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One-body, collective contributions to parity mixing in compound nuclear states
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One-body contributions to parity mixing in compound nuclear states are discussed, with reference to

the recent polarized neutron transmission experiments. The role of the J 0 giant spin-dipole reso-

nance as a mediator of parity mixing in complex nuclear states is pointed out, and an expression of the

parity violating spreading width derived. The collective nature of the mixing mechanism is stressed,

and an analogy with isospin mixing in nuclei is drawn.

PACS number(s): 21.10.Hw, 11.30.Er, 24.30.Cz, 24.60.Dr

Recently, there has been renewed interest in the subject
of parity violation in nuclei [1]. This rise of interest is a
result of a new class of parity violation experiments [2,3]
in nuclei. We refer here to measurements of parity viola-
tion effects in the compound nucleus. These experiments
were proposed [21 and some were performed about eight
years ago. The basic premise of these experiments is
based on the idea that due to a high density of states, pari-
ty mixing will be enhanced in the compound nucleus. The
small separation of s and p--wave resonances in the com-
pound nucleus leads to a large enhancement sometimes by
a factor of 10 in the parity mixing observables. Indeed,
the first neutron-scattering experiments [2] as well as the
recently reported ones [3] produce parity mixing effects of
the order of 10/v, confirming the idea of enhancement.

In these measurements one scatters polarized neutrons
from a complex nucleus and measures the helicity depen-
dence of the total cross section. The longitudinal asym-
metry coefficient is

I py =2ttM p /D, (2)

where Mpv is a parity violating matrix element squared
2

averaged over a certain energy region and D is the average
level spacing. This quantity is not very sensitive to the ex-
citation energy and density of states. The reason is that
both D, the spacing, and the matrix elements squared are
inversely proportional to the density of states n One c.an
also easily see how an enhancement in t. will appear when
states in the compound nucleus are excited. It was shown
that [1,4]

e -Mpy/D

expressed in terms of I py.'

(3)

most suited. In these theories the random nature of two-
body matrix elements of the nuclear Hamiltonian is em-
phasized.

It is useful to introduce the notion of a spreading width
For example, in the case of parity violation effects in the
compound nucleus the spreading width is given by

(e')'"- (rpy/2trD)' '. (4)
where o+,o denote the total cross sections for neutrons
when the initial neutron beams have first positive and then
negative helicities. The asymmetry t. is proportional to
the parity violating matrix element and, therefore, by
measuring the asymmetry one obtains information about
the parity violating component of the nucleon-nucleon
force in nuclei [1].

The parity mixed states excited in these epithermal ex-
periments lie in the domain where the spacings between
the admixed levels are typically of the order of 10-100
eV. The asymmetry e is linearly dependent on the ampli-
tude of the parity admixed component and therefore one
should expect an enhancement in e when the density of
the states is high [2,4].

The theoretical description and analysis of these experi-
ments are given in terms of the statistical theory of nu-
clear spectra [4-6]. It is argued that the density of states
is so large and the complexity of the compound nucleus
wave functions so high that such an approach should be
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Since I pv is weakly energy dependent and D is inversely
proportional to the density of states n, one finds that

(5)

and thus there should be an enhancement in the asym-
metry measurements when the density of nuclear states is
high.

In the present paper we will approach diA'erently the
question of parity violation in the compound nucleus. We
will not emphasize the chaotic nature of the compound
nuclear domain, but rather we will concentrate on the
more collective aspects of the physics and therefore will
also concentrate on the one-body aspects of parity viola-
tion effects in the compound nucleus.

It is quite useful to recall some of the physics that is
connected to the question of isospin mixing [7,8] in the
compound nucleus and draw analogies to the present case
of parity mixing. In medium- and heavy-mass nuclei the
isobaric analog state (IAS) is shifted by the Coulomb in-
teraction (basically by its one-body part) into the region
of the compound nucleus. There the IAS which has iso-
spin T is surrounded by a dense spectrum of nuclear states
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of isospin T—1. The Coulomb interaction admixes these
compound states into the IAS giving rise to an isospin
violating spreading widths I iv. The Coulomb interaction
is of long range and therefore the dominant component is
its one-body part [7,8]. The direct mixing between the
relatively simple one-particle-one-hole (ip-lh) IAS and
the complicated multiparticle-multihole T —1 states is
small. The dominant mechanism of mixing is the follow-
ing. The isovector one-body part of the Coulomb interac-
tion finds itself a state (or resonance) that admixes strong-
ly with the IAS. Since the operative part of the interac-
tion is a one-body isovector monopole, the mixing occurs
with the T —

1 component of the isovector monopole state
[7-9] (IVM) (J 0+, T 1). The result is an isospin ad-
inixed IAS:

IIAS)adm tiAS)T+utlVM)T- I ~

Although the IVM is many MeV above the IAS [7-10],
the fact that it can be connected through a one-body po-
tential to the IAS prevails. The state in Eq. (6) contain-
ing T—1 components is now mixed with the surrounding
T —1 compound nuclear states via the strong interaction
force. The latter leads to the isospin violating spreading
width of the IAS [7-9]. One derives the following expres-
sion for this width [7-9]:

I(IAS I V
1 IVM) I

(EM EIAS) + f hl/4
(7)

where E~ and EIAs are the energies of the IVM and IAS
and I ~ is the strong interaction spreading width of the
IVM. One should mention that strictly I ~ should be
evaluated at the energy of the IAS, but as remarked the
energy dependence of a spreading width is weak.

