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With the use of a velocity filter, the a-particle decays of 2*U and ?**U were studied in '°F bombard-
ments of *Bi. The data obtained for these two isotopes are compared with those of previous investiga-
tors, and the a-decay rates of 2>22*225U are discussed within the context of partial a half-lives for even-

even nuclei with Z > 84.

PACS number(s): 23.60.+e¢, 27.90.+b

Until recently the only information available on urani-
um isotopes with 4 <227 was a half-life and an a-decay
energy for 22°U [1] and a half-life for 222U [2]. We under-
took a search for 2**U and 2*°U a decays in '°F irradia-
tions of 2%Bi by using the Holifield Heavy Ion Research
Facility (HHIRF) velocity filter and a detection technique
described in Ref. [3]. During the course of our study the
discoveries of 22°U [4,5], **U [6], and ?**U [6], and new
data on %?°U [4] were reported. Herein, we present our
results on the a-decay properties of 22*U and 22°U togeth-
er with a discussion of the 222U, #2*U, and 2?°U decay
rates and how they fit into the half-life systematics for
ground-state, even-even, a-particle emitters with Z > 84,

The 2B targets, 300 ug/cm? layers deposited on 20
ug/cm2 carbon foils, were bombarded with 102-, 106-,
and 115-MeV "F ions from the HHIRF 25-MV tandem
accelerator. The first two energies were selected to max-
imize yields of the (°F,3n) and ('°F,4n) products, based
on available cross-section data for reactions induced by
various heavy ions on nuclei in the mass region near lead.
The 115-MeV energy was chosen to provide excitation-
function information to assist in mass assignments. Also,
some cross-bombardment data were already available
from our study [7] of thorium nuclides produced in 150
and '80 irradiations of *°’Pb. Beam currents were limit-
ed to intensities of less than 500 electrical nA to minimize
damage to the targets.

The magnetic and electrostatic components of the ve-
locity filter were set so that the uranium evaporation resi-
dues recoiling out of the target at 0° were separated from
the incident '°F ions and other reaction products. Fol-
lowing separation they were implanted in a Si(Au) surface
barrier detector, and their implantations provided start
signals for our electronics. Except for an added capabili-
ty to measure longer half-lives, the experimental setup
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and method have been described earlier [3]. There the
half-life determination of ?'®Ra had been done with a
time-to-amplitude converter (TAC) which covered a
range from about 1 to 64 us. Since we were now search-
ing for isotopes whose half-lives were anticipated to be in
the range of 1 ms to 1 s, each observed a-decay event was
tagged by a signal from a clock that was started whenever
the implantation of a recoil residue occurred. Time
ranges of 32 and 320 ms were used. Decay events were
also recorded, as before, with the 64-us TAC.

Figure 1 shows the spectrum recorded at an incident
energy of 102 MeV during 320-ms counting intervals for
a particles preceded by a residue start signal. In agree-
ment with Hessberger et al. [S] we observe two a groups
following 22°U decay. Our energy of 7879(15) keV for the
more intense group agrees with values in both Refs. [4]
and [5]. However, Andreyev et al. [4] did not observe
the weaker 7821(15)-keV peak. By using decay informa-
tion from both the 102- and 106-MeV experiments we
determine a half-life of 95(15) ms for 2*°U, a value which
agrees with the half-life given in Ref. [5] but not with the
one in Ref. [4]. The three sets of 22°U data are compared
in Table L.

We also indicate in Fig. 1 a cluster of counts whose en-
ergy corresponds closely to the 8470-keV value assigned
[6] to 2%*U, a nuclide with a half-life of 0.7 ms. These
events are emphasized in Fig. 2 where a particles ob-
served in the same 102-MeV experiment but recorded
during the first 5 ms of the 320-ms counting interval are
displayed. One now sees in Fig. 2 a distinct peak whose
energy, 8458(20) keV, agrees with the value of Andreyev
et al. [6]. However, because its energy is close in value to
that of one of two intense 2>!'Th « transitions, we need to
consider the possibility that this peak is in reality the re-
sult of 2!Th decay. The energies and relative intensities
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FIG. 1. a-particle spectrum measured in 102-MeV '°F bom-
bardments of 2®Bi during 320-ms counting intervals. Energies
are expressed in keV.

of the two intense >!Th a transitions are as follows: (1)
8146 keV (62%) [8] and 8145 keV (56%) [9] and (2) 8472
keV (32%) [8] and 8470 keV (39%) [9]. In both Figs. 1
and 2, the location of the stronger 2!Th a peak is indi-
cated, and it is clear that most of the counts in the 8458-
keV group (Fig. 2) are due to 2**U. Based on the com-
bined 102- and 106-MeV data we determine a half-life of
1.0(4) ms for 2*U. Our ?**U results and those of Ref. [6]
are compared in Table 1.

