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Inclusive quasielastic and inelastic scattering from nuclei and nuclear matter is analyzed within the

plane wave impulse approximation. Theoretical results obtained using model spectral functions includ-

ing the effects from nucleon-nucleon correlations are presented and compared with results obtained with

realistic many-body spectral functions for He and nuclear rnatter. The sensitivity of quasielastic and in-

elastic nuclear structure functions to different prescriptions for the off-shell behavior of nucleons is in-

vestigated in both the x & 1 and x ) 1 kinematic regions. Results indicate that the inelastic scattering in

the x ) 1 region will only be important at momentum transfers above 8 {GeV/c) .

PACS number(s): 25.30.Fj

I. INTRODUCTION

Inclusive electron scattering off nuclei represents a
powerful tool for investigating the effective constituents
of hadronic matter and their dynamics (see, e.g., [1]). As
a matter of fact, experiments performed in different re-
gions of the four-momentum (Q ) and energy (v)
transfers, can provide unique information on different
constituents of nuclei: (i) in the region of quasielastic
scattering (v Q /2MN, MN is the nucleon mass), an
analysis of the experimental data in terms of y scaling
(see, e.g. , [2] and [3])provides information on nucleon dy-
namics in the hadronic medium, in particular on nucleon
momentum distributions [3]; (ii) in the region of inelastic
scattering (v & Q /2Mtv+M„, M is the pion mass), nu-
cleon resonances are excited allowing a study of how the
nuclear medium modifies their properties; (iii) in the re-
gion of deep inelastic scattering [W&2 GeV, Q &1
(GeV/c), %being the invariant mass of the final hadron-
ic state] possible modifications of the quark and gluon
distributions induced by the nuclear medium can in prin-
ciple be investigated [4]. These three regions are never

completely separated one from each other, and the possi-
bility that one or more processes contribute in the kine-
rnatic region where one particular process is expected to
be dominant, has always to be carefully considered. Typ-
ical cases, in this respect, are the inelastic contributions
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in the region of y scaling, where quasielastic scattering
from nucleons is expected to be the leading process and,
conversely, the quasielastic contributions in the deep in-
elastic region, particularly at high 8' and for values of
the Bjorken variable x =Q /2M+v greater than l. It is

therefore necessary to have under control a theoretical
treatment of the inclusive cross section in the whole
range of momentum and energy transfer, so that the con-
tributions from various processes can be clearly
identified. To this end, a careful treatment of nuclear
structure effects is a prerequisite, which means that the
energy and momentum distributions of nucleons have to
be taken into account through the use of realistic spectral
functions. It is the aim of this paper to present a
thorough theoretical treatment of quasielastic and inelas-
tic inclusive cross sections and compare them with avail-
able experimental data for few-body systems, complex
nuclei and nuclear matter. The main points which will be
considered in our paper concern the following: (1) the
treatment of nuclear structure in terms of spectral func-
tions characterized by the momentum and removal ener-

gy distributions which are generated by nucleon-nucleon
correlations; (2) a comparison of such a treatment with
the commonly used Fermi smearing procedure, in which
nuclear effects are taken into account only in terms of nu-
cleon momentum distributions, i.e., by disregarding nu-
cleon binding effects; and (3) the eff'ects of various off-
shell extrapolations of the free nucleon structure func-
tions on the inclusive electron-nucleus cross section.

Our paper is organized as follows. In Sec. II the gen-
eral structure of the inclusive cross section in plane wave
impulse approximation (PWIA) is discussed, paying par-
ticular attention to off-shell effects, current conservation,
and the nucleon spectral function; various forms of the
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quasielastic and inelastic cross sections, corresponding to
different off-shell prescriptions are given in Sec. III; the
comparison between theoretical calculations and experi-
mental data is presented in Sec. IV; the effects of inelastic
contributions on the y-scaling analysis of data in the x ) 1

region are shown in Sec. V, and the effects of quasielastic
scattering on the extraction of deep inelastic nuclear
structure functions at x & 1, are illustrated in Sec. VI. A
summary and our conclusions are presented in Sec. VII.

II. INCLUSIVE ELECTRON-NUCLEUS SCATTERING
IN PLANE WAVE IMPULSE APPROXIMATION

A. The nuclear response

The inclusive cross section for electron scattering by a
nucleus A in first Born approximation, depicted in Fig. 1,
is given in the laboratory system by the following expres-
sion (see Appendix A):

d 0
dn de2

RL (Q, W)+ — +tan —Rr"(Q, W)

2=a M„, W2" (Q, W)+2 tan —W,"(Q,W) (2)

where o M,«=a cos (8/2)/4etsin (8/2) is the Mott cross
section, Q = —

q =q —v =4e,@&sin (8/2)) 0 is the
squared four-momentum transfer, 8 is the scattering an-

gle, and W =(P„+q)=M„+2M„v—Q is the invari-
ant mass of the nucleus [in this paper a four-vector is
denoted by a:—(ao, a) and a =ao —a ]. The relation be-

tween the longitudinal (RL" ) and transverse (R z" }

response functions and the response functions W& and

Wz, which we adopt in this paper, is

W" (Q W) =—'R "(Q W) (3)

