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p+d = He+ y reaction with realistic three-nucleon wave functions
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We study the proton-deuteron radiative capture reaction at low energies (E„=10MeV) with the
three-nucleon Faddeev wave functions for various combinations of available realistic nucleon-nucleon

potentials and the two-pion exchange three-nucleon potential. The calculated values of tensor analyz-

ing power A, , (e) are found to be sensitive to a different choice of realistic potentials and introduction
of the three-nucleon potential. The comparison with available data shows the necessity of the three-
nucleon potential.

PACS number(s): 21.30.+y, 25. 10.+s, 25.40.Lw

The D-state components in the wave functions of light
nuclei ( H, H, He, He, . . .) have attracted consider-
able attention both experimentally and theoretically [1,2].
As the D-state admixture is mainly due to a tensor com-
ponent in the nuclear force, we can expect to get some in-
formation on nuclear tensor interaction by investigating
the D-states effect in light nuclei. The proton-deuteron
(p-d) radiative capture reaction, p+d —He+ y, is one
of such reactions that is suitable to this study.

In the last decade, some experimental and theoretical
works were done for the p dradiativ-e capture reaction to
study a sensitivity of the result to the D state of He.
King et al. [3] measured angular distributions of the reac-
tion H(p, y) He for E„"' from 6.5 to 15 MeV, and fitted

by a Legendre series,

4

o (8) =Ap 1+ g ak Pk (cose)

They performed an effective two-body direct-capture cal-
culation, in which they treated the reaction as a p-d two-
body problem. An effective two-body p-1 wave function
for the final trinucleon bound state is obtained by taking
an overlap between He and H wave functions generated
for separable nucleon-nucleon (IV-IV) interactions [4].
The initial p dmotion was -assumed to be the plane wave
or a scattering state generated from an optical potential.
Using various separable interactions, they found that the
coefficient a~ is sensitive to D-state probability in the He
wave function.

The tensor analyzing powers (TAP's), Tzv(8), were
thought to be sensitive to the D state, because no TAP is
expected in the simplest p+d model of He with only an
5-state component. Vetterli et al. [5] measured Tpp(8)
for the 'H(d, y) He reaction at deuteron energy of 19.8
MeV, corresponding to E„"=9.9 MeV. (Hereafter, we

express the energy of the three-nucleon system by F„'"'

even for a deuteron projectile experiment. ) The obtained
T2p(8) data were compared with results of the effective
two-body direct-capture calculations as in Ref. [3]. These

calculations show that Tpp(8) is actually sensitive to D-
state components in He wave functions. Jourdan et al.
[6] measured A, , (8), which is given by

(2)

T(M(, It, kr, M4, m„P)=(4'st, i'(kr) i%'st „,(P)) . (3)

Here, i%~~, (p)) represents a three-nucleon continuum
state initiated from the p-d state with the quantum nurn-

bers (M4, m„p),and i+st, ) the He ground state with M, .

for ei„.b =90' at E„"'"= 14.6 and 22.65 MeV. In Ref. [6],a
consistent calculation with three-nucleon wave functions
solved for a realistic IV-IV interaction (soft-core potential
of Reid, RSC [7]) has been performed for the first time.
They found that (1) the use of scattering solution for the
p-d incident channel instead of the plane wave makes
A, , (8) decrease by about 50% and (2) the E2 and M 1

effects on A, , (8) inside the angular range of 40'-150'
are very small. However, as they use only RSC potential,
it is worthwhile to perform calculations for other poten-
tials, also including the three-nucleon potential.

Recent progress in theoretical treatment of the three-
body problem allows us to solve the three-nucleon Fad-
deev equations accurately not only for bound states, but
also for scattering states with an available realistic N-N
potential (2NP) even with a three-nucleon potential
(3NP). In this paper, we report our calculations of the
low-energy p-d radiative capture reaction for different
combinations of available 2NP's and 3NP's, and discuss
how the nuclear tensor interaction together with the 3NP
effect inAuence observables.

