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Double differential cross sections have been calculated for (p,p’) reactions on **Ni, '®Mo, and "’Au
targets at incident proton energies of 100, 120, 150, 175, and 200 MeV using the multistep direct nuclear
reaction code of Bonetti and Chiesa, which is based on the statistical multistep direct theory of Fesh-
bach, Kerman, and Koonin. Extensive comparisons are made with experimental data, and in general it
is found that the theory gives a good description of the angular distributions. There is evidence that the
predicted cross sections deviate more from experiment at very low and very high excitation energies of
the residual nucleus. The effects of uncertainties in the input parameters of the theory are also con-
sidered, as well as possible ways to improve the accuracy of the implementation of the theory.

PACS number(s): 24.60.Gv, 25.40.—h

I. INTRODUCTION

Many theoretical models are available to interpret the
continuum spectra of nucleon-induced inclusive reactions
[1]. These models span the full range from classical for-
mulations, such as the intranuclear cascade [2] model, to
fully quantum-mechanical treatments, such as the statist-
ical multistep reaction theory of Feshbach, Kerman, and
Koonin (FKK) [3,4]. Recently, Koning and Akkermans
[5] have presented a new leading-particle statistics theory
of multistep direct reactions, from which the FKK model
follows after some approximations. Furthermore, the re-
lationship between the various quantum-mechanical
theories and the semiclassical models, for example, the
generalized exciton model, is clearly explained.

Apart from the intrinsic physics contained in the vari-
ous theories, phenomenological simplifications are often
introduced in the models for calculational convenience,
and this may lead to further divergences between models
which claim to include the same physics. Consequently,
apart from the basics of a specific theory, the details of
the way in which various simplifications are introduced
in practical calculations are often very important.

Recently it has been shown [6,7,8] that the FKK
theory can be successfully applied to predict direct-
emission spectra of protons and neutrons induced by in-
cident protons at energies above 100 MeV. The extracted
strengths of the effective interactions have a reasonable
incident-energy dependence. Consequently, it now be-
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comes worthwhile to compare the FKK theory with an
even wider range of experimental data above 100 MeV in
order to investigate the variations with incident energy
and target mass.

In this paper we present the results of statistical mul-
tistep direct- (MSD) emission calculations of the angular
distributions for three targets at five different energies
ranging from 100 to 200 MeV, and make detailed com-
parisons with experimental data. In view of the large
body of data involved, and also the growing interest in
preequilibrium phenomena, we aim to give a more
comprehensive account of the systematics of the mul-
tistep direct calculations—the basic assumptions going
into the theory used (the statistical multistep direct
theory of Feshbach, Kerman, and Koonin), the various
options available in a specific calculation, and the
different factors which may influence the accuracy of
such calculations.

Important factors to be considered include the follow-
ing: (1) The level densities assumed, usually expressed in
terms of a level density parameter a. (2) Multiparticle
emission, which contributes to the experimental cross
section but is not considered explicitly in the theory, e.g.,
quasifree knockout, and the emission of other particles
such as deuterons and alphas. (3) Collective effects,
which are prominent at low excitation energies in the re-
sidual nucleus. (4) Limitations on the excitation of a
particle-hole pair in the first step (first encounter with a
target nucleon) of the multistep process. (5) Sensitivity of
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the calculations to the optical-model potential used. (6)
The effect of distinguishing between neutrons and pro-
tons in the multistep chain. (7) The effect of other as-
sumed forms for the two-body effective interaction. (8)
Variations in the value of the effective interaction for the
various steps. (9) Possible transitions between the mul-
tistep direct (P) and multistep compound (Q) chains in
the preequilibrium sequential decay processes.

In Sec. II, some experimental details are discussed.
The theory is presented and details of the calculations are
described in Sec. III. Section IV A consists of a compar-
ison between the theoretical and experimental angular
distributions of the (p,p’') continuum spectra at selected
emission energies, and Sec. IV B describes the incident-
energy and target-mass dependence of the extracted
strength of the effective interaction. The sensitivity of
the theoretical results with respect to the various factors
listed above is considered in Secs. IVB and IVC. Con-
clusions regarding the emission- and incident-energy
dependence of the various stages in the multistep chain
and a comparison with a quasifree-knockout description
of the first-step contribution are presented in Secs.
IVD-IVF. Finally, in Sec. V, a summary of the main
conclusions is given.

II. EXPERIMENTAL DETAILS

The experiment was performed at the cyclotron facility
of the National Accelerator Centre, Faure. An account
of the equipment has been presented in Ref. [9]. The data
for '®Mo were measured concurrently with those for
®Ni and °’Au, which have already been published
[10,11]. Details of the techniques used and other pro-
cedures can also be found in Refs. [10,11].