W" (Q W}= R "(Q W)+ — R "(Q W)
n

The explicit evaluation of the response functions W, and

W2 within microscopic nuclear structure requires a mod-
el for both the hadronic current and the initial and final
nuclear states. The plane wave impulse approximation
(PWIA), which is depicted in Fig. 2, is used throughout.
The four-rnomenta of the initial nucleus A, of the bound
off-shell nucleon N, of the final nucleon state A —1 and

of the final hadronic state X, are

P„=—(M„,O),

PA —1=((P ™A—1) P)

Z—= (Po P»
px—=«pX'+M&}'" px»

where pg =p+q nd Ma —
&
=~a —)+Ea —i. ~a —i and

Ef', are the mass and intrinsic excitation energy of the
final (A —I)-nucleon state, respectively. The PWIA al-
lows one to express the nuclear responses W&"(2~ in terms
of a convolution integral involving the nucleon spectral
function P (p, E) (representing the joint probability of
finding in the target nucleus a nucleon with momentum p
and removal energy E=M„',+M& —M„), and the
electromagnetic response functions 8'&~'z~ for an off-shell

PA A-1

PA

FIG. 1. Inclusive electron-nucleus scattering diagram in the
one photon-exchange approximation. k I(&)

= (pl(2), E'i(2) )

represents the initial (final) electron four-momentum,
q=(v, q)=k, —kz (g = —

q =q —v }, the four-momentum

transfer, and P„=—(M„,O) and P~ the four-momenta of the ini-

tial and final nuclear systems, respectively.

FIG. 2. Impulse approximation diagram for electron scatter-

ing off nuclei. The four-momenta in the laboratory system are

P„=(M„O) P,=((p2+M~, )'/ —p) p =(M„—(p
+M& &

)'/, p), and pz =((pz+Mz)'/, p&) and refer to the ini-

tial nucleus A, to the recoiling final A —1 system, to the struck
nucleon, and to the final hadronic system at the nucleon vertex,
respectively.
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nucleon. However, it is well known that the PWIA,
based on the assumption that the nucleon current is the
sum of single nucleon currents, does not satisfy current
conservation, moreover, there are many ways the free nu-

I

cleon structure functions can be extrapolated off-shell.
As a result, the nuclear response functions do not have a
unique form. Their general form can be written in the
following way (see Appendix B):

Wii2i(Q W)= f dp f dEZP ( ipse E)[Ci(2iWi' (Q W p )+D i2)W)' (Q W p )]

+(similar terms for the neutrons),

where Z is the number of protons, Wii'zi (N=p, n) are
the off-shell nucleon structure functions, Q is the
squared four-momentum transfer, W is the invariant
mass of the knocked-out hadron, and p is the four-
momentum squared of the struck nucleon. C,~2i and

D,~2i are kinematic factors whose explicit form depends
on the way the oF-shell nucleon is treated and, finally,
P (ipse, E) is the nucleon spectral function. From Eq. (9)
it can be seen that two basic ingredients are necessary in
order to calculate the nuclear response W&~2i. the nu-
cleon spectral function P (ipse, E) and the off-shell nu-
cleon responses W, ~'z'i. For both quantities a practical
choice has to be made, for, as is well known, realistic
spectral functions exist to date only for A =3 [6—8] and
nuclear matter, [9] and, in addition, several prescriptions
for the off-shell extrapolation of the nucleon response can
be adopted (see next section).

p =—(M~ (p'+M~"-i )'" p»
Q2Q2q2q2v2

(loa)

(lob)

B. OfF-shell extrapolations and
current conservation prescriptions

In this paper we follow three different prescriptions to
treat off-shell effects and current conservation: (a) the
prescription of [10], initially introduced to treat inelastic
and deep inelastic channels, and extended here to quasi-
elastic (q.e.) channels, according to which

I

inelastic channels. In this prescription the bound nu-
cleon interacting with the virtual photon is considered to
be on-shell and current conservation is enforced as in
prescription (b):

p—=P=«MN+p')'" p» (12a)

Q2 Q2 — q2 —q2 —2

7=v —(M +p )' +M —(p +M' )'

W =(p+q) =(p+q)
W ' (g W )=W '"(g W).

(12b)

(12c)

(12d)

(12e)

It is worth pointing out that the three prescriptions have
in common the following features: (i) The off-shell nu-
cleon structure functions do not include dynamical
modifications and, therefore, they are assumed to have
the same form as the free ones [cf. Eqs. (10d) and (12e)),
without any further dependence upon the invariant p .
(ii) Both the invariant mass, W, and the component
pii=(p. q)/iqi of the off-shell nucleon are the same [cf.
Eqs. (10c) and (12d)] so that the mapping of the off-shell
to the on-shell structure functions is carried out unambi-
guously in all prescriptions. In addition, no ambiguity is
introduced in the treatment of the energy conserving 5
function which appears in the q.e. cross section (see Sec.
III), thus implying that off-shell effects do not affect the
analysis of such cross sections in terms of y scaling (see
Sec. V).

