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Ass-isobar contribution to the soft nucleon-nucleon potentials.
II. mp-exchange potentials
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Pion-rho-exchange nucleon-nucleon potentials are derived for one or two 4 isobars in the inter-
mediate states. As in the companion work on two-pion exchange, strong dynamical pair suppression
is assumed. At the Nor, p and NA~, p vertices Gaussian form factors are incorporated into the
relativistic two-body framework by using a dispersion representation for the vr- and p-exchange am-
plitudes. The Fourier transformations are performed using factorization techniques for the energy
denominators, taking into account the mass difference between the nucleon and the 6 isobar. The
potentials are calculated in the adiabatic approximation of all planar and crossed three-dimensional
momentum-space harp diagrams. We also give the contributions of the ~p iteration, which can be
subtracted or not, depending on whether one performs a coupled-channel calculation for, e.g. , the
NN, NA system, or a single channel calculation.

PACS number(s): 13.75.Cs, 21.30.+y, 12.40.@q

I. INTRODUCTION

In this second paper on the E33 isobar contribution to
the soft nucleon-nucleon potential, we derive the soft-
core vrp-exchange potentials due to one and two 633
isobars in the intermediate states. Our general ap-
proach to 2vr-exchange potentials, and more generally to
two-meson-exchange potentials, is given, in principle, in
Ref. [1]. Starting from the relativistic two-body equa-
tions, we derive the two-meson-exchange potentials for
the relativistic three-dimensional integral equation and
for the Lippmann-Schwinger equation from the second-
order Feynman diagrams. The channel space includes, in
principle, the NN, the Nb, and the AA channel. How-
ever, in working out the explicit potentials we restrict
ourselves to the two-meson potentials in the NN sector
only.

In the companion paper [2], we have extended the tech-
niques described in Ref. [1] to cover mass differences of
the baryons in the intermediate states Using o. ur tech-
niques, in [2] we derived the 2vr-exchange potentials with
6 isobars in the intermediate states. For the different
important details of the derivations we refer the reader
to the references given above. In particular, the impor-
tant "factorization" technique involving two mesons with
difFerent masses will be used in the present paper for the
7t and the p meson. For earlier contributions to this field
we refer to the work by the Stony Brook group [3] and
by the Bonn group [4].

The reason for deriving, besides the 2' potentials, also
the harp potentials for isobars in the intermediate states is
that (i) it is the only other sizable one of such contribu-
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tions, and (ii) the mp potentials tend to cancel the 2vr po-
tentials in the inner region [5]. This last feature could be
important due to the singularities of the potentials near
the origin. However, our soft-core potentials do not have
these singularities. Still, it is known [6] that the 2n ex-
change from the Ass-isobar contribution is rather strong,
so that all possible cancellation efFects should be studied.
In this respect, also the type of form factor could play an
important role. Since in the case of two-meson exchange
the volume integral of the potential is rather sensitive
to the form factor, whereas for one-meson exchange it is
not, the form factor can ameliorate the potentials con-
siderably. This except for the long-range part, which is
insensitive to the form factor. Maybe here the Gaussian
form factor, which we use, has important advantages over
the propagator type of form factors.

Another aspect is that one should be careful to avoid
"double counting. " Because the Ass isobar can be con-
sidered roughly as having an Nvr component and a spin-2
three-quark component, only coupling to this last compo-
nent is certainly free of "double-counting. " This means
that the coupling constants that strictly must be used are
"partial" couplings, like for instance quark-model cou-
plings. They are usually less than the full couplings and
so also here lies a possibility for softening the potentials
from the isobars. These matters will be studied when we
actually try to apply the potentials in a model fit to the
NN data.

The diagrams we calculate are (i) the parallel and
crossed mp diagrams of the similar type of graphs that
were calculated by Brueckner and Watson (BW) [7] for
2' potentials with nucleons in the intermediate states;
and (ii) the iterated harp diagrams of the type of graphs
that were calculated by Taketani, Machida, and Ohnuma
(TMO) [8] for 2m potentials with nucleons in the interme-
diate states. As this distinction is convenient as a means
to denote the diff'erent contributions, we will adopt this
nomenclature also in this paper. So we refer to the dif-
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ferent potential contributions as a BW type and a TMO
type according to the type of graph they correspond to.

The 7rp potentials are calculated using the adiabatic
approximation for the nucleons and isobars in the inter-
mediate states. Thus, we neglect recoil energies in the
intermediate states, but we give a proper treatment of
the a = M~ —M~ mass difference in the intermedi-
ate states. Included are the contributions of all planar
(parallel BW and TMO diagrams) and crossed three-
dimensional momentum-space sp diagrams. The latter
are rather important for having the complete isospin
structure of the potentials. We also give the contribu-
tions of the mp iterations, which can be subtracted or not,
depending on whether one performs a coupled-channel
calculation for, e g , t.he. NN, N6 system, or a single NN
channel calculation.