The %Mo target was a self-supporting foil enriched to
96% in '®Mo with a thickness of 1.1940.06 mg/cm? and
a uniformity estimated to be better than 2%/mm. As for
8Ni and '°’Au, the cross-section data for '®Mo are also
believed to be accurate to within a systematic error of
10%.

III. THEORY

A. The basic theory of Feshbach, Kerman, and Koonin

The FKK theory of multistep direct and multistep
compound (MSC) emission has often been described [3].
We will give some of the expressions relevant to the dis-
cussion of the implementation of the MSD model. The
basic assumptions of the theory are the following: the in-
coming particle interacts with a nucleon of the target nu-
cleus by means of a two-body interaction. As a result, a
particle is excited, and the residual nucleus is left in a
one-particle—one-hole (1p-1h) state. Thus, one uses a mi-
J

croscopic description of the reaction, i.e., inelastic
scattering, with the incident particle interacting with a
neutron or proton in a shell-model orbital, and this target
particle is then accepted into another shell-model orbital.
Next it is assumed that the preequilibrium emission pro-
cesses take place via successive particle-hole excitations
of the nucleus which can only occur between the avail-
able energy levels in the nucleus.

The theory of direct reactions has proved very success-
ful in describing simple nuclear reactions. The theory of
multistep direct reactions extends and formalizes these
qualitative ideas in a way that includes all the essential
quantum-mechanical features of the scattering process
such as angular momentum transfer and energy conserva-
tion at each step, as well as making some simplifying as-
sumptions to obtain a usable theory. These assumptions
include the following.

(1) The chaining hypothesis. This assumption, which
would seem to be reasonable, simply assumes that all pos-
sible multiparticle interactions are not likely, but that the
interaction can only “move” from one stage, the nth, say,
to the (n +1)th stage, or the (n —1)th stage. This is
equivalent to assuming that such a transition is induced
by the two-body residual interaction. The stages are seen
as a particular partition of the Hilbert space and are (usu-
ally) interpreted in terms of an increasingly complex m-
particle—(m —1)-hole type, as in the semiclassical exci-
ton model.

(2) The relative phases of transition matrix elements
are assumed to be random, except, in the multistep direct
processes, for those that involve the same change in
momentum of the particle in the continuum. Thus, the
cross sections for a specific step corresponding to a
definite angular momentum and energy transfer contrib-
ute coherently, but the sum of the contributions from
various transitions from one stage to the next is taken in-
coherently.

(3) The higher the stage, the more “complex” the state
and the more accurate the statistical assumptions be-
come. The system is therefore highly likely to move to
more complicated states due to the increase in the density
of states, and we assume that this is always the case; this
is the never-come-back assumption.

These assumptions can be used to derive a formula for
the average double differential cross section:

d%o
dudQ ’

multistep

A d’o
dUd Qg dUdQ

(1)

single step

where U denotes the excitation energy of the residual nu-
cleus.

The statistical multistep contribution to the cross sec-
tion was calculated using the expression
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k;, k,, and kf denote the momenta of the initial-, nth
intermediate-, and final-step nucleon, respectively. The
exit mode is labeled by m.

The formula shows that the multistep direct contribu-
tion is a folding of single-step interactions. The first-step
contribution to the overall double differential cross sec-
tion is given by
(DW)

0 _ s or + DRy Ly 00 2L 3)
dU,dQ, = 252 < dQ >
R, (L) is the spin distribution function, given generally by
_ 2L +1 L(+1/2)?
Ry(L)= 72N3253 T No? ’ “@)

where o is the spin cutoff parameter, p,(U) is the
energy-dependent part of the level density of 1p-1h states
in the nucleus after the first collision of the incident parti-
cle, and N =p +h, the number of particles plus holes.

The transition probabilities from the (n —1)th to the
nth stage are calculated with distorted-wave Born ap-
proximation (DWBA) matrix elements, viz.,

EWoni s ke ou (Ul ks D2 )
Ty (K, ), (U, (K K,
where
00 (K k)
= [ X7 W Ve, 1)| W, x5 e, e dy
(©)