W =(p+q)
WN off(g 2 W p2) WN, on(g2 W) .

(10c)

(1od)

C. The nucleon spectral function
and momentum distributions

(b) the same prescription as in (a) but with current con-
servation enforced by taking for the time-transverse com-
ponents of W„' the same form as for the free nucleon
hadronic tensor W„,and by determining the longitudi-
nal ones from the condition

WN, off WN, offq 0 .
p pv pv v

(c) the prescription of [ll] which was introduced to treat
quasi-elastic channels, extended here to inelastic and deep

I

The nucleon spectral function P ( i p i, E) appearing in
Eq. (9) represents the joint probability of finding in the
target nucleus a nucleon with momentum ipse and remo-
val energy E or, equivalently, the joint probability distri-
bution that, after a nucleon with momentum ipse has been
removed from the target, the ( A —1) system is left with
excitation energy E„*&. By disregarding, only for ease of
presentation, any difference between the proton and the
neutron spectral function, P ( i p i, E) can be defined as
follows (cf. Appendix B) [12]:

PN(i
i E)— y &

iIrJMi t~ gE (p E )) i@1M& (13a)

, y y 1&qf, , l...lq'„&I'S«—(Ef, —E„)),
Mcr f
(2') g g fdze'i'*Gf ' (z) 5(E (Ez~ i E„)), — —

Mcr f

(13b)

(13c)
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where a (a ) is the creation (annihilation) operator
of a nucleon with momentum p and spin o, Pz &

the in-
trinsic Hamiltonian for the A —1 interacting nucleons,
and %~ the eigenfunction of the ground state of the
Hamiltonian for the A-nucleon system (with eigenvalue
E„,total angular momentum J, and third component M).
The function G&

' (z) in Eq. (13c) is the overlap integral

GM, a( )

i)lq"w (xi, . . . ,x„„z))

where Ps, (lpl, E)=n, (lpl)5(E E—
,„). yields the proba-

bility distribution that the final A —1 system is left in its
ground state (corresponding to Ez', =0 and
E=E;„=MA,+M~ M—„),whereas P,„(lpl,E) yields
the probability distribution that the final A —1 system is
left in an excited state with excitation energy
E~*,=E—E;„.The exact relations between the spec-fy

tral function and the momentum distribution will be used
in what follows

n ( Ipl ) =(2m ) f e'&'* *'p(z, z')dz dz'

(14)
=f,

"
P"(Ipl, E)dE,

min

(17)
between the eigenfunction %~ and the eigenfunction

(with eigenvalue EI,=E„,+E~~*, ) of the
state f of the intrinsic Hamiltonian P„&pertaining to
the system of A —1 interacting nucleons, g' represent-
ing a spin wave function. Since the set of states f in-
cludes also continuum states of the residual A —1 sys-
tem, the sum over f in Eq. (13) stands for a sum over the
discrete states of the A —1 system and an integration
over the continuum states. The spectral function, which
is normalized according to

fP ( p, E)d p dE =1,

where p(z, z') is the nondiagonal one-body density ma-
trix. Eq. (16}holds for any value of A but for a complex
nucleus it is also useful to adopt another representation
of the spectral function in which the ground state of the
A —1 system and its excited states represented by one-
hole excitations are explicitly separated out from more
complex configurations, e.g. , one-particle-two-hole
states, which can be reached when two-particle-two-hole
states in the target nucleus are considered. One has [13]

P
(I pf, E=}Pa(lpf,E)+PP( fpl, E), (18)

can be represented in the general form [7,9]
P"( pl, E)=Ps, (lpl, E}+P,".(I I,E}, (16) with

I

Po (lpl, E)= (2m) ' g g fdze"*G. (z) &(E—le. l }
1

Mo. a

A
n ( Ipl )&(E —le. ),

a

p~(lpl, E)= (2~) ' g g f dze'~*Gz (z) 5(E —E, ),1

M, o fWa

(19)

(20)

where n (Ipl) is the hole state momentum distribution
with single particle (s.p. ) energy e and nucleon number
A (g A = A), the sum over a runs only over hole
states of the target, and E, =Ez* &+E;„.Within the
Hartree-Fock (HF) approximation, PP(IpI, E)=0, and
the HF spectral function, viz.