We will now use the above considerations to draw
analogies between isospin and parity violation in nuclei.
The parity violating part of the nucleon-nucleon force was
studied quite extensively in the past. Among the various
theories studied, the role of a single-particle parity violat-
ing (PV) force was first considered by Michel [ll). Of
course, such a one-body PV force results from the convo-
lution of a two-body PV force with the single-particle nu-
clear density. Since the one-body potential has to be a
pseudoscalar, even under time reversal, the possibilities of
simple forms for such a potential are limited. The sim-
plest of these [11,12] is

g(r) gp(r)+gi(r)z, , (9)

where ~- is the third component of the nucleon isospin
operator r. For a zero-range PV nucleon-nucleon force
the functions gp(r) and g~(r) should be proportional to
the isoscalar and isovector nuclear densities. Taking
gi =a'(N —Z)gp/A and a square-well nuclear density one

Vpv =g(r)o". p,

where g(r) is a function of the radial coordinate only, and

cr and p are the spin and momentum of the nucleon. The
PV potential might be an isoscalar as well as isovector and

therefore

H~e' Hpe

and finding the eigenfunction of H to be

e -e"I~&,
where

S Mage; r;

(i 3)

(i4)

(is)

Hpl@3 E143.

To first order in gp,

l+3 I+iMZgioI'rI I+. (i7)

The second term in the wave function is the parity violat-
ing component. We note that

g(cr; r;) gri[o;I'i(ri)] (is)
3 I I

where the expression on the right-hand side (rhs) of this
equation denotes the coupling of the spin operator e
viewed as a tensor of rank 1, to the spherical harmonics of
rank 1, to form a tensor of rank 0, i.e., a pseudoscalar.
This is of course the J 0 component of the spin-dipole
operator. This operator when acting on (43 will produce
particle-hole excitations of the spin-dipole type (S 1,
L 1). Multiplying this operator by g; will produce iso-
scalar and isovector spin-dipole configurations.

We now generalize this idea by postulating that in the
case when the strong interaction nuclear Hamiltonian is
more complete and contains two-body parts, then also the
one-body parity violating potential in Eq. (8) and the
J 0 spin-dipole state are responsible for parity viola-
tion in compound nuclear states. %e will now refer to the
case when Hp in Eq. (11) is replaced by

Hp Hp+ g V"

arrives at the expression
r

1V —Z
Vpy go 1+x' r, e.p, (io)

where gp is a combined constant, also containing the weak
interaction coupling constant, and a is a constant that rep-
resents the possibility that the isoscalar and isovector PV
interactions have diA'erent strengths. Consider a single-
particle nuclear Hamiltonian:

2 A

Z +U(r; 3 + g gia; p;I ) 2' i I

=Hp+ggieI p;,

where

N —Z
g - I+a z, (i) gp. (i2)

The one-body nuclear potential U(r) is assumed to be ve-
locity independent. In this case a solution to order g$ of
the Schrodinger equation with H can be obtained by mak-
ing the transformation [11,12]
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Of course, when the two-body nuclear VJ. potential con-
tains spin operators and is velocity dependent it will not
commute with S in Eq. (15), and the admixed state in Eq.
(17) will not be an eigenstate of the full Hamiltonian.
Still, we should expect that the J 0 spin-dipole
configurations will serve as doorways for parity mix-
ing. Moreover, two-body parts in the nuclear Hamiltoni-
an Hp will correlate the lp-lh states and produce collec-
tive, giant spin-dipole states or resonances. We will use
the following definitions of "ideal" giant J 0 spin-
dipole (SD) states.

The isoscalar is

ISD;o-).= g.;[a;el', (r-;)lp (4)
No

and the isovector is

(SD;0 )) gr;les; Y~(r";)] r, (i)(4&,
Nt

(2ob)

where (4) is an eigenstate of Hp and N p, N ~ are appropri-
ate normalization factors equal to the square root of the
total J 0 isoscalar and isovector L 1, S 1 strength.
As already remarked, the above states are not eigenstates
of Hp. The two-body parts of Hp will couple these ideal
states to more complicated nuclear configurations giving
rise to a width. The one-body PV potential will couple (4)
and states in Eq. (20) to produce

I +& I e&+ ap(SD'0 &p+ a i (SD'0 (21)

brute

E
(22)

where h rod are the energies of the spin-dipole giant reso-
nances built on the state (4) and E is the energy of the
state (4). (Note that g; contains the isoscalar and isovec-
tor parts of the PV operator, and these will couple to k 0
and k =1, respectively. )

Once we identified the doorway states (in this case two

states) which are responsible for parity violation we may
now proceed and complete the analogy with isospin viola-

tion. The parity admixed state (%') in Eq. (21) couples via

the strong, parity conservin force with the opposite parity
compound nucleus states y, ), surrounding (4), giving

rise to the parity violating spreading width. (Of course,
one may also say that the parity conserving force mixes
the spin dipole with the compound states surrounding (4)
and then the PV force couples these to (4). These are
equivalent pictures. ) The expression for this width is now

(&@IVpv(SD&pl
'

l = I
(hrpp —E)2+ 1 so,pl4

I&+I Vpv(SD&il'+
p 2 ~SD 1

(hm, E) +rsn, )/4— (23)

where l sD0 and l"sD ] are the spreading widths of isospin
T =0 and T =1, 1 1, S=1, J=0 giant resonances
evaluated at the energy of (4).