The MSD contribution proceeds exclusively through
states with at least one nucleon being unbound. The den-
sity of states of the particle in the continuum is p.(k, ) for
momentum k,, and p,(U,) is the density of p-particle,
h-hole configurations in the residual nucleus in the nth
stage evaluated at the energy U,. The distorted waves
are generated from an optical-model potential (e.g., Ref.
[12]), and the matrix element connects a nuclear state
n —1 to a state n via the effective N-N interaction V,, , _;.
A finite-range Yukawa potential is used for V, ,_;, of
which the strength ¥, must be adjusted to reproduce the
data. The level densities p, are generally calculated in
terms of some independent-particle model, such as the
equidistant Fermi gas model with Pauli corrections, in
which case they are given by the well-known Ericson for-
mula [13]

g(gU, N ™!
PN —1) "’

where g, the density of single-particle states in the equal-
spacing model, is proportional to the level density param-
eter a [See Eq. (8), Sec. III B]. A level density parameter
a proportional to the mass number A4 of the target nu-
cleus is usually assumed. In the multistep calculations, a
value must also be chosen for the spin cutoff parameter
o

pa(U,)= (7

There has recently been much discussion concerning
the correct formulation of the FKK multistep direct
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theory, in particular whether normal or non-normal
DWBA matrix elements of the forms {xy~|V|x*) or
(x*|VIx™"), respectively, should be used [14—16]. The
latter are given in the original FKK paper [3], but later
Feshbach [16] argued that proper treatment of the statist-
ical averaging converts them to the normal form, in line
with numerical calculations [13]. This aspect has been
clarified in detail by Feshbach at a recent workshop on
multistep direct reactions [17].

B. Calculational details

In the program of Bonetti and Chiesa [18], an impor-
tant simplifying assumption is made, viz., that the
differential transition probabilities in Eq. (5) do not de-
pend on the stage of the chain. The density p,(U,) de-
scribes the final states of the interaction when a particle
in the continuum collides with a bound nucleon and
creates a particle-hole pair. The final-state density is
therefore assumed to be that of the particle-hole pairs,
that is, p, (U, )=p,(U,) for all n. Using the Ericson ex-
pression for the level density with N =2 gives a
differential cross section proportional to (g?)", and there-
fore also to (a?)" if there are n stages in the multistep
chain. Since the effective interaction enters at each stage
of the reaction, the final n-stage cross section is also pro-
portional to (aV,,)?"—hence the level density parameter
and the effective interaction strength have to be con-
sidered simultaneously when parameters of the calcula-
tions are fixed a priori.

The main physical input for the program of Bonetti
and Chiesa relates to the DWBA calculations performed
with the code DWUCK4 [19]. These include the following.

(1) Optical-model parameters. In the present case these
were taken from the universal parameter set of Schwandt
et al. [12]. In order to evaluate their effect on the results,
the optical potentials due to Madland [20] were also
used —see Sec. IV C 1 below.

(2) The effective interaction. Here we use a Yukawa in-
teraction with a range of 1 fm. There has been a great
deal of theoretical work done on effective interactions in
the last 20 years, but we have kept this empirical interac-
tion for a number of reasons. Mainly, it allows us to
make a comparison with other work using this approach.
A significant reduction in the strength of the effective in-
teraction has been seen at energies above 100 MeV [6,7].
The results of this article confirm this and greatly extend
the analyzed data in this region. Detailed studies of the
effective interactions, based on G matrices extracted from
the shell model or from fitted N-N interactions such as
the Paris potential, have considered the various terms of
the interaction, Vgr, where S and T, the spin and isospin
transferred in the interaction, may have the values O and
1. In our (p,p’) data all these terms occur for the central
part of the interaction, and for the noncentral parts those
with S =1. Because of uncertainties in the relative mag-
nitudes of the various terms, it is simpler to employ a
central empirical interaction of which the strength is
fitted to best reproduce the data. Our approach has thus
been to use the Yukawa interaction of range 1 fm and
vary its strength to obtain the best overall normalization.
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As will be shown, the resulting strengths show a
definite reduction as a function of incident energy if we
use an overall V), for each incident energy. The effect of
making it energy dependent for the multistep parts is in-
vestigated in Sec. IV C4.

(3) The choice of particle-hole configurations. The
selection of the combinations of particle-hole states used
to obtain the form factors, which correspond to different
energy transfers (E) and angular momentum transfers
(L), is done as follows: The spherical Nilsson shell model
is used as a guide to which levels will give the desired E
and L transfers. For ease of calculation, the E transfers
are divided into “bins” of roughly 20 MeV. For each L
and E bin, a suitable p-h set is then chosen. The specific
chosen levels only serve as a model for the transition.
Clearly the “single-particle” levels in real nuclei are
spread over many levels even at low excitation energy.
The single-particle wave functions used in the form factor
calculation are obtained by adjusting the depth of a stan-
dard Woods-Saxon well to obtain the desired energy
transfer. The one level is chosen at an energy equal to
the negative of the separation energy of the excited nu-
cleon and the other lower by an amount equal to the re-
quired change in energy of the particle in the continuum.
Thus, the form factor is sensitive to the change in energy
between the two levels.