HFPHF(lpl, E)=& n.""(Ipl)&(E—Ie.l), (21)

is recovered. The main di6'erence between n (Ipl) ap-
pearing in Eq. (19) and n "

( I p I ), concerns their normali-
zation, or hole state occupation probability;
S = fn~(IpI)dp and S "=f n "(Ipl)dp, respectively;
in fact, due to ground-state correlations, S ( 1, whereas
S "=1;correspondingly, for a particle state i, S, )0 and
S, "=0. For an extended system like nuclear matter, the
hole part of the spectral function can be cast in the fol-
lowing form [9]:

Po (Ipl, E)=,Z(lpl)O(pF —Ipl@(E+e( Ipl)),3

4mpF

(22)

I

where Z(lpl) is the hole strength, e(lpl) is the hole
single-particle spectrum, and pF is the Fermi momentum
[in absence of nucleon-nucleon ( NN ) correlations
e(lpl)=p /2M~, Z(lpl)=l and the usual Fermi gas
spectral function is recovered]. It should be pointed out
that in Eq. (19) the finite width of the hole states generat-
ed by NN correlations has been disregarded; such an ap-
proximation has minor effects on the inclusive cross sec-
tion we are interested in (see Sec. IV 8 and [14]). It is
clear from the very definition of the spectral function
[Eq. (13)] that its evaluation implies the knowledge of the
whole spectrum of continuum and excited states of the
A —1 nucleon system. It is for this reason that
P ( Ipl, E) has been calculated to date only for He [6—8]
and for nuclear matter [9]. In this paper we use for the
three-body system a spectral function obtained in [7]
within the variational approach, whereas model spectral
functions proposed in [14] and [15] are adopted for com-
plex nuclei and nuclear matter, respectively. Such spec-
tral functions are of the form given by Eq. (18} with
PP(l pl, E) obtained [15] from an extended version of the
two-nucleon correlation model of [5]. The main feature
of P, (Ipl, E) is the presence of high momentum and high
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removal energy components generated by two-nucleon
correlations. Its explicit calculation performed in [15]for
three-body systems and nuclear matter shows a very good
agreement with the corresponding microscopic realistic
spectral functions [7,9]. Such an agreement in the case of

[9] indicates that the modeling of three-body breakup
processes associated with two-hole —one-particle inter-
mediate states [9] by means of the two-nucleon correla-
tion mechanism [5] yields a reliable representation for
P"(Ip I,E)

III. THE QUASIELASTIC AND INELASTIC CROSS SECTIONS AND THE OFF-SHELL PRESCRIPTIONS

The inclusive elastic and inelastic cross sections will be written in the following form:

=oM„, W2"'(Q, W)+2 tan —W)"'(Q, W}2~ ~- 2

d Qd@2
(23)

where i refers to "quasielastic" or "inelastic and deep inelastic" and

w,",2', (Q', w)= fdp fdEZF (lpl, E)[c„„w(g', w,p'}+D„„w~'(g',w,p')]

+(similar terms for neutrons) . (24)

In Eq. (24) (where we used the notation W ' '—:W ') the coefficients C&~2~ and D, ~2~ are the same for quasielastic

(q.e.) and inelastic scattering and take the following form, depending upon the oF-shell and current conservation
prescriptions:

C)=1, D)=
2MN

(25a)

2

C2=0, D2= 1+ +P &~~ Q'
MNv 2Mg, Iql'

' (25b)

with
p~~

=p.q/Iql in prescription (a};

Ci=1, Di=
2M

2 2.

Iql' 4 e}
' '

. (w}lql
+P ~ii Q'

Iql'
'

(26a)

(26b)

in prescription (b);

Ci=1, Di=
2MN

—
2

2.
c,= Q', 1 —Q', , D, = 1+ '~~

Iql' g' ' '
(rq)lql M„v 2M„' Iql'

'

(27a)

(27b)

in prescription (c). The difference between q.e. and inelastic scattering is given only by the form of the nucleon struc-
ture functions W&~'z~. For q.e. scattering [the final hadronic state IX ) = IN ) is a nucleon in its ground state with four-
momentum pN

—=((pz+Mz)', pz) with pN=p+q] one has

2 2MN M
W, '(Q, W)= [F,(Q )+aF (Q )],5(E +v E'), — (28a)

W""' (Q ' W) = F'(Q ')+~' F'(Q ') MN MN
5(E +v E'), —

4M2
N p p

(28b)

where F, 2 are the elastic electron-nucleon form factors corresponding to a given parametrization (in our numerical cal-
culations the one in [16] has been used); E =po and E'=[(p+q) +M&]'~ [note that (Mz/E')5(E +v E') is-
equivalent to 2MN5( W —MN)]. In case of inelastic (the final hadronic state IX) = IN ) represents a nucleon reso-
nance) or deep inelastic scattering ( IX) is a jet of hadrons), both the dependence upon the invariant mass W and the
momentum transfer Q of the nucleon structure functions are usually parametrized to fit the experimental data. In this
paper the parametrization of [10],which is given in both the resonance and deep inelastic regions, has been adopted. If
prescription (c) is used, it is worthwhile writing the cross section for q.e. scattering in the frequently used form
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dE dpP p, E Zo., q, v, p, E +No. ,„q,v, p, E 6 v'+My E~ Pg I p
2 q. e.