The paper is organized as follows. In Sec. II the vrp-

exchange kernels are derived for the NN sector. We give
the interaction Lagrangians and we briefiy indicate the
implementation of the Gaussian form factors. In Sec. III
the definition of the nucleon-nucleon vrp potential for the
Lippmann-Schwinger equation is briefiy repeated from [2]
and the vertices in Pauli-spinor space are given for the
NNn and Nhn as well as for the NNp and Nb, p cou-
plings. Here we also mention the approximations made
in these vertices. Furthermore, we give the very useful
spin projection operators for a spin-& (nucleon) and a
spin-z (6-isobar) baryon, and the isospin factors.

In Sec. IV, using Appendix B, the np potentials are
derived for the BW and TMO graphs for the NA and
AA intermediate states. We also present the iterated
harp kernels, i.e., the second-order Born terms. The harp

potentials with two nucleons in the intermediate state
will be derived elsewhere [9]. In Sec. V the results are
shown and discussed. In Appendix A, we review the
Rarita-Schwinger formalism in some detail. This is useful
for tracing the approximations we made at the vertices, in
particular, in the case of the p couplings. In Appendix B,

+ mirror graphs

FIG. 1. Feynman diagrams for np exchange involving (a)
one or (b) two b, 33 isobar intermediate states.

we give a dictionary of differentiation formulas, adequate
for deriving the final form of the potentials of this paper
in configuration space.

II. THE mp-EXCHANGE
NUCLEON-NUCLEON KERNEL

The two-meson-exchange kernel is written as a power
series in A, which denotes the number of baryon-baryon-
meson (BBM) vertices. (For details and definitions we
refer to Secs. III and IV of the companion paper [2].)
The np contribution to the fourth-order A terms of the
two-meson-exchange kernel defines the 7rp-exchange po-
tential. This corresponds to the planar- and crossed-box
Feynman diagrams of Fig. 1. The corresponding fourth-
order elastic NN-matrix element of the kernel is, as dis-
cussed in [2], given by

K~4~(p', p~W) q, , b = —(2n) fW —W(p')]fW —W(p)] ) fdic. fdpo fd|0 dkt fdk dk'

g II bl I

(2.1)

xi(2n) 6 (p —p' —k —k')[k' —m' + i6] F~ (p', po)Fg (—p', —po)

x
L

[I' F '(p —k, p —k ) I', ]
~' ) [I', F '(—p + k, —p + k ) I', ]

~

+[I'. E (p —k, po —k, )r, ]&"'&[r, E (—p' —k, —p' —ko)I' ]&"&)
- —1

F~')(p, po)F~ l(—p, —po) [k — + 6]

Here a", 6" = N, 4 denote the baryons of the interme-
diate state. The I', and I'z denote the baryon-baryon-
meson vertices, which follow from the interaction La-
grangians (see below). The meson masses rn and m' de-
note m or mp The c.m. momenta for the planar and
crossed diagrams are indicated in Fig. 2. Note that the
Qrst term between the curly brackets corresponds to the
planar-box mp-exchange diagram and the second term to

the crossed-box mp-exchange diagram. In these diagrams
only the contribution of the positive-energy nucleon and
isobar states are included, in accordance with the pair-
suppression hypothesis that we use in our work on two-
meson exchange [1,2].

The procedure to derive the kernels for the planar and
crossed BW diagrams and for the TMO diagrams is am-

ply described in Refs. [1,2] and will not be repeated here.
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and p" is the p Geld. In momentum space this gives for
the NNm vertex

Q'
i b'

(a) k' (b)I. rJ 7K J

G(P')«(P) = i
I

""
l
u(P')WsZ (P —P')u(P),( m

for the Ne'er vertex

Q" ii P
—k

(a)
l

Q

-(p-k) b"

ii b

G(P')I'"~p(P) = i
l l u(P')up(P) (p —p')",
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for the NNp vertex

W
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Q
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and for the NAp vertex:
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l

'
I
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(a)

Q

bit

b

The generalization of the interaction kernels given
above to the case with Gaussian form factors has been
treated and explained in Refs. [1, 2]. The same proce-
dure can be applied to the p exchange as well as to the
x exchange. The form factors Fz(kz) and F~(k ), which
describe the p-exchange and vr-exchange amplitudes, re-
spectively, are simply a product of the Gaussian vertex
form factors, e.g. , FNN~(kz) = exp(k /2AzNN ). In the
NN sector we have for graphs with Nb, intermediate
states,

FIG. 2. Definition of' momentum vectors in second-order
(a) planar and (b) crossed graphs.

As discussed in these references, it suffices to evaluate
one kernel for each particular set of diagrams. The other
(mirror) diagrams in each set merely give rise to a factor
of four when we evaluate the potentials. Furthermore, we
get an additional factor of two from interchanging the 7r

and p lines.
The vertices for the harp-exchange potentials are theN¹,p and NAx, p vertices. For point couplings the La-

grangians are [10]

kWsVp&0 ~"4»

QTQ„B"P+ H.c. ,

ENNp = gNNp@PIJ, T@ P

4&@~74''(~ P ~ P )4M~

+N&p = i gasp„TQ& (0"p —8 p") + H.c.
Pl p

where T is the isospin-& isospin-~ transition operator

F~(k ) = FN~„(k ) FN~~(k ),

Fp(kz) = FN~p(kz) FN~p(kz),
(2 2)

whereas for graphs with 6¹intermediate states

F (k ) = FNn (k ), Fp(k ) = FN~p(k ) . (2.3)