Several problems arise in this procedure. The well
depths for the different calculations which make up a
specific E transfer for various L-transfer values can differ
substantially. This is probably not too serious, since each
calculated cross section simply serves as a model for that
transfer. Since mainly the low L-transfer values contrib-
ute to the overall cross section, several combinations are
chosen for these transfers, and the average taken. The
maximum number of values of the angular momentum
transferred in the reactions varied between 7 and 9, with
the largest value used for the highest incident energies
(175 and 200 MeV).

Further problems arise in choosing the levels for a
specific energy and L transfer where no p-h combination
exists in the simple shell model: (a) For lower-energy
transfers, we have ‘“borrowed” a combination from the
next lower-energy bin. The search routine will then fix
these at energies which correspond to the required E
transfer. This seems to be a reasonable procedure, since
the lack of a level is probably due to the simplicity of the
model used. (b) For large energy transfers, the above pro-
cedure sometimes leads to an unrealistically high excita-
tion energy for a single-step process, and would lead to
another unbound particle since the well depth is limited.
Since the depth of the potential for the lowest levels in
the nucleus is not precisely known (the possible levels
around the Fermi level are not very well defined either), it
is not certain when such excitations should be terminat-
ed.

This problem was not serious in most earlier studies
since the possible energy transfers were limited by the en-
trance channel energy. In this paper we have neglected
the transitions for which no transfers were found in the
cases for incident energies of 150, 175, and 200 MeV.

Another aspect of the choice of particle-hole

configurations should be mentioned here. In the first step
more than one configuration is used for the important
transitions, whereas in the multistep part of the program
of Bonetti and Chiesa [18] only one configuration is used
for each value of the angular momentum transferred in
an energy bin. It would seem that it is also necessary to
include more configurations for the multistep part since,
at the higher energies, this part is now as important as
the first step in many cases.

(4) The level density parameter a. In terms of impor-
tance this input parameter is on an equal footing with the
strength ¥V, of the effective interaction since the cross
section is proportional to (a¥,)*" for an n-stage process.
An expression for the level density based on the Fermi
gas model is generally employed. Such a simple model
should be adequate for the purpose of these statistical cal-
culations, but which level density parameter to use is a
problem. Values have been measured for most nuclei, but
these measurements relate to level densities at very low
excitation energies. At low temperature in the
independent-particle model, the level density parameter
is proportional to the density of single-particle states near
the Fermi energy. At zero temperature [21],

a=1lmrg(ep) . ®)

As the excitation energy increases, the shell effects in the
level density weaken, and at high enough excitation ener-
gies (about 100 MeV) the mass-number dependence of a
tends to the simple quasiclassical limit [22] a =const X 4.
For this reason we have generally employed a = 4 /8.5
MeV ~!in our calculations.

Another aspect of the level density parameter is its ex-
plicit dependence on the excitation energy. Several
theoretical approaches to this question exist in the litera-
ture [22-24]. In Sec. IV C3, the results obtained with a
simple energy-dependent a are presented.

(5) The spin cutoff parameter o in the single-particle
level density. In the multistep calculations a value must

TABLE 1. Values of the strength of the effective interaction
V, obtained from the present work (based on a Yukawa poten-
tial of range 1 fm).

Target E, MeV) Vo (MeV) a o
8Ni 100 23.8 6.82 2.5

120 23.0 6.82 2.5

150 21.0 6.82 2.5

175 20.5 6.82 2.5

200 18.0 6.82 2.5

100Mo 100 22.0 11.8 25
120 16.7 11.8 2.5

150 14.0 11.8 2.5

175 13.5 11.8 2.5

200 12.5 11.8 2.5

7Au 100 18.5 232 3.5
120 12.5 23.2 3.5

150 11.5 23.2 3.5

175 10.3 23.2 3.5

200 9.4 23.2 3.5
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also be chosen for the spin cutoff parameter . A variety
of values of o were tried for each target and incident en-
ergy, and those that gave the best overall agreement were
used in the final calculations. These values of o, together
with values of V|, and a used for our calculations, are
given in Table I. A value of 2.5 was found appropriate
for both *Ni and Mo, but for '7Au a higher value,
viz., 3.5, gave significantly better results. The effect of o
was relatively more important at higher incident energies.

After setting a = A /8.5 MeV ! as described above,
the calculated cross sections were normalized by choos-
ing values of ¥V to give the best overall agreement with
experiment. Finally, it should be mentioned that the
number of partial waves L., used in the DWBA calcula-
tions varied between 30 and 70, and the number of steps
employed in the calculations varied from 5 for the lower
to 6 for the higher incident energies.