(29)

where and o.,~( ~q~, v, ~p~, E) is the electron-nucleon cross section (without the fiux factor) for scattering by an off shell
nucleon with momentum p, i.e., [11],

EE' q

20+ tan —+ p (F +'TK F )+ (F +aF).
2

where the form factors F, and F2 are evaluated at Q =Q and r=Q /4M'.

(30)

IV. COMPARISON OF THEORETICAL CALCULATIONS
WITH EXPERIMENTAL DATA

In this section the theoretical inclusive cross section
given by the sum

0
d Qde2

0 d 0
d Qde2 dQde2

(31)

is compared with the experimental data for He, He, ' C,
Fe, and nuclear matter, obtained in [17—19] in a wide

range of values of momentum and energy transfers.
The aim of such a comparison is to thoroughly analyze

how the inclusive quasielastic and inelastic cross sections
are affected by nuclear structure and by various types of
off-shell extrapolations of the free nucleon structure func-
tions. The results of calculations obtained by using a
specific model for both the spectral function and the off-
shell prescription are presented in Sec. 4.1; various spec-
tral functions are compared and the effects of nucleon-
nucleon correlations are illustrated in Sec. IVB; in Sec.
IV C the results obtained with the simple Fermi-motion
smearing procedure are shown and, finally, in Sec. IV D
the sensitivity of the cross sections to different off-shell
prescriptions is analyzed.

A. Results for He, He, ' C, Fe, and nuclear matter
and efFects of nucleon-nucleon correlations

We calculated the quasielastic and inelastic cross sec-
tions according to Eqs. (23) and (24) by using the spectral
function (18) and the off-shell prescription (c) [Eqs. (27a)
and (27b)]. Such prescription allows us to compare our
results with the ones of [20] and [21], where the same
treatment of the off-shell nucleon has been adopted for
He and nuclear matter, respectively. The main in-

gredients of the spectral function Pp are the hole state
occupation probabilities, S—:Sp, and the hole energies,
e (see Sec. II C). In agreement with recent many-body
calculations, we adopted the following values for S:
5 =0.80 for He [22,23], ' C [24], and ' Fe [25],
S =0.75 for nuclear matter [9]; the values of the hole en-

ergies e have been taken from (e,e'p) reactions [26]. As
for the evaluation of the spectral function P, ( ~ p ~,E ), one
essentially needs to know the nucleon momentum distri-
butions and mean removal energies; such quantities have

also been taken from many-body calculations (see [14] for
details). The results of calculations for He, He, ' C,

Fe, and nuclear matter are given in Figs. 3, 4, 5, 6, and
7, respectively. They are presented both on linear and
log scales; the former better shows the difference between
experimental data and theoretical calculations in the re-
gion of the q.e. peak (v=v „k,x =1) and inelastic chan-
nels (v & vp„„,x & 1), whereas the latter is better suited to
illustrate the region of y scaling (v& v„„k,x & 1). An
analysis of the results presented in Figs. 3—7 allows one
to observe some features which are common for all nuclei
considered, viz. the following:

(i) The quasielastic region is fairly well reproduced, ex-
cept for a systematic discrepancy at low energy transfer,
which decreases with increasing momentum transfer;
such a discrepancy, most likely, should be ascribed (see
e.g. , [21,27 —29]) to the effects of final state interaction
(FSI) between the ejected nucleon and the final A —

1 sys-
tem, which is disregarded in the PWIA. (ii) At low
momentum transfer, the "dip" region between the quasi-
elastic and inelastic channels is underestimated by an
amount which decreases with increasing momentum
transfer. (iii) In the region of momentum transfer
covered by the present experimental data, the contribu-
tion of inelastic channels at low energy transfer is ir-
relevant, which means that the analysis of the data in
terms of y scaling (see [2] and [3]) is well justified. (iv)
For He and nuclear matter our results are in very good
agreement with the ones of [20] and [21], respectively, ob-
tained with many-body spectral functions resulting from
accurate solutions of the many-body Schrodinger equa-
tion with realistic interactions. This point will be dis-
cussed in detail in the next subsection.

The separate contributions of Pp and P, to the quasi-
elastic and inelastic cross sections are shown in Fig. 8 and
Fig. 9, in order to better illustrate the effects of NN corre-
lations. It can be seen that the most evident effect of NN
correlations is to strongly increase the tails of the PWIA
cross sections through the contribution of P, . In particu-
lar, at the highest values of Q, the cross section at
v& v „k(x & 1) is almost completely exhausted by P, ,

both in its quasielastic and inelastic parts. On the con-
trary, at high Q and v& v „k(x & 1), the inelastic chan-
nels become dominant and the cross section is mainly
determined by the two-body breakup part of the spectral
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function, the three-body breakup p y' gart 1 in at least one
order of magnitude below.

B. Companson eb tween different spectral functions

m arison between resultsIn this section we present a comp
for He and nuclear matter obtaineed with the model spec-

nction of [15] and with variational spectral fune-

ral function which govern the be avior o
tion in PWIA at high momentumcl si e cross sec io

transfer are the following:
'

w
'in: i) the value o

nes the height of the quasielastic pea; ii
two- o y

'
the spectral function,two-body breakup contribution to e
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momentum transfer is of the same quality as the one
shown in the figure.

