integrated dis-

tributions.
[15]G. B.West, Phys. Rep. 18, 263 (1975).
[16]K. Gottfried, Phys. Rev. Lett. 18, 1174 (1967).
[17]Our discussion of the Gottfried sum rule is essentially

equivalent to the one given by Melnitchouk et al. [5]. The
only difference is in the rigor: They postulate the necessity
of the nucleon recoil graph and of the Born graph renor-
malization, whereas we proue it.

[18]J. Speth and R. Tegen, Nucl. Phys. A511, 716 (1990).