An amplitude for a transition from an initial state with
proton and deuteron whose z components of spin are m,
and M~, respectively, and relative momentum p, to a final
state with a photon of momentum k~ and the polarization
vector e„(p= ~ 1;k„e„=0),is written in the following
way in first-order perturbation theory:

45 R 1428 Oc 1992 The American Physical Society



p+d He+ y REACTION WITH REALISTIC THREE-NUCLEON. . . R1429

H„(k„)stands for a photonuclear interaction Hamiltonian

eH„(k„)= —— J(r) A„(r,k„)dr, (4)

where A„(r,k„)is a vector potential:
r i ]/2

A ( k) 2+he —iky r
Ep e (s)

and 3(r) is a nuclear current operator.
We followed the same procedure as in Refs. [S,9], in

which we used the continuity equation

V J(r)+—[Hw, p(r)] 0,

where p(r) is a nuclear charge density operator and Hlv is
the nuclear Hamiltonian. After the long-wavelength ap-
proximation, we get an expression for H„(k„)as follows:

r'Yi, (r) [Hg, p(r)]dr .

We assumed the one-body operator for p(r) (the
Siegert's hypothesis),

I + r.(i)-
p(r) -p"'(r) -g b(r —r;) .

i I

The expression of Eq. (8) with this assumption is con-
venient for our calculation, because (1) effects of meson
exchange currents are implicitly taken into account, and
(2) we will take matrix elements with eigenfunctions of
Hiv both for the initial and final states, and thus H~ can
be replaced by the eigenvalues. We use only electric di-
pole (E I ) and electric quadrupole (E2) terms, i.e., A, =1
and 2 in Eq. (7). We should mention that we did not in-
clude Coulomb force, which was known to give little effect
by the effective two-body direct-capture calculations [10].

Wave functions for the initial and final states are ob-
tained by solving the three-nucleon Faddeev equations nu-
merically. In our method, we express the Faddeev equa-
tion as a set of coupled integral equations in the coordi-
nate representation, and solve it by an iterative method
called the method of continued fractions [11-13].

In the Faddeev-type calculations for three-body sys-
tems, there exist two types of truncations for the partial-
wave expansion: for total angular momentum of the two-
body subsystem (J) and of the three-body system (Jo).
The former corresponds to a truncation of a space of the
nuclear Hamiltonian and the latter to a truncation of a
wave function of the three-body system. (For the three-
nucleon bound state, only the former truncation exists be-
cause Jn is fixed to be —.

' .) At the moment, our computer
facility enable us to calculate three-nucleon continuum

H„(k„)- '„,g PJn, +I g D.'„(x,~ —e,o)
hek 1 cr~ —

A,

x TX (kF),

where D"„(a,P, y) is the rotation matrix and Tz" (k„)the
electric multipole operator,

kr %+ I I

I'i A, (2A, + 1)!!

TABLE I. Results of two- and three-nucleon bound-state cal-
culations for various models used in this article.

2NP
Pn( H)

(%)

2NP
B3 Pn( H)

(Me V) (%)

2NP+ BR70o
B3 Pn('H )

(MeY) (%)

AYI4
dTRS
dTS-A
dTS-B
dTS-C
BONN

6.08
5.92
4.43
4.25
5.45
4.81

7.58
7.49
7.62
7.70
7.50
8.24

8.90
8.55
6.53
6.22
7.95
7.01

8.42
8.49
8.34
8.44
8.32
9.00

9.14
8.72
6.56
6.20
8.03
6.91

states with maximum value of J (Jm.,„)to be 2. The use of
the Siegert's hypothesis demands that the Hamiltonian for
the initial and final states should be the same. Thus, we
also set J~„.

„
to be 2 for bound-state calculations.

As stated previously, the use of only E I (I ) and E2
(2+) photonuclear multipole operators is a good approxi-
mation to the calculation of low-energy p-d radiative cap-
ture. Since spin parity (x) of the final state ( He) is —,

'

we need to calculate p-d states with Jo of &

and -'+. This contrasts with calculations of the nucleon-
deuteron elastic or three-body breakup reactions, in which
we need at least to calculate up to —", for Jo to get conver-
gent results.