IV. RESULTS AND DISCUSSION

A. Comparison of theoretical
and experimental angular distributions

The angular distributions for the targets **Ni, '*Mo,
and '"7Au at various incident energies are given in Figs.
1-3 and 4(a)-(c) for a range of energies of the emitted
proton (or equivalently, excitation energy of the residual
nucleus U=E,—E, if it is assumed that only one parti-
cle is emitted).

For an incident proton energy of 100 MeV, the FKK
calculations provide a good description of the experimen-
tal data (at the higher excitation energies in particular)
for all three targets. For lower excitation the theory gen-
erally falls below the experimental points—however, in
this region collective effects may be expected to contrib-
ute significantly to the cross section. The quality of the
agreement between experiment and theory is similar for
the Ni and Mo targets, while the shape of the angular dis-
tribution is somewhat less satisfactory for Au—
normalizing to produce agreement at forward angles re-
sults in the calculated distribution being too low at large
angles, and vice versa.

For 120-MeV incident energy, excellent agreement is
found for the Ni and Mo targets at the higher excitation
energies. The agreement gets progressively worse as the
excitation energy decreases and eventually the MSD cal-
culations fail to produce the correct shape. For Au the
overall agreement is good, but the calculated shape of the
angular distribution is less satisfactory at the highest ex-
citation energy.

The agreement between experiment and theory for
150-MeV incident energy for the three targets is similar
to that for 120 MeV, although the results for Au now ap-
pear to be better at the higher excitation energies. At
175-MeV incident energy [Figs. 4(a)—4(c), solid lines], the
calculated angular distributions for all three targets are
reasonable—some deviations occur at the lowest emis-
sion energy (60 MeV) as well as at the two highest emis-
sion energies, and at larger emission angles.

For 200-MeV incident energy, the general agreement is
good, except again at the largest and smallest emission
energies. For the Ni target, the results are not as good as
for Mo and Au, although the overall results at the other
incident energies have been superior for Ni. A noticeable
feature for all three targets at this incident energy is that
the theory once again underestimates the cross section at
the highest and lowest excitation energies.

On the whole, the MSD calculations reproduce the an-
gular distributions for the three targets quite well—some
discrepancies between experiment and theory are evident
at low excitation energies irrespective of the incident en-
ergy, and at high excitation energies for the higher in-
cident energies (175 and 200 MeV) in particular. This
may be due to a variety of factors, such as contributions
from secondary processes or deficiencies in the global op-
tical potential used at these energies [12]. It is significant
that, for the lower incident energies, the general agree-
ment extends over more than 3 orders of magnitude for
the highest emission energies.

Part of the discrepancy between theory and experiment
may be due to transitions from the P to the Q chain after
the first step, which can give multistep compound contri-
butions to the cross section even at high incident energies
where the feeding of the Q chain from the entrance chan-

TABLE II. Values of the strength of the effective interaction ¥V, obtained from previous work (also

based on a Yukawa potential of range 1 fm).

Reference Reaction Vo (MeV)

Austin, 1980° (N,N') discrete states, 20-50 MeV 27.9
Holler et al., 1985° (p,n) 26.7 MeV MSC+MSD 27
Mordhorst et al., 1986° (p, ) 25.6 MeV MSC+MSD 25
Marcinkowski et al., 1989¢ (n,n') 11.5, 26 MeV MSC+MSD 25
Trabandt et al., 1989° (p ) 80 MeV MSD 20+1
Scobel et al., 1990f (p,n) 120 MeV MSD 16+1
Cowley et al., 19918 (p,n) 160 MeV MSD 12.5+1

(p,p’) 80 MeV MSD 23

(pp ) 120 MeV MSD 17.5

2Reference [27].
"Reference [28].
‘Reference [29].
dReference [30].

‘Reference [6].
fReference [7].
EReference [8].
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nel is negligible. Studies at lower incident energies have
shown that the total statistical contribution to the cross
section is somewhat greater than would be expected from
the entrance channel width, suggesting the presence of

later P to Q chain transitions [25,26]. Such transitions
could give appreciable multistep compound contributions
to the cross section even at high energies where the en-
trance channel width has become very small.
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B. The effective interaction ¥, '®Mo(p,p’) in Fig. 5. These calculations all used
harmonic-oscillator wave functions for the bound nu-

It is of interest to compare our ¥V, values (Table I) with  cleons, optical-model wave functions for the emitted nu-
the results of several analyses as listed in Table II. Some  cleons, and Yukawa two-body interactions with a range
of these are compared with the present results for of 1 fm. The spread in values of V|, is due partly to the
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differences in the analyses and also the energy depen-  but required an increase of ¥V in the case of recent analy-
dence of the effective interaction. Some analyses were  ses of (p,n) reactions [31].

made which distinguish between neutrons and protons in The values of V, are found to decrease monotonically
the cascade of intranuclear steps; this had a rather small  with increasing incident energy, and this is indeed what
effect (less than 10%) on the shape of the cross section,  would be expected from the related decrease of the real
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optical potential, which also depends on the strength
of the effective two-body interaction. The curve
Vy=30.8 exp(—0.15E /30.8) in Fig. 5 is obtained from
the energy dependence of the optical-model potential as
described in Ref. [8].