D. Comparison of various off-shell and

current conservation prescriptions

C. The Fermi motion smearing procedure

It was a common practice in the past to take into ac-
count nuclear effects by means of the so called Fermi
motion smearing procedure (see e.g. , [10]), i.e., by using
in Eq. (29) only the nucleon momentum distribution
n(~p~ ) and not the spectral function. In Figs. 11 and 12
the results of such a procedure are compared with the re-
sults obtained using the full spectral function (cf. Sec.
IV A). It can be seen that using the Fermi motion smear-
ing approximation yields cross sections that systematical-
ly overestimate the data for v & v „k.On the other hand,
at large values of v in the region of inelastic channels the
error is much less, although it should be remembered that
for the calculation of tiny effects, such as the EMC effect,
the spectral function has also to be used at v& v~, I, (cf.
[13]).

In this section we investigate the effects of using two of
the prescriptions for treating off-shell effects and current
conservation, presented in Sec. II B [prescriptions (a) and
(c)]. One of the motivations for such a comparison is
that, while several papers have been written in which off-
shell effects are investigated in the q.e., part of nuclear
cross sections (see, e.g., [30] and references therein), to
our knowledge, a similar analysis has been carried out for
the inelastic channels only in [20] in the case of He.
Moreover, since it has been impossible so far to treat ex-
actly gauge invariance in electron-nucleus scattering in-
volving a generic A-nucleon system, it is important to
have a qualitative understanding of the ambiguity that
one introduces in these calculations. Such information
can be obtained by comparing the results of two different
treatments of off-shell effects, as the ones leading to
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prescriptions (a) and (c). They represent two extreme
cases, as shown in Sec. II C in that in prescription (a) the
components of the four momentum transfer are the same
for both the nucleus and the internal nucleon, whereas in
prescription (c) the energy transfer to the nucleus is as-
sumed to be different from the one to the off-shell nu-
cleon. It should be noted that the coefficients C, and D,
[Eqs. (25)—(27)] are the same in all prescriptions, which
leaves, unchanged the response 8'& and, consequently,
the transverse response Rz-. The only difference is in the
coefficients C2 and D2, which affect the response 8'2,
and therefore RL". This rejects the way gauge invariance
has been restored in all considered prescriptions (see also
[20]). Since the experimental cross sections shown in this
paper are mainly transverse, it is expected that the two
different prescriptions should not lead to very different
results. Furthermore, the larger the momentum and the
energy transfers, the smaller the difference between the
prescriptions [it should be pointed out in this respect that
by taking exactly the Bjorken limit in Eqs. (26b) and

(27b), i.e., Q ~ oo, v~oo, and x fixed, any difference be-
tween the two prescriptions vanishes]. The results of our
calculations are presented in Fig. 13. It can be seen that,
while at Q =1 prescriptions (a) and (c) lead to a 10%
difference which persists in the whole range of v on the
right side of the quasielastic (q.e.) peak, at Q =3 GeV
the two prescriptions yield essentially the same results.

V. THE EFFECTS OF INELASTIC CHANNELS
ON THE QUASIELASTIC STRUCTURE FUNCTIONS

AT x ) 1 (y SCALING)

+(y, lql)= z +& &(y, lql)
~2(y, Iql )

Zo,~+No,
„

(32)

One of the most important aspects in the study of in-
clusive quasielastic scattering at x ) 1 is the extraction of
the y-scaling function from the experimental cross sec-
tion. The scaling function is defined by the following
quantity [2,3]:
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where o.z(y, ~ q ~
) = (d o /d Qd ez), , o,z ——do /d Q is the

off-shell electron-nucleon cross section, e.g. , Eq. (30), and
E (y, ~q~ ) = ~q~ /[M~+( ~q~ +y ) ]. The scaling variable y
is given by the solution of the following equation:

v+~ = [M~2+( Iql+y)']'"+ [M' +y']'" (33)

which represents the energy conservation corresponding
to the scattering of the virtual photon by a nucleon hav-

ing the minimum values of the momentum and removal
energy, ~y ~

=k,„(~q~,v, E,„).At high momentum
transfer the inclusive cross section (31), which appears in
the numerator of (32), factorizes to a good approximation
[2,3] and one can define the theoretical scaling function
as

max (» I ql ] k max [» I ql, ~&
F' (y, ~q~)=2m. f dE f dk kP(k, E),

min(~ lql, E]

(34)

where, for ease of presentation, we have defined for the
present section p ~—:k. In the asymptotic limit

( ~q~ ~ oo,y fixed), F'" scales in y and becomes the asymp-
totic scaling function [3].