The mixing coeScients ai, (k 0, 1) can be calculated, for
example, in perturbation theory:

(4(gg;cr; p;(SD;0 )I,

PV ~ ~SD ~

S/3 (24)

Spreading widths of giant resonances such as the dipole
shrink as the mass increases. Based on these qualitative
considerations, we should expect I Pv to increase as 8
with 8=1-1.3.

One of the characteristic features of a doorway state
approach is the occurrence of sign correlations among
various matrix elements. This feature was extensively
studied in the past [19]. For example, sign correlations
lead to an asymmetric distribution of width in the fine

The spin-dipole resonance in particular of the isovector
(T 1) type was studied in the past both experimentally
[13,14] and theoretically [15,16]. Theory indicates [16]
that the average energy of the J=O is several MeV
higher than that of J=1 and 2 . Usually more than 3

of the total L 1, S 1 (T= 1) strength is contained in
the J 0 component. As for the isoscalar (T=o) spin
dipole, there is only scarce experimental information [17].
One should expect S= 1, L = 1 (T=0) strength to be
found around I hrp.

It has become clear in the past decade that the Axel-
Brink postulate [18],which states that every state has its
giant dipole built on it, is well satisfied. The mechanism
of parity mixing we discuss here should be viewed as an
application of this postulate. The doorways for parity
mixing in ground as well as excited states are the spin-
dipole giant resonances built on these states. The mixing
of p and s resonances discussed in the literature [2-4] is
an example of this. The single-particle p (or s) resonance
in an odd-even nucleus which mixes with the s (or p) is
part of a spin dipole built on the latter. The full S=1,
L =1, strength contains in addition p-h components of the
core. Although we predict that most of the nuclear states
will acquire similar PV spreading widths, one should not
be deceived by this fact when considering the neutron po-
larization experiments. In these experiments only states
having single-particle components in the n plus target
ground-state compound system will be detected. More-
over, because of penetrability effects, only components of
single-particle p states having admixtures of s states will
be detected. The PV spreading width found in the recent

U experiment [3] is around I pv =1 & 10 7 eY. We use
Eq. (23) to make a rough estimate for the parity mixing
matrix element; replace the two doorways, the T 0 and
T 1, by a single one located at an average energy of
1.5hrp which in a heavy nucleus is about 10 MeV. The
widths of a dipole resonance is roughly of the order of
I sD=5 MeV in such a nucleus. These numbers give a PV
matrix element of (@(Vpv(SD) =v2 eV for a state in

heavy nucleus. This is not inconsistent with the size of the
matrix element found in other parity violating experi-
ments [1] at low excitation energies. Equation (23) sug-
gests that the PV spreading width is quite state indepen-
dent and that not only is it a smooth function of energy
but also of mass number A. Neglecting the N —Z depen-
dence, the matrix element in the numerator of Eq. (22)
can be shown by a direct calculation to have an A'~

dependence. On the other hand, the energy position of a
dipole excitation in heavy nuclei scales approximately as

. Using Eq. (23) we estimate
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structure of the IAS [7,19]. Remarkably, sign correla-
tions in the e were found in the U and recently in the
z32Th experiments [3,20]. Our mechanism of doorway
dominance leads to correlations between the coupling ma-
trix element of the p-wave resonance to the positive parity
compound states and between the decay amplitudes of
these compound states. Both are proportional to the over-
lap of the compound states with the doorway. Using these
properties and the fact that the doorway is far from the p
resonances, one finds that there are indeed sign correla-
tions in e.

We have drawn the analogy between the cases of iso-
spin mixing and parity mixing. The analogy is certainly
not a complete one. The Coulomb force that is responsi-
ble for isospin mixing is of long range. Usually, therefore,
only the one-body part is of importance, and strong mix-
ing between states that di]I'er in their composition by more
than one particle is rare. In the case of parity mixing, the

force responsible is of short range and therefore one
should expect sometimes mixing induced also by the two-
body parts of the PV interaction. Such "accidental" pari-
ty mixing is probably often encountered in lighter nuclei.

We should emphasize however, that the success of the
shell model and mean-field approximation in nuclei where
the underlying two-body nuclear force is of short range,
suggests very strongly that also in the case of the parity
violating interaction the one-body part will be the leading
term. Therefore, as one proceeds to heavier nuclei the
mechanism we suggest in this work is expected to dom-
inate.
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