III. THE NUCLEON-NUCLEON mp POTENTIAL

The fourth-order potential V~4~ consists of two parts.
The first part is given by the fourth-order BW diagrams
shown in Figs. 3 and 4. The second part comes from the
TMO diagrams of Fig. 5, from which we have to subtract
the iterated one-~ and one-p contribution, so

VTMO = +TMO + g ~
This will be henceforth referred to as the TMO contri-
bution in analogy with the definition in Ref. [1]. Here,
we restrict ourselves to the nucleon-nucleon sector. This
implies that we do not consider the complete coupled-
channel problem. Furthermore, in this paper we focus
on the contributions to the NN potential due to the 633
isobar only up to fourth order. The only contributions
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+ mirror graphs

+ mirror graphs

FIG. 3. Planar BW 7rp-exchange potential graphs with
one A33 isobar in the intermediate state.

considered are the planar- and crossed-box diagrams with
at least one 6 isobar in the intermediate state. (The di-
agrams with two nucleons in the intermediate state will
be evaluated elsewhere [9].) Because it is supposed that
the Lippmann-Schwinger equation is solved only in the
nucleon-nucleon sector, the subtraction of the iterated
one-meson exchange does not apply and V'4& = K'4l.
For that purpose, in Sec. IVC we give the once-iterated
m- and p-exchange kernels. These should be added to the
TMO potential of Eq. (3.1) in order to compensate for
the subtraction.

The transition from Dirac spinors to Pauli spinors is
reviewed in Appendix C of [1]. There we derived the

FIG. 5. TMO ~p-exchange potential graphs with one 633
isobar in the intermediate state.

0(p) = ) . X . (P) ~ (P & )&b(-P &s)
aa)&b

(3.3)

Lippmann-Schwinger equation

x(p)=x (p)+g(p) f"'n "(p p)x(p) (~2)

for the Pauli-spinor wave functions y(p). The wave func-
tion g(p) ~d the potential V(p', p) in the Pauli-spinor
space are defined by

XtC (p, CT~)Qg( p, 0'b) —. (3.4)

+ mirror graphs

FIG. 4. Crossed BW mp-exchange potential graphs with
one A33 isobar in the intermediate state.

Like in the derivation of the one-boson-exchange poten-
tials [11,12], we make the approximation

E(p) =(p +M2) ~2- M+p2/2M

everywhere in the interaction kernels of Sec. IV, which of
course is fully justified for low energies only. We have a
similar expansion of the on-shell energy

W=2(p;+M ) i —2M+p, /M.
In contrast to these kinds of approximations, the full k2
dependence of the form factors is kept throughout the
derivation of the two-meson-exchange potential. Note
that the Gaussian form factors strongly suppress the
high-momentum transfers. This means that the contri-
bution to the potentials from intermediate states which
are far oK energy shell cannot be very large.

The reduction of the two-meson-exchange potential
from Dirac-spinor space to Pauli-spinor space is com-
pletely similar to the procedures discussed in Refs. [1,
2]. The vertex operators in Pauli-spinor space up to or-
der 1/M are given by

(i) Nor vertices:
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(p')I'"(p' p) (p) =+
~

l
k+ (p'+ p)m ) 2MN

(—I )I' '(p, p)u( —p) = —
I l

o2'kW 2'(p'+p)( (b) g ~ fNN7r ~ Gd

E m ) 2MN

(3.5)

(ii) NA~ vertices:

(v')~' (v', v) '(v)= —
1

'") zt ~,

6(—p')I'~ )(p', p)u" (—p) =+i
~

Zt k,

(3.6)

(iii) NNp vertices:

( ')I'"(p' ) ( )=, '- ' "'( + ')+ '
2M~ 2 N

6(-p')I'"(p' p)u(-p) =e V'+ 2M'(p+ p')+1
M

""'k x ~ p,2 N

(iv) Nb, p vertices:

(3.7)

1u(p')I'„"(p', p)u"(p)=+l " '
l

-~ kZ', ~+~ C»' k- ~ (p+p')Z' kp',
( mp ) 4MN~

6(—p')I'„' (p', p)u"( —p) = —
l

—&2 kZ p+ o'2 pZ k+ o'2 (p+ p')Z kp
mp 4M'

(3.8)

k = p —p' and MN~ = MNM~/(MN + M~) For the.
I'-matrix elements in Eq. (3.6), the upper sign applies
for the creation and the lower sign for the absorption of
the pion at the vertex. Note that for line (a) and line
(t)) we have used respectively the subscript 1 and 2 for
the cr and Z operators. For the b, vertices we used the
Rarita-Schwinger representation of the b isobar, which is
reviewed in Appendix A. In the following we will neglect
the contributions from the po pieces in the diagrams with
two 6 isobars in the intermediate states, since they are
small due to the 1/MN~ factors.