SNi(p.p") ; E, = 175 MeV
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The differences in ¥, for the various target nuclei re-
quire comment (see Fig. 6). The result for Mo seems to
correspond quite well with values found earlier. All V,
values appear to have a similar energy dependence as
well, but the values for Ni seem too high and those for
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Au too low. Possible reasons for this result include the
following.

(1) The level densities may not follow the trend of
A/8.5. The formula in Ref. [22] has an 4?2 dependence
which would increase (reduce) the value of the level den-
sity for Ni (Au) relative to that of Mo, implying a de-
crease (increase) in ¥V, by the same amount. Although
this behavior is in qualitative agreement with the trend in
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FIG. 6. The effective interaction strength ¥, as a function of
incident energy for different target nuclei. The results for ®Ni
and '’Au have been arbitrarily normalized by the indicated fac-
tors. The solid curve is as in Fig. 5.
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Fig. 6, the predicted differences are considerably smaller
than those observed (see also Sec. IV C 3 below).

(2) The various components of the effective interaction
may act differently in the first-step excitation of these nu-
clei, as the isospin structure, for example, of the targets
could be different.

(3) The Schwandt optical-model potential has an A4
dependence and may cause a systematic difference de-
pending on the target nucleus.

(4) The exact p-h combinations chosen for the various
steps should not play a major role in the final result due
to the extensive summation and averaging that occurs,
but this may have an effect. This is unlikely though,
since the configurations were selected anew for each in-
cident energy, and the ¥V, values are consistently lower
for Au compared to Ni.

C. Investigation of possible sources of disagreement

1. Sensitivity to optical-model potentials

Our calculations of the incoming and outgoing distort-
ed waves were based on the global optical-model poten-
tial of Schwandt et al. [12]. This potential was obtained
from fits to proton elastic-scattering cross sections and
analyzing powers for nuclei in the mass range
24 < 4 <208, with incident proton energies between 80
and 180 MeV. To assess the effect of using a different po-
tential, we have repeated some of the calculations with
the Madland [20] global optical-model parameters, which
are expected to be valid over a larger energy range
(50=E, =400 MeV). The starting point for this work
was the Schwandt potential, and only the absorptive part
of the central potential was modified to reproduce the re-
action cross sections for the three nuclei 2’Al, *°Fe, and
298pp. In Fig. 4(a), for a *®Ni target with incident proton
energy of 175 MeV, it can be seen that the Madland glo-
bal optical potential produces a slightly larger cross sec-
tion for the same value of the effective interaction ¥V, but
the general shape is very similar to that of the Schwandt
potential. The effect of using the Madland potential is
therefore to introduce a renormalization of the effective
interaction strength ¥V, in the present case lowering the
value of V|, from 20.5 to 19.2 MeV. A further illustration
of the sensitivity of the optical potential is provided in
Fig. 4(b) for '®Mo at 175-MeV incident energy, in which
the depth of the real optical potential ¥ was increased
arbitrarily by 10% and the radius parameter r; de-
creased to retain the same value of Vyr3.

In Figs. 4(c) and 4(d), similar comparisons between re-
sults of the Schwandt and Madland potentials are shown
for a "7Au target at 175- and 200-MeV incident energy.
Once again the shape is very similar with the Madland
optical potential, but the effect on the effective interac-
tion ¥V, is more dramatic, which will then require a larger
relative reduction in ¥V, (from 10.3 to 9.4 at 175 MeV and
from 9.4 to 8.3 MeV for 200 MeV). These results em-
phasize the importance of the choice of the optical-model
parameters on the value of the effective interaction ex-
tracted from the data, and indicate that caution should be
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used in comparing values of V|, obtained from different
potentials at higher incident energies.

2. Multiparticle emission

In order to investigate multiparticle emission in gen-
eral, and specifically its relationship to the steeper falloff
in the angular distributions at higher incident energy, we
have attempted a simulation based on quasifree knockout
for ¥ Ni. While the procedure of adding this component
incoherently to the MSD cross sections should be only
considered to be a very crude approximation to a proper
microscopic inclusion of such a contribution, it neverthe-
less serves to illustrate the qualitative expectation.