A peak labeled ?2°U in Fig. 1 is close to the energy of
7570(20) keV reported by Andreyev et al. [4] for 2%6U.
This energy is very different from the 7430(30)-keV value
measured by Viola et al. [1]. The ?*U half-lives deter-
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FIG. 2. a-particle spectrum measured in 102-MeV °F bom-
bardments of 2Bi during the first 5 ms of 320-ms counting in-
tervals (see Fig. 1). Energies are expressed in keV.

mined in these two previous investigations are also dis-
similar (see Table I) and, coupled with the respective a-
decay energies, lead to very different a reduced widths as
we discuss later. The interested reader is referred to Ref.
[4] where arguments are presented against the assignment
by Viola et al. [1] of the 7430-keV peak to 22°U. Note
that if the 22U a-decay energy is indeed 7430 keV, then
that particular a group would be obscured in Fig. 1 by
the 2!'Po 7450-keV peak.

Figure 3 shows the spectrum measured in the 115-MeV
experiment during 32-ms counting cycles. There is no in-
dication of the 22U and ***U a peaks so that the 115-
MeV bombarding energy must be past the maxima of the
(F,3n) and ("°F,4n) excitation functions. The a-
particle spectrum gated by the 64-us TAC at this bom-

TABLE 1. Half-lives and a-decay energies of light uranium isotopes.

Present data

Previous data

Nuclide E, (keV) I, (%) T,,, (ms) E, (keV) I, (%) T,/ (ms) Ref.

26y 7570(20) 85 250*139 [4]
7420 15

7430(30) 100 500(200) Y

25y 7879(15) 85 95(15) 7880(20) 90 80143 [5]
7821(15) 15 7830(20) 10

7870(20) 100 3029 [4]

24y 8458(20) 100 1.04)  8470(15) 100 0.7%93 6]

my 8780(40) 100 (18*19x 1073 6]

my 100 (1.0%12)x1073 2]
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FIG. 3. a-particle spectrum measured in 115-MeV '°F bom-
bardments of 2Bi during 32-ms counting intervals. Energies
are expressed in keV.

barding energy was also examined. The 8780-keV peak
assigned to 22°U by Andreyev et al. [6] was not seen even
though the nuclide’s 18-us half-life (Table I) would place
its decay events within the TAC range. For this 28y
compound system there is apparently a large amount of
fission competition at each evaporation step, so that the
(°F,5n) reaction cross section must be substantially
smaller than that for the (°F,4n ) reaction.

Figure 4 displays a plot of reduced widths as a function
of neutron number for ground-state-to-ground-state o
transitions of even-even elements with Z =84. In this
discussion Rasmussen’s a-decay formalism [10] was used
to calculate the width 82, which is defined as 82=Ah /P,
where A is the decay constant, 4 is Planck’s constant, and
P is the a-particle penetrability factor. As noted many
times previously, widths for these s-wave transitions vary
regularly with nucleon number so that discontinuities
such as the one at N=126 (and N =152) indicate shell
closures.

The 8 values calculated for 22U with the data of Refs.
1] and [4] are 0.30 and 0.17 MeV, respectively. While
the first width appears to be too large for an N =134 nu-
cleus (particularly with Z =92), the 0.17-MeV value fits
within the trends observed in Fig. 4. Our ?**U data and
those of Ref. [6] yield 8 values of 0.095 and 0.125 MeV,
respectively. Since both widths fit the systematics, we
show their average in Fig. 4. Hingmann et al. [2] report-
ed a 1-us half-life (Table I) for 22U but were not able to
measure the nuclide’s a-decay energy. In their discussion
they noted that this short half-life necessitated a decay
energy of 9.66 MeV if the reduced width of 22U were to
be consistent with values of other even-even nuclei in this
mass region. According to the authors [2] this energy is
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FIG. 4. Reduced widths plotted as a function of neutron
number for s-wave a transitions for elements with Z > 84.

about 0.45 MeV greater than what one would expect
from systematics. The 22U decay energy is now known,
and by using it and the 7570-keV value of Andreyev
et al. [4] for 225U one can extrapolate to 222U and deduce
its energy to be about 9.33 MeV. A 8% value of 0.49 MeV
is then calculated for *2*U; based on the widths shown in
Fig. 4, this value is clearly too large. To obtain a width
of 0.15 MeV a decay energy of 9.55 MeV is required.
However, since there are no irregularities observed in
plots of decay energy vs neutron number for Th, Ra, and
Rn nuclei for N between 130 and 140, a more likely reso-
lution is that the half-life of 222U is closer to the upper
limit of 2.2 us (Table I) set by Hingmann ez al. [2].

In the 1986-1987 atomic mass predictions [11] Waps-
tra, Audi, and Hoekstra [12] list masses deduced mainly
from experimental data. Values for uranium nuclei with
A <226 are not in their compilation, but now that the a-
decay energies of 223U, 2**U, and ?*°U are available, the
uranium masses can be calculated because those of 2!°Th,
220Th, and ?*'Th are listed [12]. Since uncertainties in the
a-decay schemes of nuclei that are not doubly even can
lead to masses with large error bars (see Ref. [12]), we
prefer to leave the mass determination of 22U and **°U to
those who deal in global surveys. For 22*U, however,
based on an a-decay energy of 8464 keV (average of mea-
surements in our work and in Ref. [6]) and a 14.647-MeV
mass excess [12] for 22°Th, the 2**U mass excess is calcu-
lated to be 25.689 MeV with an uncertainty of about 30
keV. Finally, if the 2?°U decay energy is 7570 keV, then
the isotope’s mass excess is 27.312 MeV rather than the
27.170-MeV value [12] deduced from the a-decay data of
Ref. [1].
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