Useful for the evaluation of the second-order diagrams
are the relations

where I denotes the total isospin of the NN state. For
two 6 isobars in the intermediate state one gets for the
planar and the crossed graphs

CQQ (I) s 9T1 ' T2) C~~ (I) = s + 9T1 ' T2(//) 4 2 (X) 4 2

(3.11)

In this paper, we will restrict ourselves to the adia-
batic approximation. In order to obtain the contribu-
tions to the potentials in the adiabatic approximation,
we expand the energy denominators in the expressions
for the planar- and crossed-box diagram and keep only
the leading term. For details see Ref. [2]. As an example,
a typical energy denominator is

~~i = ~'~+«~~kok & z, ~o)(0~2, = sb,,—se, ,i,cry.

(3.9) Ep+E'p g —R'+u)
1

a+a ' (3.12)

Products of this type will occur for each baryon line.
Identical formulas hold for the isospin operators 7, and
T, . Using Eq. (3.9) for the latter, the isospin factors
for the planar and the crossed diagrams can readily be
evaluated. One Gnds for one 6 isobar in the intermediate
state for the planar (//) and the crossed (X) graph

+N& (I) = 2+ sT1'T» +~&(I) =2 sT1'T»(//) ~ (X)

(3.1O)

where a = M~ —M~. In the evaluation of the TMO
graphs, we encounter the intermediate-state energy de-
nominator [8& k+E& k —W] 1, the treatment of which
is explained in Appendix A of the companion paper [2].

IV. mp-EXCHANGE POTENTIALS

Analogous to the evaluation of the 2x-exchange poten-
tial in the companion paper [1],the 7(p-exchange potential
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can be easily obtained. In the following the index 1 in

ki, (d1 refers to the p meson, and the index 2 in k2, u2
refers to the s meson. As already stated, the interchange
of the meson lines merely gives rise to an overall factor
of 2.

A. NA graphs

The evaluation of the planar BW graphs of Fig. 3, the
crossed BW graphs of Fig. 4, and the TMO graphs of
Fig. 5 result in

dsk dsk
y (BW ) O(//)(I) fop fKb, m fNNx 1 2 ei(kq+kq) rF ( 2)F (k2)//

= N~ (2 )s
e p

1 1 2i gNNp .(g+ f)NNpx -(k1 k2)oi —-(oi k1)k2+ —ki x k2 (o2 k2) k2 —i
3 3 3 2M~ 2MN

(~2 x k, ))
+ -(k1 k2)(oi k2)+ -k2(o1 k1) (o2 k2) DBw g(~»~2)

gNNp 1 1 (1)
4 Nb

D

d3 sk
(BW ) O( )(I) Mh Am N¹ g( + ~).PF (k )F (k )p 1 ~ 2

2i gNNp . (g+ f)NNpx — -(k1 k2)o1 —-(o1 k1)k2+ —k1 x k2 k2+1
3 3 3 2MN 2M~

(~2 x kl) ) (~2 ~ k2)

+ gNNp -(k1 k2)(o'1 k2) + -k2(o'1 k1) (rr2 k2) DBw„((d1, (u2) )

1 2 (1)
4MN~ 3 3

(4 1)

(4.2)

3 3
V (TMO) = C(//)(I) fN& &~ NN~ e'("'+"')'~F (k )F (k )

mp m+ m7f 2~ 6

1 1 2i gNNp . (g+ f)NNpx -(ki k2)o1 —-(o1 k1)k2+ —ki x k2 (o2 k2) k2 —1

. 3 3 3 2MN 2MN
(&ra x kz) )

+ gNNp -(k1 k2)(o1 k2) + -k2(o1 ki) (o2 k2) DTMO(~»~2) ~

1 (1)
4M~~ 3 3

(4.3)

where the energy denominators D~~ ) can be found in Ta-
ble I. Note that there we have used some algebra to
rewrite the expression for Dx into a more transparent
form. In the TMO graphs the intermediate-state energy
denominator S~ k, + E~ g, —W is approximated by
((2 —p1) with )91 = k1 k2/M and M = (Mz + MN) j2.
The form factors are defined according to Fp(k21)

FNNp(k1)Fop(k1) and F (k2) = FNN~(k2)FNz (k2).

In this paper we will not go into any of the details
of the potentials. The procedures are entirely similar
to those of the companion paper [2]. Therefore, we will
give the information in such a form that the interested
reader can easily derive the expressions for the potentials
in configuration space from Eqs. (4.1), (4.2), and (4.3) us-
ing Tables I and II (introduced below) and Appendix B.
Using a similar notation as in [2], we write

dsk dsk
( ) O(a) (I)fop fNb, n fN¹ 1 2 i(gq+gq). pF (k2)F (k2)

mp m. m. 6MN (2~)s
'

x (g + f)NNpON~ ~(ki& k2) + gNNpONr, ,(ki) k2) D~ (ufi)ld2)

(4.4)

where a denotes planar BW, crossed BW, or TMO. The
expressions for O~&, and O~z are given in Table II.
They include the contributions &om all graphs, i.e., the
xp as well as the pn. contributions, as well as the "mir-
ror" graphs. They can easily be found by inspection of
Eqs. (4.1), (4.2), and (4.3).