A pure quasifree nucleon knockout component was
calculated in the distorted-wave impulse approximation
(DWIA) as in Ref. [11], except that distorted waves were
used for both emerging nucleons, instead of one. As im-
plied by the results discussed in Ref. [11], this amounts to
requiring that two nucleons emerge as free nucleons after
a quasifree collision.

The sum of the MSD and DWIA cross sections, with
spectroscopic factors as required in Ref. [11], and also
with the DWIA results arbitrarily doubled, is shown in
Fig. 7. The inclusion of two-nucleon emission is demon-
strated to improve the agreement at low excitation (i.e.,
high emission) energy where the multistep contribution is
suppressed, whereas the results at high excitation are al-
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tered relatively little. It was also found that, at 100- and
120-MeV incident energy, the good agreement between
the MSD and experimental cross sections is retained due
to the fact that the knockout component is somewhat
suppressed.

3. Energy dependence of the level density parameter

The phenomenological relation developed in Ref. [22]
can be used to consider the effects of the energy depen-
dence of the level density parameter. The energy depen-
dence of a can be expressed as a function of the excitation
energy U and the ‘“shell correction factor” 6W (the
difference in mass of the nucleus and the value predicted
by the liquid-drop model) as a(u)=a[l1—f(U)dW /U],
where the asymptotic value of the density parameter at
high excitation energy is given by a=a A4 +BA4? and
f(U)=1—exp(—yU). The coefficients a and B are list-
ed in Ref. [22]. Figure 8 shows the effect of renormaliz-
ing the various DWBA cross sections according to this
prescription for proton scattering from **Ni at 200 MeV.
The ¥V, value has been rescaled to give the average nor-
malization correctly. The resulting distributions are not
very different, but the cross sections for highly excited
states are pushed up relative to that for the lower excita-
tion exit channels. This is to be expected since the excita-
tion energy dependence of the level density parameter
will reduce the importance of the first step which dom-
inates the low excitation cases.
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FIG. 7. The effect of multiparticle emission on MSD calculations. The curves correspond to MSD only (dotted line), MSD plus
quasifree knockout (dashed line) and MSD plus twice the quasifree-knockout component (solid line).
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4. Step variation of V

The incident-energy dependence of ¥V, leads to a slight
inconsistency in the calculational procedure. In the mul-
tistep part of the calculation, we are performing DWBA
calculations at lower incident energies. Thus, ¥V, should
be different for each stage. To gauge the importance of
this effect, we have renormalized the cross sections for
the different stages according to a ¥V, dependence given
by the experimental curve in Fig. 4, which can be approx-
imated by an exponential function (see Ref. [8] and Sec.
IVB). This leads to a bigger emphasis on the higher
steps since they take place at “lower” incident energy
where the effective interaction is larger. Figure 9 illus-
trates the importance of this effect—it is not very
significant except for very high excitation energies.

D. Emission-energy dependence of contributions
from various steps

The contributions of the various MSD steps to the an-
gular distributions for different emission energies are
shown in Fig. 10 for an incident energy 150 MeV for
8Ni. Also shown in Fig. 10 are the relative contributions
of each step. Clearly the first step diminishes in impor-
tance towards larger angles for all excitations of the re-

SNi(p.p") ; E, = 200 Mev
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FIG. 9. The effect of the incident-energy dependence of the
effect interaction V,. The solid curves are MSD calculations
with a constant V), for all steps while the dashed curves are ob-
tained when the energy dependence of V| is taken into account
in the multistep part of the calculation.

sidual system shown in Fig. 10, and only for the lowest
excitation shown (emission energy of 120 MeV) is the first
step dominant for forward scattering. This observed
trend is not unexpected.

E. Incident-energy dependence of contributions
from various steps

As an example of the incident-energy dependence of
the results, decomposed into the various MSD steps, cal-
culations for the target nucleus **Ni are shown in Fig. 11
at a fixed excitation energy (30 MeV). The cross section
for the first step is observed to fall off at an increasingly
rapid rate with incident energy as a function of angle.

Similarly, the other steps in the multistep chain have
their maximum relative contributions at smaller scatter-
ing angle with increasing incident energy. This behavior
is consistent with increasing forward peaking with in-
creasing incident energy.