F'"(y)=2m f dE f dk kP(k, E) . (35)
min min

The knowledge of the experimental asymptotic scaling
function F'" t(y) [i.e., the q-independent quantity (32)
with o

&
=o 2" ] in the region of negative values of y would

allow one to obtain the nucleon momentum distribution
[3]. As a matter of fact, in [3],by using for o 2" the same

experimental data considered in this paper, the scaling
function (32) has been used to obtain the asymptotic scal-

ing function and the nucleon momentum distributions in

the region 50~ k ~ 600 MeV/c. It should be pointed out,
however, that the y-scaling analysis of inclusive scatter-
ing relies on the assumption that the experimental cross
section to be used in (32) is totally quasielastic, without

any contamination from inelastic channels. In order to
check the validity of such an assumption, we have calcu-
lated the quantity (32) using, in the numerator, the quasi-
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elastic cross section as well as the sum of the quasielastic
plus inelastic cross sections. The results are presented in
Fig. 14 for two values of y. It can be seen that whereas at
y =0 the effect of inelastic channels is appreciable at
Q ~ 3 GeV, for negative values of y the contribution of
the inelastic channels to the scaling function becomes
non-negligible only for values of Q ~ 8 GeV . It can be
concluded therefore, that present experimental data up to
Q =3 GeV are quasielastic in nature and can therefore
be used to extract the y-scaling function and the momen-
tum distributions as in [3).

VI. THE DEEP INELASTIC STRUCTURE
FUNCTION AT x ) 1

Deep inelastic scattering at x ) 1 is very sensitive to
nuclear structure effects and to possible variations of the
quarks momentum distributions inside the nuclear medi-

um, since in this region the struck quark is carrying a
momentum fraction greater than that available in a free
nucleon [5]. Several calculations have shown in particu-
lar that the structure function F2"(x, Q )=v&2" (x, Q ) at
x ) 1 rejects very sharply the momentum and energy dis-
tributions of the spectral function [5,31,32,33], as well as
the presence of exotic configurations (e.g. , 6- and 9-quark
bags) in the nuclear wave function [34]. Experimental
data in the region 1 x ~ 2 in the Bjorken limit would be
therefore very effective in probing SX correlations as
well as different models of exotic configurations in nuclei.
As it appears from the results presented in the previous
sections, at x ) 1 the inclusive cross section at moderate
Q is dominated by quasielastic scattering. It is clear
therefore that, in order to extract the deep inelastic struc-
ture functions, experimental data at momentum transfers
much higher than that presently available are necessary.
This is illustrated in Fig. 1S, where the ratio of the quasi-
elastic cross section to the sum of the quasielastic pius in-
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strongly underestimated in the region at x ) 1, which is
dominated by the effects of nucleon-nucleon correlations.
Various calculations, using different approaches
[3,21,28,29], show that final-state interactions appreciably
affects the cross section at x ) 1 (y (0). A systematic
calculation of FSI effects on the cross sections considered
in the present paper is underway and will be reported
elsewhere. (ii) Except for the data at lower momentum
transfer, where the "dip" region is appreciably underes-
timated, the inelastic and deep inelastic cross sections are
fairly well reproduced. (iii) The Fermi smearing approxi-
mation strongly overestimates the quasielastic and inelas-
tic cross sections at x ~ 1 (even by an order of magnitude
at large x). (iv) The eff'ects due to the ambiguities related
to the off-shell extrapolation of the electron-nucleon cross
section and to the restoration of gauge invariance are not
relevant to the experimental data we have considered,
and become negligible at high momentum transfer.

(v) Our calculations show that the eff'ects of inelastic
channels at x ) 1 (y (0) is of minor role; this means, on
one side, that the existing data can be safely analyzed in
terms of y scaling and, on the other side, that they cannot
be used to extract the DIS structure function; to this end,

as already pointed out, a high energy (20 GeV) and high
luminosity electron beam would be necessary.
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APPENDIX A: THE INCLUSIVE CROSS SECTION
IN FIRST BORN APPROXIMATION

The inclusive cross section for electron scattering by
nuclei is

CT CX L„R'„ (A 1)
dQ, de, g'

with the leptonic and hadronic tensor given by
2

L„=k,„k2+k2„k, — g„p v 2 pv

and

~" =(2~)'& & J dPx&P~, ~~IJ„"(0)IPg,~x&&Pg, ~xl&.'(0)IP~, ~~ &&'(P~ —Px —q),

respectively. In Eqs. (A 1) and (A3), k,
~ ~)

—=(p, ~2), e,~2))

represents the initial (final) electron four-momentum,

q
—= (v, q) —=k —k2 (Q = —

q =q —v ) the four-

momentum transfer, and P„=(M„,O) the four-
momentum of the initial nucleus in the laboratory sys-
tem; ~Pxf, ax) denotes the final hadronic state X, with
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c.m. four-momentum Px and spin az. As is well known,
the general structure of 8'„which satisfies time-reversal
invariance and parity and gauge conservation is

1.0

W„"= —g„„+" W,"(Q W)

+ Pq+ q„
W,"(Q', W)

X
Mq

P~+ q

(A4)