The separation of the k1 and kq dependence can be
achieved again as in Refs. [1] and [2]. In Table I, D~ and

I

DTMO are already in a suitable form for the application(1)

of Appendix B of Ref. [2], while for D// one easily derives
that

(&) 1 2
DBMS& ~1(~1 + (2)~2(~2 + O) ik 1 + ~2

(4.5)
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TABLE I. Adiabatic approximation of the energy denominators D for the NA and D for
the b,A intermediate states. Here pl = kl k2/M and p2 = kl k2/Ma.

BW//

D~ ((ul, u)2)
(1)

1 1 1 1+
~1~2 (~1 + a)~2 ~1(~2 + a) (C!)1 + C!)2)

2 —1 1 1 ( 1 1 a
!+ ! +~1~2 (~1 + a)(~2 + a) (~1 + ~2) ~1~2 ) ~1 + a ~2 + a (cL)1 + a)(~2 + a) )

TMO
1 1 1 1 1 1 1 1 1 1+ —+ + —+ +

24lltd2 (Idl +!!)!!2(!!1+!! !!2 !!1(!!2+!!) !!2+!! !!! !!14!2 ! !!2

+ 1 1 Pl
(&1 + a)(~2 + a) ~1 + a ~2 + a a —Pl

Born
1 1 1 1 1 1+ + +~1~2 (cL)1 + a)~2 &1(~2 + a) (&1 + a)(~2 + a) ~1~2 a pl

BW//
1 1 1

~1co2 (~1 + a)(~2 + a) (~1 + ~2)

D~ (~1,~2)(&)

Bwx 1 d a 1+
cl(]412 da (col + a)(cL)2 + a)(c!)1+ cu2) (col + a)(cu2 + a)

TMO
1 1 1

2url(u2 (col y a) (u)2 + a) (u)1 + a)((u2 + a) 2a —P2

Born
2 1 1

culur2 ((el + a)(u)2+ a) 2a —P2

TABLE II. Momentum operators O~ l(kl, k2) of the planar (BWgg and TMO) and crossed
(BWX) graphs for the Nb, and b,b intermediate states. The indices e and m refer to the (electric)
gpr+p and (magnetic) (g + f)NNp parts.

(//)
Nb„, e

(//)
N&, m

(x)
Nh, e

(X)
N&1m,

Om, (kl, k2)

1 —
M (crl kl)(cr2 k2)k2 + 2 3+ M (al k2)(o2 k2)(kl k2)

i(al . kl)(cr2. k2)(o2 kl x k2) + i(kl k2)(o2 k2)(a2 al x kl)

y2(cr2 k2)(o2 x kl kl x k2)

+- 3+ M (crl kl)(o2 k2)k2 —
2 1 —

M (ol k2)(o2 k2)(kl k2)

i(crl . kl)(o2 kl x k2)(o2. k2) p i(kl k2)(o2. ol x kl)(cr2 k2)

+2(o 2 x kl kl x k2) (o 2 k2)

Oc),~ (kl, k2)

(kl k2) (crl . cr2) —(kl k2)(ol k2)(o2 kl) —(kl k2)(ol kl)(o2 k2)

+k2(ol kl)(o2 kl) —4(kl x k2)

(kl k2) (ol o2) —(kl k2)(al k2)(cr2 kl) —(kl . k2)(ol kl)(cr2. k2)

+k2(crl . kl)(cr2 kl) + 4(kl x k2)
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+ mirror graphs

FIG. 6. Planar BW ~p-exchange potential graphs with
two 633 isobars in the intermediate state.

+ mirror graphs

Now, all momentum integrals can be written in terms of
the functions G~ „(a,r) and H~ „(a,rq, rq) of Appendix
B of Ref. [2]. For that purpose, we write

ei(kq+kq) r hm sike rqeikq rz

Fy, Kg~I'
(4.6)

and take the limit operation before the momentum inte-
grations. Next, we replace all momenta occurring in the
numerator by Vq and Vp operations, which are the V
operations with respect to rq and rq, respectively, and
take these in front of the momentum integrations. After
the momentum integrations we perform the differentia-
tions and take the limit. In view of these operations, we
can write Eq. (4.4) in the form

FIG. 7. Crossed B%' mp-exchange potential graphs with
two 433 isobars in the intermediate state.

V~a(o') = Czz(I) lim (g + f)pvr~ONa (Vi, V2) + gnrz&ONr, ,(Vz, V2) Bzz(ri, r2),
mp m~ m„6

(4.7)

where

B&& (rq, r2) = 2Hq, q(a; rq, r2) + aGq, q(a, rq)Gq, q(a, rq),(sw«)

B&z
"

(rq, r2) = —2', &(a; rb rs) + 2G&,&(a, r&)I&(m, rs) + 2I2(mp, r&)G2, &(a, rs) —2aG2, &(a, r&)G& &(a, rz),

B&z (rq, r2) = —
z [Gq q(a, rq)I2(m„, rq) + Gq q(a, rq)Is(m„, rq) + Is(m~, rq)I2(m, rq) + Gq q(a, rq)Gq q(a, rq)]

+a dze *~' & "'
z[ Gq, q(z;a, rq)I (2z; m, rq)

0

+ Gg, g(z; a, ri)Is(z; m, r2) + Is(z; mp, ry)Is(z; m, rs)

y Gg 2(z; a, rg)Gg g(z; a, r2)] + (mp ~ m ) . (4 8)

In Appendix B of this paper we give a set of explicit formulas such that the result for O~&(Vq, Vq)F(rq)G(rq) can
be written down immediately. Here and in the following, we refrain from giving the full detailed result, since this is
not particularly illuminating. Moreover, the potentials can be evaluated rather easily by an interested reader.