F. Comparison between first-step contributions predicted
by MSD and quasifree knockout

As was mentioned by Fortsch et al. [11], the
correspondence between the first-step component predict-
ed by the MSD theory and that calculated in DWIA (as
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FIG. 12. A comparison between the first-step MSD contribu-
tion (solid line) and a quasifree-knockout component calculated
in DWIA (dashed line).

described in Ref. [11]) is remarkable. In Fig. 12, results
are shown for *®Ni at incident energies of 100, 150, and
200 MeV at E, =~0.6E,. These comparisons, which cov-
er a larger range of incident energies than that of Ref.
[11], show that the two models are in reasonable agree-
ment, even at 200 MeV where the first-step angular distri-
butions are still in good shape agreement. However, at
the highest energy, the absolute magnitudes differ some-
what.

It should be pointed out that the DWIA calculations
include the two-nucleon emission implicitly, but, as de-
scribed in Sec. IV C2, this component is not expected to
be significant at the emission energies of Fig. 12. Thus,
the quantitative difference in the first step at an incident
energy of 200 MeV cannot be ascribed to the effect of
two-nucleon emission.

V. SUMMARY AND CONCLUSIONS

It has been shown that the statistical multistep direct
theory of Feshbach, Kerman, and Koonin successfully
reproduces the (p,p’) continuum angular distributions of
the three nuclei *®Ni, '®Mo, and '°’Au over a range of in-
cident energies from 100 to 200 MeV, and a wide range of
proton emission energies, for an angular range between
20° and 120°. For the lowest excitation energies (typically
20-30 MeV), where the theory generally underestimates
the cross section, it has also been shown by a DWIA cal-
culation that quasifree nucleon knockout can make a
significant contribution. A more complete and accurate
calculation of the two-nucleon emission cross section
could possibly account for such a discrepancy. Some sys-
tematic deviation between theory and experiment has
also been found at high excitation energies for the highest
incident energies (typically 175 and 200 MeV). In the
multistep calculations, various input parameters of the
theory have been varied, and increases in the number of
steps in the multistep cascade, the number of partial
waves used, and the number of angular momenta
transferred have not resolved this discrepancy.

The correspondence between theoretical and experi-
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mental angular distributions for a particular target shows
a reasonably consistent behavior as a function of incident
and excitation energy. In general there is a gradual
deterioration of the agreement from low to high incident
energies, and also towards the lowest and highest excita-
tion energies. The results for the three targets are very
similar. For '’Au, a larger value of the spin cutoff pa-
rameter o (3.5) had to be used than for the other two nu-
clei, for which a value of 2.5 gave good results. The effect
of the value adopted for o appears to be relatively more
important at higher incident energies.

The behavior of the strength V;, of the effective two-
body interaction assumed, viz., a simple Yukawa interac-
tion with 1-fm range, as a function of incident energy, is
similar for all three nuclei. There is a monotonic de-
crease as the incident energy increases, and this can be
well described on average by an exponential function
which follows the energy dependence of the real part of
the optical-model potential. This trend is also found in
other experiments. However, the values of ¥, for the in-
dividual nuclei are systematically different for the same
incident energy. We have shown that, when the energy
dependence of the level density parameter (which is pro-
portional to the single-particle level density) is taken into
account, a mass dependence follows—however, the mag-
nitude is not sufficient to explain the noted differences,
and further study into this effect will be required.

The effect of taking into account the explicit energy
dependence of V,, (from the average exponential curve
described above) for the successive steps in the multistep
chain, rather than using an overall single strength, has
also been investigated. This amounts to using progres-
sively larger values of ¥V, for the later steps associated
with lower incident energies in the DWBA calculations.
It is concluded that the effect is rather small.

The sensitivity of the calculations to different optical-
model potentials has been illustrated by comparing re-
sults obtained with the Schwandt and the Madland po-
tentials. At 150-MeV incident energy, the difference is
barely noticeable, but it is significant at 175- and 200-
MeV incident energies. Generally the shape of the angu-
lar distribution is preserved, but a renormalization of the
value of V, between about 6 and 12 % is required at the
highest incident energies (175 and 200 MeV). This effect
should be taken into account when comparing effective
interaction strengths derived using different optical po-
tentials.

The first-step component of the MSD theory has been
compared to the quasifree-knockout contribution based
on a DWIA calculation, and a good correspondence be-
tween the two calculations was found. This lends further
support to one of the assumptions underlying the statisti-
cal multistep direct theory, viz., that the initial stage of
the cascade of nucleon-nucleon interactions initiated by
the projectile can be interpreted in terms of a single in-
elastic nucleon-nucleon scattering.

On the whole, the results show that the angular distri-
butions of the three targets investigated can be well de-
scribed by the statistical multistep direct emission theory
of Feshbach, Kerman, and Koonin, even up to the
highest incident energy of 200 MeV.
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