By contracting the leptonic and hadronic tensors, one ob-
tains the well known formula for the inclusive cross sec-
tion

d2 =o M„,[W~"(Q, W)+2 tan —Wt" (Q2, W)] .
d Qd@2

(A5)

0
~ W

Q. 6

0
I I I I I I I 1 -P~

5 1Q 15 20

APPENDIX B: THE CROSS SECTION IN PLANE WAVE
IMPULSE APPROXIMATION

A

JA y N

N=1
(Bl)

(3) The target virtually decays into a onshell (A —1)-
nucleon system (in either the ground or excited states)
and an off-shell nucleon. (4) The virtual photon interacts
with the off-shell nucleon and a hadronic state is created,
which leaves the target without interacting [with eigen-
functions 4'z and %z &, respectively, corresponding to
the ground state of the A-particle Hamiltonian 8 and
to the state f of the ( A —1)-particle Hamiltonian „,]
with the spectator ( A —1)-nuclear system; this means
that the final hadronic state le, ax& has the following
form [for notations cf. Fig. 2 and Eqs. (5)—(8)]:

lPx ax & ~ [ l 4'x px & l'PI~ —i
—p & ] (B2)

In order to evaluate Eq. (1) within microscopic nuclear
structure, certain assumptions have to be done at the lev-
el of the matrix element of the hadronic current
(P„,a„l J„"(0)le,ax &. In this paper we shall consider
the nonrelativistic PWIA based on the following assump-
tions: (1) The states lP, a & are eigenfunctions of the non-
relativistic many-body Hamiltonian. (2) The current
operator J"is a sum of single-nucleon operators,

0.4

0.2

0.0
0

I I I I I I I I I I I I I T I I—

5 10 15 20

GeV

where A is a Pauli antisymmetrizer. Within the above
assumptions, the hadronic tensor takes the form

W„"„=Jdp J dE[ZP~(lpl, E)W„„'(p, q)

+&P"(lpl E)W„"':(p, q)], (B3)

where P (lpl, E) (X=p, n) is the nucleon spectral func-
tion

FIG. 15. Ratio between the q.e. contribution to the (e,e')
cross section for ' Fe and the total cross section (q.e. plus inelas-
tic), plotted vs Q' at two different values of Bjorken x: x =1
(top), x =1.5 (bottom). The solid lines were obtained by using
the spectral function of [14], whereas the dashed lines corre-
spond to the Fermi smearing approximation. It can be seen
that, at larger values of x, the two calculations yield sensibly
different results in the high-Q region.

(B4)

=y l(y, ,e~, le'„&I'S(E—(EI,—E„))
f

(B5)

representing the joint probability of finding in a nucleus a nucleon with momentum p and removal energyE=EI, E„=E;„+E~*„—with E;„=lE„l—lE„,l=MN+M„,—M„,where EI,=E„,+EI*, and E„
are the eigenvalues (with eigenfunctions %„and4„,, respectively) corresponding to the ground state of the A-
particle Hamiltonian 8„,and to the state f of the ( A —1)-particle Hamiltonian 8„&,E„&being the intrinsic excita-
tion energy. In Eq. (B3) W~' is the hadronic tensor for an off-shell proton (neutron) whose form is in principle un-
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known; a generally adopted approach is to assume that W„'"' has the same form as the one for a free nucleon, i.e.,

WP,'"'= —g„„+", WP'"'(g', W)+s„s. , (g', W),

(pq)
(B6)

Making several assumptions about the off-shell continuation of the different quantities which appear in Eq. (B5), we ob-
tain

Wp(n)off , g + P v Wp(n), off(0 2 W 2)+—s (g 2 W 2)
W((n), off

Pv Pv —2 1 ~p $&Sv 2 &p

N

s= p„+ q„
(B7)

where all kinematic variables have to be evaluated within the given off-shell prescription. Inserting Eq. (B7) in Eq. (B3)
and using Eq. (A4), it is a usual procedure to obtain the explicit form of W, (2) (Q, W) as a convolution integral involv-
ing the nucleon spectral function and Wp)'2" (Q, W,p ). It should be pointed out that because of off-shell effects
q„Wp„'""= Wp„'""q„AO and q„W„"„=W„"„q%0 so that current conservation is violated. Two strategies are fol-
lowed at this point: either the problem of current conservation is completely disregarded or gauge invariance is restored
by ad hoc procedures; the usual one is to keep some of the components of W$("" as given by Eq. (B7) (e.g., the trans-
verse and time ones as in [11])and to constrain the form of the other components (e.g., the longitudinal ones, [11])by
enforcing the continuity equation q„W~,'"" = W~'"" q„=0.Different choices for the off-shell kinematic variables
and for the restoration of current conservation will result in different forms for the convolution integral for W&[2~. The
general form can be written as

W,"(2)(Q, W) =f d p J dE ZPp( ~p~, E)[C)(2)Wp' (Q, W,p )+D, (2) Wp2' (Q, W,p )]+(similar terms for neutrons)

(B8)

where the dependence on the off-shell choice is incorporated in the coefficients C, [2] and D, [2].
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