B. ZkdL graphs

The evaluation of the planar BW graphs of Fig. 6, the crossed BW graphs of Fig. 7, and the TMO graphs of Fig. 8
result in
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2 2

V (BW ) = C(~~}(I)
](mp) (m )

2&i(kq+kq} rF ( 2)F (k2)

1 1 2i
x —(kr kr)ar ——(rrr k, )kr+ —k, x kr)3 3 3

1 1 2i (2)—(kl k2)o2 ——(o2 kl)k2+ —kl x k2 D (u)lru)2) r3 3 3 BWgg

(4 9)

V~~(BWx) = C~~~}(I)
~ ~ ~ I

e'("'+"')'Fp(k )F (k )(2~)s
1 1 2i

x —(kr kr)rrr ——(rrr kr)kr + —kr x krI3 3 3

1 1 2i (2)—(kl k2)o2 —-(o2 kl)k2 ——kl x k2 D (ul ~2)3 3 3 BWx

(4.1O)

V//(TMO) = C~/~ (I) ~ ~ ~

"
~

e'("'+"')'Fp(kl)F (k2)pm, ) pm. ~ (2~)s
1 1 2ix —(kr kr)rrr ——(rrr kr)kr + —k, x kr)3 3 3

1 1 2i (2)—(kl . k2)o2 —-(o2 kl)k2+ —kl x k2 DTMo(~»~2) ~3 3 3

(4.11)

where the energy denominators D can be found in Table I, and the form factors are Fp(k21) = FN~p(k21)2 and
F (k22) = FN~ (k22)2. Following the same procedure as in the foregoing section, we write the potentials of Eqs. (4.9),
(4.10), and (4.11) in the general form

2 2

( ) C( ) (I) ~(fop
~ ~

fNQ.

{, mp j ( m~ ) 9
e' "'+"' "F (kl)F (k )0 (kl, k2)D( )(u) ur ) (4.12)

where the expressions for 0&& are given in Table II, again including the contributions from Qtl graphs. Note the
fact that terms with (kl k2)(o 1 + o 2) kl x k2 give no contribution upon integration, hence they are omitted from

Table II. Also, in Table I we have used some algebra to rewrite the expression for Dx into a more transparent form.
The Fourier transformations can now be easily read-off from the Tables I and II. Again, all momentum integrals
can be written in terms of the functions G „(a,r) and H,„(a,rl, r2). Following the same steps as in the preceding
section, we write Eq. (4.12) in the form

2 2

V~~(a) = C&&(I) ~ ~ ~ ~

— lim 0&Q(V1, V2)B&&(rl, r2),(~) f p ~ ~ f ~ (~) (~)

( mp ) ( m~ ) 9 ~i ~~~~

where

B~~ (rl, r2) = Hl 1(a; rl, r2),(BWgy)

(4.13)

(Tl T2) — [QH1, 1(a Tl T2) + Gl, l(a Tl)G1,1(Q T2)]
(Bwx }

BQQ (Tl, T2) = —
2 [Gl 1(a, rl)G12(a, r2) + G12(a, rl)G11(a, T2)]

(4.14)

dze ~ [Gl 1(z; Q, Tl)G1 2(z; Q, T2) + Gl 2(z; Q, Tl)G1 1(z; Q, T2)]
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C. Iterated ego-exchange kernels

As in our previous paper [2], our definition of the TMO potential (3.1) explicitly contains the subtraction of the once-
iterated one-meson-exchange kernels. In the case of a single-channel Lippmann-Schwinger or Schrodinger calculation
for the NN channel, one should include only the pure TMO diagrams (and the BW diagrams, of course). Therefore,
in this section we give the second-order Born approximation to the interaction kernels. These can then be added to
the TMO potentials of Eqs. (4.7) and (4.13).