In the present calculation, we used six kinds of realistic
2NP: the Argonne V14 model (AV~4) [14], the super-
soft-core potential models of de Tourreil-Sprung (models

8, and C) (dTS A, 8, and C) [15], and de
Tourreil-Rouben-Sprung (dTRS) [16], and the r-space
OBEP version of the Bonn potential (BONN) [17].
Among them, the first five potentials are known to under-
bind the triton by the order of I MeV compared to the ex-
perimental value of 8.48 MeV. In order to explain these
differences, we should introduce 3NP to a nuclear Hamil-
tonian. For 3NP, we used the two-pion exchange mode)
with a parametrization of a Brazilian group [1S]. The
calculated values of the triton binding energy with 3NP
strongly depend on the nN-N form factor and its cutoff
mass A,. We choose the monopole form factor with the
cutoff mass Am-700 MeV (BRioa), which is a suitable
value to reproduce the triton binding energy. On the oth-
er hand, among 2NP's that we used, only BONN can
yield the binding energy nearly equal to the experimental
one without 3NP. However, it is pointed out [19] that
BONN cannot reproduce a S]- D ~ mixing parameter
(e~) of N-N phase-shift analysis because of its weak tensor
force, and at the same time this very fact explains why
BONN can obtain a large value of 83.

In Table I, we show calculated values of triton binding
energy (83) and probability of the D state in the triton
[PD( H)] without (2NP) and with (2NP+BR7OO) Brazi-
lian 3NP together with the probability of the D state in
the deuteron [Pii( H)] for all potential models which we
are using. Note that 3NP let PD( H) increase for all
2NP's except dTS-B and BONN, both of which give rath-
er small Pn( H). Qualitatively, it seems that the effect of
3NP on Pp( H) is larger for 2NP with stronger tensor
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component. Effects of this behavior on the p-d radiative
capture observables will be discussed below.

Our results of nucleon-deuteron elastic scattering have
been reported elsewhere [13], and were comparable with
results by other authors. For example, for dTRS N-N po-
tential, we found a good agreement with those of momen-
tum space calculation in Ref. [20].

Using three-body bound- and scattering state wave
functions, we can calculate the transition amplitude for
the p-d radiative capture, and thus, various related ob-
servables.

First, we investigate the coefficients aI, (k 1,2, 3,4) of
the Legendre expansion of the angular distribution [see
Eq. (I)]. Contrary to the result of the effective two-body
direct-capture calculations, we found that not only calcu-
lated values of a2 but also those of a~, a3, and a4 are in-
sensitive to different choice of 2NP and existence of 3NP.
For example, in Table II, we show average values ((ai, ))
and standard deviations (s.d. ) of calculated values of aq's
for 2NP (first column) and 2NP+BRqoo (second column)
at E„'"' =14.6 MeV, together with experimental values
[21,22] at E„'" 14.8 MeV (third column). In this table,
difference in the values of (aq) between 2NP and 2NP
+BR7oo should express the effects of BR7oo-3NP. On the
other hand, the values of standard deviations should ex-
press the effects of the different choice of 2NP. From this
table, we can see that both effects are very small, at most
only 1%. Further, we found that calculated values of ap's
are in good agreement with available experimental values
at energies around Ep' 10 MeV.

Next, we investigated TAP of the reaction
'H(d, y) He. In Fig. I, we plot the calculated values of
A», for 8, 96' (corresponding to 8~.,b =90 ) at
Ep"' =14.6 MeV vs PD( H) for used 2NP. In this figure,
results for 2NP are shown by squares and those for
2NP+BR700-3NP by crosses, respectively. The range of
experimental value (0.0282~ 0.0016) [6] is shown by the
dotted area. We can see that all 2NP's yield 15%-30%
smaller values than the experimental result. In Ref. [6],
the effect of E2 multipole operator on Ayy(8, ) for
8, =90' was reported to be very small. In fact, when

we neglect the E2 multipole operator, the values of
A», (8, 96') decrease by only 2%-3%, which are small

1p Ayy(earn. =g
3.25

6;Ep= 14.6MeV)
I I

I
I I I I

I
I I ~ 1

I
I I ~ I

2.75

2.5

2.25

dTS—B

Bonn

)C
O

dTS-A

dTS- C

dTRS

AVgg

1.75 s i I s s

enough compared to the above difference.
It should be noted that BONN, whose tensor force is

relatively weak, yields the largest value for A» among the
2NP's that we used. This shows that A~~ cannot be deter-
mined simply by PD( H).