(i) Nh, graphs. The NA graph of Fig. 9 for both 7rp and per exchange gives the kernel

3 3
If (4) (Born) G(//) (I) fNAP fNKn fNNn i 2 e&(&,+k, ).k'P (k2)F

m m m (2s)s

x -(ki. k2)ni —-(cri ki)k2 y —ki x k2 (rr2 k2) ~

1 1 2i gNNp . (g + f)NNp
3 3 3 2MN

kg —i
2M~

(~2 x k~))

+ —(k, . kx)(~~ k~) + —ki(~~ . k, ) I (as k~) Dx'„,(tx„~,),4MN~ 3 (4.15)

where Fp(ki) and F~(k22) are the same as in Sec. IV A. In the adiabatic approximation, which we will use henceforth,
we have 8& g+ E& i, —W = (a —)gi), the treatment of which can be found in Appendix A of Ref. [1j. We find

VN~(Born) = CNz (I)(4) (//) fNb p fN&n fNNm 1 . (0.)llm gNNpONrk ~(Vi) V2)(g + f)NNp + ON~ ~(Vi) V2)(a)
mp m, ~ m~ 6MN», ~~~~-

00
-z(a —'T )x dze ' ~ '" Gi, i(z;a, ri)I2(z;m, r2)+I2(z;mp, ri)Gi, i(z;a, r2)

0

+Gi i(z) a, ri)Gi, i(z; a, r2) + I2(z; mp) ri)I2(z' mm r2) (4.16)

where the operators O~& are given in Table II.
(ii) Ab, graphs. The 6b, graph of Fig. 9 for both mp- and p7r exchange gives the kernel

2 2 3 3Z(" (Born) = C(//)(I)
j

" '
I ~

" ' 'e("~+"~)'Z (k2)S.(k2)
t, m, ) gm„ (2s)s

1 1 2ix —(kg kx)ay ——(mx ky)kg+ —kq x kq)3 3 3

1 1 2i (2)-(ki k2)n2 ——(o2 ki)k2+ —ki x k2 DB (~, , ~2),

where Ep(ki) and F (k2) are the same as in Sec. IV B. The corresponding potential reads

2 2

V''(Born)=d '(I)
~

'
I

~

"
~

— lim O' '(V„V,)

(4.17)

x2 dze ' ~ '" Gi i(z a, ri)Gi i(z; a, r2), (4.18)

where the operators 0&&) are given in Table II.
So, «r an (NN, Nd, ) ~ (NN, NA) coupled-channel

calculation the potential of Eq. (4.16) should be added
to the TMO potential of Eq. (4.13) in order to compen-
sate for the subtraction of the iterated harp exchange with
two b, isobars in the intermediate states. For a single-
channel NN calculation one has to add the potentials of
both Eqs. (4.16) and (4.18) to the TMO potentials of
Eqs. (4.7) and (4.13), respectively.

V. RESULTS AND DISCUSSION

The complete np-exchange potential can be written as

V;(mp) = V, (BW) + V, (TMO) + V,(Born), (5.1)

arith i = C, o, or T. Furthermore, each potential is the
sum of the different contributions introduced in Sec. IV.
The inclusion of the Born term V, (Born) is due to our
special definition of the TMO potential, Eq. (3.1), which
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+ mirror graphs

FIG. 8. TMO harp-exchange potential graphs with two 633
isobars in the intermediate state.

explicitly includes the subtraction of the once-iterated
OPE. For a coupled-channel calculation this Born term
should be left out. The iterated Born terms and V~Mo
are energy dependent. We have evaluated the potentials
for Tj~b = 150 MeV.

In Figs. 10—12 the results for the several potentials and
several different combinations of contributions are shown.
For vr exchange we have used the same parameters as in

[2], i.e. , f&~& /4n = 0.075, f&& /4vr = 0.35, and A~ =
664.52 MeV.

The NNp coupling constants are taken from Ref. [11),
so g&& /4n = 0.795, (f/g)

~phiz

——4.221. The NA p cou-

pling is taken from Ref. [13), where f&~& /47r = 4.86 was
used. The form-factor mass for all the p vertices is taken
to be A~ = 464.52 MeV. Like in the companion paper
[2], we assumed that the strong form factor for the nu-

cleon and the 633 isobar are the same. A motivation
for A~ ( A is that the nucleon radius as seen by the p
meson is larger than that for the vr meson since the p
meson can couple to the pion cloud more easily than the
~ meson. A difference of about 200 MeV comes out in the
Regge theory, where the vr meson chooses the sense and
the p meson the nonsense mechanism [14]. For larger A~,
the harp-exchange potentials become quite strong in the in-

termediate region. For example for A~ = A = 664.52
MeV, we get V~(I = 0) = 90 MeV and Vc (I = 1) = 65
MeV at r = 1 fm. However, preliminary calculations
including the harp-exchange potential with NN intermedi-
ate states seem to indicate that large cancellations oc-

cur�

. The presentation of the vrp- and all other vr- meson-
exchange potentials will be deferred to a future paper [9].
Here we only focus on the harp-exchange potential with at
least one 6 isobar in the intermediate state.

Clearly the numerical results should be considered as
illustrations. Certainly in the intermediate region one
can trade off coupling constants and form factor masses.
However, different coupling constants will give different
potential tails. A better estimate of the vrp-exchange po-
tentials will be obtained after the confrontation of these
new configuration-space potentials with the NN data.

In Figs. 10(a)—(d) we show the total isobar contribu-
tions, due to the NA and A6 intermediate states, for
both the mp- and vrx-exchange potentials. This for the
central, spin-spin, and tensor potentials. Note the well-

known strong cancellation between the xp and m.7r con-
tributions for both I = 0 and I = 1 above r = 0.75 fm,
which was already pointed out in the dispersion calcula-
tion of Ref. [3].

In Figs. 11(a) and (b) the BW, the TMO, and the Born
contributions are compared. Like in the ~7r-exchange
potential (see Ref. [2]), the I = 0 channel is strongly
dominated by the BW graphs. In the I = 1 channel this
is no longer the case. Here the iterated Born contribution
is about equally important as the BW graphs.

In Figs. 12(a) and (b) we compare the electric g, =
g~~~ and magnetic g = (g+ f)~~& contributions as in-

troduced in Eq. (4.7). The central potentials are strongly
magnetically dominated. For the tensor potentials the
electric and magnetic couplings are about equally im-

portant and of opposite sign, resulting in rather modest
tensor harp-exchange potentials.

We have not displayed the differences between the NA
and bA contributions. These will be similar to those
for the mvr potentials, which are shown in [2]. The same
one also expects to hold for the energy dependence of the
potentials.

This is the third paper in a series dealing with two-

meson-exchange potentials in configuration space. Ulti-
mately we plan to make a fit with the recent nucleon-
nucleon phase-shift analyses of our group [15]. So apart
from a pedagogical value, the results of this paper will

play a role in our study of the nucleon-nucleon interac-
tion, the coupling constants, and the role of resonances.
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APPENDIX A:
RARITA-SCHYVINGER SPINORS

The Rarita-Schwinger spinor for a spin-& particle can
be written as (see, e.g. , Ref. [16])

1,(s/z) (p) u I,(&) (p)p L,(~/z)
(p) (A2)

consisting of a boost for a spin-1 particle with mass M~

u" (p, o) = L (p)"„u"(0, cr),

where u"(O, o.) is the spinor in the 6-isobar rest frame,
and cr is its spin projection in that frame. Since one can
construct the spin-z states from the direct product of
the spin-&~ and spin-1 states [17), the boost operator in
Eq. (Al) may be factorized according to

and a boost for spin-z~ particle

L (p) u(0, cr)=,
/

u(0, o)(&/2) (p p+M~)

t'E+M &"' t'

x.
E+M

( 4)

Here of course, y is the 2-component Pauli spinor. In
the 6-isobar rest frame, the sz-spinor u"(O, o) is also a
2-component spinor, which is related to the 4-component
Pauli spinor Q of a spin-& particle through the spin-&,
spin-zs transition operators Z~&z according to [16]

L,(i) (p)~
(E/Mr, p~/M~

I p'/M~ b' —p'p~ [M~(E+ M~)]

(A3)

(A5)

So the Rarita-Schwinger spin-2 spinor in the Pauli-Dirac
representation reads explicitly
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FIG. 10. Central, spin-spin, and tensor urer- and mp-exchange potentials with ND and AA intermediate states. The total
contribution is also shown. (a) I = 0 and r & 1 fm; (b) I = 0 and 1 & r & 2 fm; (c) I = 1 and r & 1 fm; (d) I = 1 and
1&r&2fm.
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(1c) lim (o z V&)(cr2 V2)(rr2 V& x V2) F(TI.)G(r2)
ry ~rg

F-'(r)G"(r) + F-"(r)G'(r) + F—'(r)G'(r) (o'q o'2)

i 1, /1, „l f'I, „l2+ — F'-(r)
~

G-'(r) —G"(r)
~

—
~

F'-(r) —F"(r)
~

G'-(r) SI2,
3 r qr ) gr ) r

(11) lim (Vz V2)(&2. V2)(&2 o'1 x Vl) F(rl)G(T2)
ry ~rg

F"(r)G"(r) + —F'(r) G'(r) (cry o'2) —— F"(r)G"(r) — F'—(r)G'(r) Sy2,

(le) lim (o2 V2)(cr2 x Vy Vy x V2) F(ry)G(r2)
r1~rg

-F'(r)G'(r) + F'(r)G"(r) + F"(r)G'(r)
r r

(2) For O~~(VI, V2):

(2a) lim (Vq V2) F(rq)G(r2) = —2F'(r)G'(r) + F"(r)G"(r),r1~ra r

(2b) lim (V& V2)(crt V2)(cr2 V&) F(r&)G(r2) = — —2F'(r)G'(r) + F"(r)G"(r) (o'i o'2)
3 .r'

—F'(r)—G'(r) + F"(r)G"(r) S&2,3. r'
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FIG. 11. Isobar np-exchange contributions of the BW, TMO, and Born diagrams for (a) I = 0 and (b) I = 1.
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FIG. 12, Electric g and magnetic (g+ f) contributions of the isobar 7rp-exchange potential for (s) I = 0 and (b) I = 1. The
electric and magnetic parts correspond to those of Eq. (4.7).

= 1 /1
(2c) lim (crq Vq)(o2 Vq)V2 F(rq)G(r2) = — AF(r)(o i n2) —

l
F'(r) —F"(—r)

~

SI2 EG(r),
&y ~&2 3. gr

(2d) lim (Vq x V2) F(rq)G(rq) = — F'(r)G'(r) + (—F'G')'(r)

(2e) lim (Vq Vq)(Vq x Vq) F(r~)G(rg) = 0,

where b, is the Laplacian:

EG(r) = G"(r) + G'(r) . -
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