The introduction of 3NP makes the calculated value of
A„'sincrease for almost all 2NP's except BONN. This
figure shows that the increase of A„y (AAyy) due to the in-

clusion of 3NP is large for 2NP with a strong tensor com-
ponent.

In Fig. 2, we plot BAN�(8,m =96') due to the introduc-
tion of BR700-3NP at Ep"' 14.6 MeV against those of
PD( H) [hPD( H)]. We found a linear correlation be-
tween DAN and hPD( H). After the least-squares fitting,
the correlation is expressed by a straight line (with the

g p~ EAyy(8~~= 96;Ep= 14.6MeV)
4 I I I I

I
I I I I

I
~ I I I

I
~ I I I0. ~ ' ' s

PD(aH) (w)
FIG. I. A, , (8„.,„=96')at EP "=14.6 MeV vs Pa('H) for

2NP (squares) und 2NP+BRzoo (crosses) calculations. The
dotted area indicates the range of experimental value.

TABLE II. Average values (1aql) and standard deviations

(s.d.) of the calculated a&'s [Eq. (1)] at E„'"'b 14.6 MeV, and

the experimental values at F„'"' 14.8 MeV.

0.3

0.2

0.1

&a I&

s.d.

2NP

0.340
0.002

2NP+ BR700

0.339
0.002

Expt.

0.33(l ) 0

&aq&

s.d.

&a3&

s.d.

—0.919
0.003

—0.335
0.002

—0.915
0.004

—0.334
0.002

—O.S9(1)

-O.29(2)

I g g s s I s i s i I i i s—O.
—0.2 —0.1 0 0.1 0.2

EPD(aH) (%)

0.3

&a4&

s.d.

—0.029
0.000

—0.028
0.000

FIG. 2. The increase of A, , (8; =96 ) at Ep""=14.6 MeV
vs that of Pg('H) due to BR700-3NP. The straight line is ob-
tained by the least-squares fitting.
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10' A~(8~.=96 )
~ I I I
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PO

correlation coefficient r =0.991):

AALU@
=0.9454APo( H)+0.0520. (10)

Among all models which we used, AV~4 with BR7oo-
3NP turns out to be the best choice to reproduce the ex-
perimental value of Ayy(8, 96') at E„"=14.6 MeV.

0 5 10 15
Ep (MeV)

FIG. 3. Energy dependence of A, , (8, 96') for AVi4
(dashed curve) and AVi4+BRqiis-3NP (solid curve). Data are
taken from Ref. [6].

Clearly, we need more TAP data at other energies and
other angles to draw a definite conclusion. In Fig. 3, we
plot energy dependence of Ay~ at 8, 96' around
Fp"' =10 MeV for AY~4 and AV)4+BRp(g-3NP.

We apologize that at the moment, our computer facility
prevents us from extending the calculation to the energy
E„=22.5 MeV (Eq =45.3 MeV) for which we need much
more mesh points to treat oscillating behavior of wave
functions correctly.

To summarize, we calculated the angular distribution
and tensor analyzing power of the reaction p+ d

3He+ y. As far as the available experimental data are
concerned, the AVt4+BR7oo-3NP yields the most favor-
able result. Also the necessity of 3NP in three-nucleon
continuum is found for the first time in the present work.
We conclude that the tensor analyzing power A„s(8)at
different energies around E„"b 10 MeV and accurately
calculated realistic three-nucleon wave functions could
provide important information on nuclear interactions as
to the tensor force effect and choosing a favorable realistic
potential.
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